
DGEMM on Integer Tensor Cores

Hiroyuki Ootomo
Tokyo Institute of Technology

NHR PerfLab Seminar Sep. 05, 2023



$ whoami

Hiroyuki Ootomo

Ph.D. candidate at Tokyo Institute of Technology

Research:

Mixed-precision computing
Randomized numerical linear algebra
Quantum circuit simulation
HPC processors

1 / 26



Motivation

Can deep learning processors be used for HPC applications?

Question

Deep learning hardware

Low- and mixed-precision
Matrix multiplication

Usable in HPC apps?

Not easily

S. Matsuoka, et al. (2022)

Myths and Legends in High-Performance Computing

H. Ltaief, et al., (2022)

Responsibly Reckless Matrix Algorithms for HPC Scientific Applications

2 / 26



Outline

1 SGEMM Emulation on Tensor Cores

2 DGEMM Emulation on Integer Tensor Cores

3 / 26



NVIDIA Tensor Core
Mixed-precision matrix multiplication and addition unit (A ·B+C).
On the latest NVIDIA GPUs.

FP16 / TF32
FP32

FP32FP32

FP32

TF32

FP16

mantissa : 23 bit

10 bit5 bit

exponent : 8 bit

FP16 Tensor Cores

TF32 Tensor Cores

FP32: 19.5 TFlop/s

156 TFlop/s

312 TFlop/s

x8 x16

FP16 Tensor Cores

TF32 Tensor Cores

FP32: 66.9 TFlop/s

494.7 TFlop/s

989.4 TFlop/s

x7.4 x15

NVIDIA A100 GPU

NVIDIA H100 GPU (SXMS)

4 / 26



Can we compute SGEMM on Tensor Cores?
We need to convert the input FP32 matrices (A,B) to low-precision.

FP16 / TF32
FP32

FP32FP32

FP32

Type cast

Tensor Core

The type conversion results in loss of accuracy in the resulting matrix
Almost the same as half-precision

⇒ Our previous study proposes a method to refine the accuracy by
preserving and utilizing the mantissa that is lost during type conversion.

5 / 26



SGEMM emulation on Tensor Cores
Matrix multiplication almost equivalent to single-precision on Tensor Cores.
Faster than the theoretical peak throughput of FP32 computing units.

26 29 212 215 218

k : matmul-(16, 16, k)

10 7

10 6

10 5

10 4

10 3

Er
ro

r (
Re

la
tiv

e 
re

sid
ua

l)

be
tte

r
FP32 SIMT
SGEMM emu.

Tensor Core w/o ErrCor

Accuracy

1000 4000 8000 12000 16000
Matrix size m : matmul-(m, m, m)

0

10

20

30

40

50

60

P
er

fo
rm

an
ce

 [T
Fl

op
/s

] NVIDIA A100

Our method(FP16-TC)
Our method(TF32-TC)

cuBLAS
FP32 peak

Throughput

Ref: Ootomo and Yokota, Recovering single precision accuracy from Tensor Cores

while surpassing the FP32 theoretical peak performance, IJHPCA, 2022
6 / 26



SGEMM emulation on Tensor Cores (CFP32 ← AFP32 ·BFP32)

mantissa (23 bit)

10bit 10bit

7 / 26



SGEMM emulation on Tensor Cores (CFP32 ← AFP32 ·BFP32)

mantissa (23 bit)

10bit 10bit

7 / 26



SGEMM emulation on Tensor Cores (CFP32 ← AFP32 ·BFP32)

mantissa (23 bit)

10bit 10bit

Tensor
Core

SGEMM emulation

Scheme

with avoidance of RZ inside Tensor Cores

7 / 26



Can we emulate DGEMM in the same manner?
No

The accumulation precision limits the emulation accuracy.
In the case of Tensor Cores, it is FP32.

If there were FP64 accumulation Tensor Core, we could emulate DGEMM

But we can compute it using another method called the Ozaki scheme

8 / 26



Outline

1 SGEMM Emulation on Tensor Cores

2 DGEMM Emulation on Integer Tensor Cores

9 / 26



DGEMM emulation on Integer Tensor Cores
DGEMM emulation on Integer Tensor Cores using the Ozaki scheme

22 24 26 28 210

10 16

10 14

10 12

10 10

10 8

Re
la

tiv
e 

er
ro

r

better

= 4
Our work (int8x11) DGEMM

m : matmul(128, 128, m)

Our work (int8x11) DGEMM

Accuracy

29 210 211 212 213 214
0

1

2

3

4

TF
lo

p/
s

Peak 1.423

RTX 6000 Ada

m : matmul(m, m, m)

Our work (Int8x11)
ozBLAS-TC

Our work (DGEMM)

Throughput

Ref: Ootomo, Ozaki, and Yokota, DGEMM on Integer Matrix Multiplication Unit,

arXiv, 2023
10 / 26



DGEMM on Integer Tensor Cores
Integer Tensor Cores

Int8
Int32

Int32Int32

210 211 212 213 214
0

200

400

600 Peak:737

Peak:368.5

RTX 6000 Ada

TF
lo

p/
s o

r T
Op

/s

m : matmul(m, m, m)

cuBLAS GEMM mode
Int8TC FP16TC

The throughput is 2× higher than FP16 Tensor Cores

The inference computation in deep learning

11 / 26



Ozaki scheme (Ozaki et al., 2012)
The Ozaki scheme is a high-precision matrix multiplication algorithm using
lower-precision arithmetic

Split

Split

Sum
 up

w
ith high-precision

Low-precision

12 / 26



Ozaki scheme (Ozaki et al., 2012)
The Ozaki scheme is a high-precision matrix multiplication algorithm using
lower-precision arithmetic

Split

Split

Sum
 up

w
ith high-precision

Low-precision

No rounding error! 

12 / 26



Ozaki scheme
Examle (in decimal number)

a =
[
a1 a2

]
where a1 = 1.11111111× 105, a2 = 2.22222222× 103

Split mantissa by 3 digits
× Similar method to the SGEMM emulation (Not the Ozaki scheme)

a1 = 1.11× 105 + 1.11× 102 + 1.11× 10−1

a2 = 2.22× 103 + 2.22× 100 + 2.22× 10−3

a(1)+ a(2)+ a(3)

✓ The Ozaki scheme

a1 = 1.11× 105 + 1.11× 102 + 1.11× 10−1 + 0.00× 10−4

a2 = 0.02× 105 + 2.22× 102 + 2.22× 10−1 + 2.20× 10−4

a(1)+ a(2)+ a(3)+ a(4)

Split the mantissa while aligning the exponent.
13 / 26



Ozaki scheme

1 00

1 100 00

Output

mantissa mantissa

The rounding error occurs if L1 +L2 +1 is larger than the mantissa length of the
output format (L3).
⇒ No rounding error occurs if L1 and L2 are small enough.

Rounding error in multiplication of two floating-point values

14 / 26



Ozaki scheme

1 100 00

1 00

1 00 1 00

Output

The rounding error occurs if max(e1− e2+L2, L1)+1 is larger than the mantissa
length of the output format (L3).
⇒ No rounding error occurs if L1, L2, and e1 − e2 are small enough.

Rounding error in addition of two floating-point values

15 / 26



Ozaki scheme
Consider an inner product of two length-k vectors a and b.
We can compute their inner product without rounding error if

1 the mantissa lengths of all elements ai, bi are small enough
2 the exponents of aibi for i = 1..k are close enough

Intuitive example: (not rigorous)
(For simplicity, assume that all elements in a vector have the same exponent)

1... 00 ... 0 1... 00 ... 0

8 bit 8 bit
1... 00 ... 0

(Up to) 17 bit

If 17 + ⌈log2 k⌉ ≤ the mantissa length of the output format, no rounding
error occurs

16 / 26



Ozaki scheme
Consider an inner product of two length-k vectors a and b.
We can compute their inner product without rounding error if

1 the mantissa lengths of all elements ai, bi are small enough
2 the exponents of aibi for i = 1..k are close enough

Intuitive example: (not rigorous)
(For simplicity, assume that all elements in a vector have the same exponent)

1... 00 ... 0

00 ... 0

00 ... 0

1... 00 ... 0

00 ... 0

00 ... 0

8 bit 8 bit
1... 00 ... 0

(Up to) 17 bit

1... 00 ... 0

1... 00 ... 0

mantissa

If 17 + ⌈log2 k⌉ ≤ the mantissa length of the output format, no rounding
error occurs

16 / 26



Ozaki scheme
Consider an inner product of two length-k vectors a and b.
We can compute their inner product without rounding error if

1 the mantissa lengths of all elements ai, bi are small enough
2 the exponents of aibi for i = 1..k are close enough

Intuitive example: (not rigorous)
(For simplicity, assume that all elements in a vector have the same exponent)

1... 00 ... 0

00 ... 0

00 ... 0

1... 00 ... 0

00 ... 0

00 ... 0

8 bit 8 bit
1... 00 ... 0

(Up to) 17 bit

1... 00 ... 0

1... 00 ... 0

1... 00 ... 0

(Up to)                        bit

mantissa

If 17 + ⌈log2 k⌉ ≤ the mantissa length of the output format, no rounding
error occurs 16 / 26



Ozaki scheme
Split the mantissa so that no rounding error occurs during inner product
computation[

a1 a2 · · · ak
]
is a row vector of matrix A.

Exponentmantissa (e.g. 53 bit in FP64)

Mantissa of

Similar method to the SGEMM emu. The Ozaki scheme

17 / 26



Ozaki scheme

Exponent Exponent

Split vector Split vector

so that is computed without rounding error.

We choose the mantissa length  appropriately

where is the unit round-off of the accumulator.
18 / 26



Ozaki scheme

Split

Split

Sum
 up

Exponent

1 Compute high-precision GEMM by the accumulation of lower-precision
GEMMs

2 Can be applied to arbitrary precision GEMM

Strong point

1 Requires additional memory space to store split matrices (typically large)

2 More splits are required when the exponent distribution is large

Weak point

19 / 26



Ozaki scheme on FP16 Tensor Cores (by Mukunoki et al.)
Use FP16 Tensor Cores for each matrix multiplication

Split

Split

Sum
 up

FP16 Tensor Core

in FP64

FP16

FP16 FP32

FP32

Mukunoki et al. DGEMM Using Tensor Cores, and Its Accurate and Reproducible Versions, ISC 2020

20 / 26



Ozaki scheme on FP16 Tensor Cores (by Mukunoki et al.)

Larger ϕ
⇒ larger exponent distribution
⇒ more splitting is required
⇒ throughput degradation

Faster than cublasDgemm

FP16 is inefficient for the Ozaki
scheme.

The effective mantissa length is
5 ∼ 7 bits, whereas FP16 has 11
bit mantissa.

Problem

21 / 26



Ozaki scheme on Integer Tensor Cores

Exponent

This can be obviously represented
as block-float!

Block-float

10101100

00010101

01000001

10001110

01000010

11110111

Fixed-point Shared exponent

a(i) · b(j) can be calculated by integer operations

A(i) ·B(j) can be calculated by integer Tensor Cores!

22 / 26



Ozaki scheme on Integer Tensor Cores (Our work)
Use Int8 Tensor Cores for each matrix multiplication

Int8-input Int32-accumulation

Split

Split

Sum
 up

Int8 Tensor Core

in FP64

Int8

Int8 Int32

Int32

w
ith exponent offset

23 / 26



Pros/Cons of using Integer Tensor Cores in the Ozaki scheme

Less working memory usage than FP16 Tensor Cores

Int8 Tensor Cores have higher throughput than FP16

Higher efficiency in the actual mantissa usage

Fewer computations are required than FP16 to obtain the same accuracy

etc

Pros

No significant Cons.
Cons

Details are in the paper.

24 / 26



Quantum circuit simulation using DGEMM emu.

depth

Random Unitary Circuit

198.5 [s]

45.88 [s]

Computing time

cuBLAS ZGEMM INT8-AUTO (T=0) INT8-AUTO (T=1)

4.33x faster

A: N=27, d=13, depth=15

164.5 [s]

42.57 [s] 3.86x faster

B: N=26, d=12, depth=50

NVIDIA RTX A6000 Ada
The accuracy is almost the same

25 / 26



Summary

Can deep learning processors be used for HPC applications?

Question

⇒Yes
We can compute double-precision equivalent GEMM using integer matrix
multiplication unit.

More research is required to put the Ozaki scheme into practice.

because the Ozaki scheme does not emulate the floating-point arithmetic,
whereas most HPC applications are conducted by floating-point.

26 / 26


	SGEMM Emulation on Tensor Cores
	DGEMM Emulation on Integer Tensor Cores

