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Setting the stage: runtime predictions and 
asynchronicity
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𝑡𝑡pred

𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑡𝑡comp + 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

RealityHypothesis

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐹𝐹(𝑡𝑡comp, 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

Encodes complex 
interplay of noise, system 

bottlenecks, and 
overlapping contributions
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Desynchro-
nization

Imbalance

Loss of lock-step behavior

How desynchronization and asynchronicity
emerge from bottlenecks and noise

Different scaling 
characteristics on 
memory bandwidth 
bottleneck

Perfectly 
scalable

Just saturating Strongly 
saturating

Different 
behavior of 
propagating 
disturbances 
(noise)

MPI timelines, injected delays

Strong saturation  processes leave 
lockstep  stable desync state 

 potential communication overlap

Scalable code  irregularities die out 
 processes go back to sync
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𝑃𝑃measured

Iteration

for(iter=1; ;++iter) {
for (int i=0; i<arrayElements; i++)

A[i] = B[i] + s * C[i]; 
for (int j = 0; j < 2; j++ ) {

MPI_Isend(..., &req[j*2]);
MPI_Irecv(..., &req[1+j*2]); 

} 
MPI_Waitall( 4, &req[0], ... ); 

} 

Toy code: MPI-augmented STREAM triad 
with next-neighbor communication 
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𝑃𝑃measured

Initial observation

Performance expectation 
w/o communication 
overlap  lock-step state

Iteration

How to kick the system out of lock-step?

for(iter=1; ;++iter) {
for (int i=0; I < 2x109; i++)

A[i] = B[i] + s * C[i]; 
if(!(iter % k))

for (int j = 0; j < 108; j++ ) 
sum += 4.0 / ( 1.0 + j * j);

for (int j = 0; j < 2; j++ ) {
MPI_Isend(..., &req[j*2]);
MPI_Irecv(..., &req[1+j*2]); 

} 
MPI_Waitall( 4, &req[0], ... ); 

} 

Extra compute-bound workload every k
iterations (“noise”)

k=∞ k=100 k=10 k=5
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Speedup via 
noise injection

Working set 48 GB (2 G array elements) evenly distributed among 360 MPI processes (5 nodes Intel Ice Lake 36c, NHR@FAU “Fritz” system), 
communication volume 1 MB to and from 𝑃𝑃𝑖𝑖±1 in closed-chain topology, 

No global synchronization!

Provoking asynchronicity by repeated 
injection of noise

Provoking asynchronicity by noise injection can 
improve performance!

The role of synchronizing MPI collectives
Synchronizing collectives (e.g., MPI_Allreduce) force the program back into lock-step

D3Q19 Lattice Boltzmann, 1D domain decomposition, 
MPI_Allreduce every 20th iteration , 10 sockets Intel Ice 
Lake 36c

MPI_Allreduce
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Full sync after 
collective 

Gradual desync and 
communication 

overlap

No benefit from 
noise injections 

if frequent 
synchronizations 

are present!

Caveat: Not all collectives are synchronizing, 
and implementation does matter
DOI: 10.1007/978-3-030-78713-4_19
DOI: 10.1109/TPDS.2022.3221085

Open questions

Communication overlap is only one option –
what about overlapping memory-bound and 
compute-bound workloads?
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Instability 

mechanism for 
bottlenecked 

workloads?

Achievable 
performance 

limit?
WHY?

??

DOI: 10.1007/978-3-030-50743-5_20 DOI: 10.1109/CLUSTER.2019.8890995

???

Comprehensive theory 
of parallel program 
dynamics still lacking –
searching for 
collaborators!

Back-to-back
vdivpd’s A(:)=B(:)+cos(C(:)/D(:)) A(:)=B(:)+s*C(:)
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