DGEMM on Integer Tensor Cores

Hiroyuki Ootomo
Tokyo Institute of Technology

NHR PerfLab Seminar Sep. 05, 2023

$ whoami

m Hiroyuki Ootomo
m Ph.D. candidate at Tokyo Institute of Technology
m Research:
m Mixed-precision computing
Randomized numerical linear algebra

||
m Quantum circuit simulation
m HPC processors

1/26

Motivation

Question

Can deep learning processors be used for HPC applications?

m Deep learning hardware

m Low- and mixed-precision
m Matrix multiplication

m Usable in HPC apps?
m Not easily

Myth 11: HPC Will Pivot to Low or Mixed
Precision!

A high-performance language is nothing without proper data
types, but high-precision operations such as fp64 come at a
significant cost in terms of silicon area, energy and speed,
according to Myth 6. Lowering this precision can save costs

S. Matsuoka, et al. (2022)
Myths and Legends in High-Performance Computing

T

IEEE FPe4 [|FEE 52
NVIDIA TF32 n Traditional HPC

|IEEE FP16 I Neural Networks

Google &r16 [[ENIEM
NviDiA Fre [

f
NVIDIA FP8 In Transformers

FIGURE 1. Overview of FP representations.

H. Ltaief, et al., (2022)
Responsibly Reckless Matrix Algorithms for HPC Scientific Applications

2/ 26

Outline

SGEMM Emulation on Tensor Cores

3/26

NVIDIA Tensor Core

m Mixed-precision matrix multiplication and addition unit (A - B + C).

m On the latest NVIDIA GPUs.
C FP32

FP16/TF32

FP32

.

exponent : 8 bit mantissa : 23 bit

NVIDIA A100 GPU

FP32: 19.5 TFlop/s

u
o

[TF32 Tensor Cores

156 TFlop/s

x16

312 TFlop/s

NVIDIA H100 GPU (SXMS)
FP32: 66.9 TFlop/s

0
T

FP32 I TTTTTITTTT T T T I T T T T T T T T T T T TTTTT0]

TF32 I TTTTITTTTTTTTTITT]

FP16 OTTTTTTTTTTTTTT]
5 bit 10 bit

F32 Tensor Cores
494.7 TFlop/s

989.4 TFlop/s

4 /26

Can we compute SGEMM on Tensor Cores?
m We need to convert the input FP32 matrices (A, B) to low-precision.

Tensor Core

C FP32

FP32 FP16/TF32

FP32

\ 4

Type cast

A\ 4

m The type conversion results in loss of accuracy in the resulting matrix
m Almost the same as half-precision
m = Our previous study proposes a method to refine the accuracy by
preserving and utilizing the mantissa that is lost during type conversion.

5/ 26

SGEMM emulation on Tensor Cores

m Matrix multiplication almost equivalent to single-precision on Tensor Cores.
m Faster than the theoretical peak throughput of FP32 computing units.

~ Accuracy

=—e=— FP32 SIMT
== SGEMM emu.

=== Tensor Core w/o ErrCor

1073 + j

104 4

1075 4

better

1076

Error (Relative residual)

1077 4

2‘6 2‘9 2‘12 2‘15 2‘18
k : matmul-(16, 16, k)

~ Throughput

mfe== Qur method(FP16-TC)
m=fe== Qur method(TF32-TC)

NVIDIAATO

50 A e P v —-
40 - .

30 oot Vo
/e

10 ﬁ

0 T T T
1000 4000 8000 12000 16000
Matrix size m : matmul-(m, m, m)

mjp== CUBLAS
—-= FP32 peak
60

Performance [TFlop/s]

Ref: Ootomo and Yokota, Recovering single precision accuracy from Tensor Cores
while surpassing the FP32 theoretical peak performance, IJHPCA, 2022

6/ 26

SGEMM emulation on Tensor Cores (Cgpsz < Afpso - Bepso)

VEP32

[| mantissa (23 bit) |
VEP16 4 Avam&

[] [ot | [[[oot |

VEP32 X VEP16 + AVEpPI6

7/ 26

SGEMM emulation on Tensor Cores (Cgpsz < Afpso - Bepso)
AFrp32 Bep3z

VEP32

[| mantissa (23 bit) |

vFPl 6 g AVFP] 6 & Arpis gAAFP](y& Bepis gABFPM&

[] [1ot | [[[oot |

VEP32 X VEP16 + AVEPI6

7/ 26

SGEMM emulation on Tensor Cores (Cgpsz < Afpso - Bepso)
AFrp32 Bep3>

VEP32

l l l mantissa (23 bit)]

VEP16 % AVFP 16 & Arpis gAAFpm& Breis %ABFPK,&

[] [1obit [1obit |

VEP32 X VEP16 + AVEPI6

Scheme
Tensor

Crp32 *Arpis « Bepig Core
+AAFpi6°Brpi6+tArpis e ABrpig

with avoidance of RZ inside Tensor Cores 0]:p32] T T
v

SGEMM emulation CFP32

7/ 26

Can we emulate DGEMM in the same manner?
= No

m The accumulation precision limits the emulation accuracy.
m In the case of Tensor Cores, it is FP32.

m If there were FP64 accumulation Tensor Core, we could emulate DGEMM

m But we can compute it using another method called the Ozaki scheme

ar <1V > ¢s > arXiv:2306.11975

Computer Science > Distributed, Parallel, and Cluster Computing

[Submitted on 21 Jun 2023 (v1), last revised 22 Jun 2023 (this version, v2)]

DGEMM on Integer Matrix Multiplication Unit

Hiroyuki Ootomo, Katsuhisa Ozaki, Rio Yokota

8/ 26

Outline

DGEMM Emulation on Integer Tensor Cores

9/26

DGEMM emulation on Integer Tensor Cores

DGEMM emulation on Integer Tensor Cores using the Ozaki scheme
~ Throughput

~ Accuracy
o— Our work (int8x11) B DGEMM —e— QOur work (Int8x11) —a&— Our work (DGEMM)
--@-- 0zBLAS-TC
\ =4 RTX 6000 Ada
107° A
4
B 10—10 4
s {; better 34
- wn
g 10 12 | EL
=) T 2
2107144 = Peak 1.423
o A R N, RN E Sl
_ 2 M 11
10716 4 JRRY SITTINLE | TP ...
T T T T T 0 Lo P ISR R R S *
22 m 'Zr;atmul(2;28 12828m) * 220 gn gw o 2b ol
' ! ’ m : matmul(m, m, m)

Ref: Ootomo, Ozaki, and Yokota, DGEMM on Integer Matrix Multiplication Unit,
arle, 2023 10 / 26

DGEMM on Integer Tensor Cores

Integer Tensor Cores

CuBLAS GEMM mode
—&— Int8TC —A— FP16TC

RTX 6000 Ada
Peak:737
600 -
| Peak:368.5 //‘

25.0 2’11 2’12 2’13 2’14
m : matmul(m, m, m)

Int32
Int8

?)
TFlop/s or TOp/s
N B
(=) o
o o

m The throughput is 2x higher than FP16 Tensor Cores

m The inference computation in deep learning

11/26

Ozaki scheme (Ozaki et al., 2012)

m The Ozaki scheme is a high-precision matrix multiplication algorithm using
lower-precision arithmetic

B|
- oo v Split Low-precision
_ AD.BU) - -
{_D_ _____ ' [BO] B e B(t)l
[A(O)I
A(l)l II: S
A > : ° %’{Z))X'OA
Split| | *® * %, C
(s)l %
L .M o®é/)

Ozaki scheme (Ozaki et al., 2012)

m The Ozaki scheme is a high-precision matrix multiplication algorithm using
lower-precision arithmetic

B|
R v Split Low-precision
'[] =A?.BY) V'
'l | [BO] B oo B(t)l .
——————— No rounding error!
[y ol
A© //
ALY T)
A > 4 . :{> %%
NI %
Split %, C
A(s) /éo/' .
L .Jl d\/of)

Ozaki scheme
Examle (in decimal number)

ma=[a; ap] where a; = 1.11111111 x 10°, ay = 2.22222222 x 10°
m Split mantissa by 3 digits
% Similar method to the SGEMM emulation (Not the Ozaki scheme)

a;=1.11x 10°+1.11x 10 +1.11x 107!

as =2.22x 10> +2.22x 10°+2.22x 1073

The Ozaki scheme
a;=1.11x 10°+1.11x 102+ 1.11x 107'+0.00x 1074

as = 0.02x 10°4+2.22x 10> +2.22x 107'4+2.20x 107*

m Split the mantissa while aligning the exponent.

13/ 26

Ozaki scheme
~ Rounding error in multiplication of two floating-point values

L L,
b b
[T TJoofx2¢ x [1[o[22
mantissa mantissa

@ Output

The rounding error occurs if Ly + Lo + 1 is larger than the mantissa length of the

output format (Ls).
= No rounding error occurs if L; and L, are small enough.

14 / 26

Ozaki scheme

~ Rounding error in addition of two floating-point values

L L
|—1| |—2|
T Toox2¢ + [T Too]x2
L . J
Ly
_ 9utgut
1- :(>Imax(e1—e2+L2,L1)+1 |
I—I o |
[T o] l | o] 2%
Shift (e; — ep) bit | L |

(Assume: e; > e3)
The rounding error occurs if max(e; — ey + Lo, L1) + 1 is larger than the mantissa
length of the output format (Ls3).
= No rounding error occurs if L, Ls, and ¢; — e; are small enough.

15/ 26

Ozaki scheme

m Consider an inner product of two length-k vectors a and b.
m We can compute their inner product without rounding error if
the mantissa lengths of all elements a;, b; are small enough
the exponents of a;b; for i = 1..k are close enough
m Intuitive example: (not rigorous)
(For simplicity, assume that all elements in a vector have the same exponent)

Q@ = 8 bit 8 bit (Up to) 17 bit
a) [T __00..0 e Xby BT 000 | per = 101 [[000 Jypeter

16/ 26

Ozaki scheme

m Consider an inner product of two length-k vectors a and b.

m We can compute their inner product without rounding error if
the mantissa lengths of all elements a;, b; are small enough
the exponents of a;b; for i = 1..k are close enough

m Intuitive example: (not rigorous)

(For simplicity, assume that all elements in a vector have the same exponent)

Q@ = 8 bit 8 bit (Up to) 17 bit
a) [T __00..0 e Xby BT 000 | per = 4101 [[000 Jypeter
@) T 0020 e x by 0000 = 20y w00, penve
ai | I 00..0 Iypea X by | I 00..0 | oen = akby [000 T penter
mantissa

16/ 26

Ozaki scheme

m Consider an inner product of two length-k vectors a and b.
m We can compute their inner product without rounding error if
the mantissa lengths of all elements a;, b; are small enough

the exponents of a;b; for i = 1..k are close enough

m Intuitive example: (not rigorous)

(For simplicity, assume that all elements in a vector have the same exponent)

Q@ = 8 bit 8 bit (Up to) 17 bit
a) [T __00..0 e Xby BT 000 | per = 4101 [[000 Jypeter
@) T 0020 e x by 000 = 202 000, pevve
ai | I 00..0 Iypea X by | I 00..0 | oen = akby 000 T penter
mantissa +)

m If 17+ [log, k] < the mantissa length of the output format, no rounding
16/ 26

€rror occurs

(Upto) 17 + [log, &] bit
..

[00..0] pcatentlog; 1

Ozaki scheme

Split the mantissa so that no rounding error occurs during inner product

computation

(] [al ay - ak] is a row vector of matrix A.

Similar method to the SGEMM emu.

The Ozaki scheme

Mantissa of
al) @ 0
r_JW_JW_H
. S S
. abit ; abit ; abit ;
a =S %29
@ === T X2
a3 === 1 1 x2%
k-1 [=== i A
a === e X2%
[J

+

mantissa (e.g. 53 bit in FP64)

a(1) a(2) a(3) a®
— —
D S S ¢ X K
. abit ; abit ; abit ; . abit ;
a | Crrzisesdm
@ == o
as : . S ———
i | v aana sl :
a : N X
< | |
S e €1 e Exponent

17/ 26

Ozaki scheme

Split vector A Split vector b
al) @ 6 . a® b p?® p® b®
— " — — —
.U S X % . .
. abit ; abit ; abit ; . abit . abit ; abit ; abit ; . abit ;
a E] by P_ﬁﬁm_,_/_: : :
@ E==] : : L :
as : R ———— by i : [Lo :
a1 g by i
a = : b i ' — ;
<! | | <
e €1 ek Exponent h

i [
| T
e €-1) ek Exponent
a-b= Zam.bu‘)
ij

We choose the mantissa length ¢ appropriately

sothat a® - b is computed without rounding error.
a = [(-log, u —log, k)/2]

where U is the unit round-off of the accumulator.

18/ 26

Ozaki scheme
M @Split

-

|
D 40 ,B () ! =A?.BY)
ELNELNE e () T)
bit * bit # bit * * b'lx 77777777
abll abll bl abi
w | ‘ LIE [
ar
A
(1‘] } D D D |::> <,
Q-1 |v.roveun) H 0 /b%
= Split| _* : C
| | |
e -1 ek Exponent D D D

~ Strong point

Compute high-precision GEMM by the accumulation of lower-precision
GEMMs

Can be applied to arbitrary precision GEMM

~ Weak point

Requires additional memory space to store split matrices (typically large)

More splits are required when the exponent distribution is large

19-/26

Ozaki scheme on FP16 Tensor Cores (by Mukunoki et al.)

m Use FP16 Tensor Cores for each matrix multiplication

FP16 Tensor Core B
CTT T T v Split

Split

FP16 FP32

Mukunoki et al. DGEMM Using Tensor Cores, and Its Accurate and Reproducible Versions, ISC 2020

20/ 26

Ozaki scheme on FP16 Tensor Cores (by Mukunoki et al.)

Fig. 4.

GFlops (on DP)

1000
900
800 -
700

500
400

200

cublasDgemm —»—
$=0.1 —e—
=1 —=—

02 ——

DGEMM TC-DP on Titan RTX

Ay N A A

//\\[///\/\/

2048 4096 6144 8192 10240
Problem Size (m=n=k)

m Larger ¢
= larger exponent distribution
= more splitting is required
= throughput degradation

m Faster than cublasDgemm

~ Problem

m FP16 is inefficient for the Ozaki
scheme.

m The effective mantissa length is
5 ~ T bits, whereas FP16 has 11
bit mantissa.

21/ 26

Ozaki scheme on Integer Tensor Cores

a) 4@ 4® 20
— " —
S S
; abit ; abit ; abit ;
ai P,E
Ay Fo—a
as : i
ak-1+ E |
ap i (I . .
< | T
C e €1 e Exponent

This can be obviously represented
as block-float!

— Block-float

[10101100] [10001110]
[00010101] [01000010]
01000001] [T1110111
|- —~ J

Fixed-point

X2°
S

Shared exponent

m a” - bY) can be calculated by integer operations

m A® . B can be calculated by integer Tensor Cores!

22/ 26

Ozaki scheme on Integer Tensor Cores (Our work)

m Use Int8 Tensor Cores for each matrix multiplication
m Int8-input Int32-accumulation

“““““ v Split

Do ! Int32
[EEE

2 B0 O

Split b % 24 C
QLA
A(S) . 6
FO0 O
Int32 "

%

6"@/

Pros/Cons of using Integer Tensor Cores in the Ozaki scheme

~ Pros
m Less working memory usage than FP16 Tensor Cores

Int8 Tensor Cores have higher throughput than FP16
Higher efficiency in the actual mantissa usage

Fewer computations are required than FP16 to obtain the same accuracy

etc

~ Cons
No significant Cons.

Details are in the paper.

24 / 26

Quantum circuit simulation using DGEMM emu.

Random Unitary Circuit Computing time
depth
] N . | cuBLAS ZGEMM | [INT8-AUTO (T=0)| [INTB-AUTO (T=1)]
("10) & A:N=27,d=13, depth=15
|0} }d A 198.5 [s] |
10) .4
_//’—]
1) @ g] <433 faster
10) Ur—a
N_4 0 .
10) & B:N=26, d=12, depth=50
: 164.5[s] |

0 U A _
:()i _J_l_J_ o 1257s] | <———23.86x faster

= NVIDIA RTX A6000 Ada
m The accuracy is almost the same

25/ 26

Summary

Can deep learning processors be used for HPC applications?

(Question

m We can compute double-precision equivalent GEMM using integer matrix
multiplication unit.

m More research is required to put the Ozaki scheme into practice.

m because the Ozaki scheme does not emulate the floating-point arithmetic,
whereas most HPC applications are conducted by floating-point.

26/ 26

	SGEMM Emulation on Tensor Cores
	DGEMM Emulation on Integer Tensor Cores

