
Making Applications
Run Faster By Slowing

Down Processes?
Ayesha Afzal, Georg Hager,

Gerhard Wellein
Erlangen National High Performance

Computing Center

Setting the stage: runtime predictions and
asynchronicity

computation runtime
model 𝑡𝑡comp

Ro
of

lin
e

EC
M

communication
runtime model 𝑡𝑡comm

H
oc

kn
ey

Lo
gP

distributed
runtime

prediction

𝑡𝑡pred

𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑡𝑡comp + 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

RealityHypothesis

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐹𝐹(𝑡𝑡comp, 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

Encodes complex
interplay of noise, system

bottlenecks, and
overlapping contributions

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⋚ 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝Re
as

on
s?Noise

Desynchro-
nization

Imbalance

Loss of lock-step behavior

How desynchronization and asynchronicity
emerge from bottlenecks and noise

Different scaling
characteristics on
memory bandwidth
bottleneck

Perfectly
scalable

Just saturating Strongly
saturating

Different
behavior of
propagating
disturbances
(noise)

MPI timelines, injected delays

Strong saturation  processes leave
lockstep  stable desync state

 potential communication overlap

Scalable code  irregularities die out
 processes go back to sync

Pe
rf

or
m

an
ce

 [𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖
 𝑠𝑠
]

(m
ea

n
ov

er
pr

oc
es

se
s)

𝑃𝑃measured

Iteration

for(iter=1; ;++iter) {
for (int i=0; i<arrayElements; i++)

A[i] = B[i] + s * C[i];
for (int j = 0; j < 2; j++) {

MPI_Isend(..., &req[j*2]);
MPI_Irecv(..., &req[1+j*2]);

}
MPI_Waitall(4, &req[0], ...);

}

Toy code: MPI-augmented STREAM triad
with next-neighbor communication

Pe
rf

or
m

an
ce

 [𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖
 𝑠𝑠
]

(m
ea

n/
SD

 o
ve

r p
ro

ce
ss

es
)

𝑃𝑃measured

Initial observation

Performance expectation
w/o communication
overlap  lock-step state

Iteration

How to kick the system out of lock-step?

for(iter=1; ;++iter) {
for (int i=0; I < 2x109; i++)

A[i] = B[i] + s * C[i];
if(!(iter % k))

for (int j = 0; j < 108; j++)
sum += 4.0 / (1.0 + j * j);

for (int j = 0; j < 2; j++) {
MPI_Isend(..., &req[j*2]);
MPI_Irecv(..., &req[1+j*2]);

}
MPI_Waitall(4, &req[0], ...);

}

Extra compute-bound workload every k
iterations (“noise”)

k=∞ k=100 k=10 k=5

Pe
rf

or
m

an
ce

 [𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖
 𝑠𝑠
]

(m
ea

n
ov

er
 p

ro
ce

ss
es

)

Speedup via
noise injection

Working set 48 GB (2 G array elements) evenly distributed among 360 MPI processes (5 nodes Intel Ice Lake 36c, NHR@FAU “Fritz” system),
communication volume 1 MB to and from 𝑃𝑃𝑖𝑖±1 in closed-chain topology,

No global synchronization!

Provoking asynchronicity by repeated
injection of noise

Provoking asynchronicity by noise injection can
improve performance!

The role of synchronizing MPI collectives
Synchronizing collectives (e.g., MPI_Allreduce) force the program back into lock-step

D3Q19 Lattice Boltzmann, 1D domain decomposition,
MPI_Allreduce every 20th iteration , 10 sockets Intel Ice
Lake 36c

MPI_Allreduce

Pe
rf

or
m

an
ce

 [G
LU

P/
s]

m
ea

n/
SD

 o
ve

r p
ro

ce
ss

es

Full sync after
collective

Gradual desync and
communication

overlap

No benefit from
noise injections

if frequent
synchronizations

are present!

Caveat: Not all collectives are synchronizing,
and implementation does matter
DOI: 10.1007/978-3-030-78713-4_19
DOI: 10.1109/TPDS.2022.3221085

Open questions

Communication overlap is only one option –
what about overlapping memory-bound and
compute-bound workloads?

mem bound

mem bound

compute
bound

compute
bound

mem bound

mem bound

compute
bound

compute
bound

mem bound

mem bound

compute
bound

compute
bound

mem bound

mem bound

compute
bound

compute
bound

?
Instability

mechanism for
bottlenecked

workloads?

Achievable
performance

limit?
WHY?

??

DOI: 10.1007/978-3-030-50743-5_20 DOI: 10.1109/CLUSTER.2019.8890995

???

Comprehensive theory
of parallel program
dynamics still lacking –
searching for
collaborators!

Back-to-back
vdivpd’s A(:)=B(:)+cos(C(:)/D(:)) A(:)=B(:)+s*C(:)

	Slide Number 1

