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The Standard Model

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
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The Standard Model

Matter particles (spin S = 1/2h — fermions)

o quarks: "up" (u), "charm" (c) und "top" (t), "down" (d), "strange" (s), "bottom" (b)
— masses: my = 2.3MeV/c2 (up quark), ...., my = 17367‘(—:‘V/c2 (top quark)

o leptons: electron (e™), muon (1), tau (7 ), electron neutrino (ve), muon neutrino (v, ), tau neutrino (v-)

v
Interaction particles (spin S = 1 — bosons)
@ there are (only) 4 fundamental forces (with associated interaction particles):
@ electromagnetic force (photon ~)
@ strong force (gluons g)
@ weak force (Wi s z0 bosons)
@ gravitational force (graviton G (?)) < not included in the Standard Model
v
Bound states
Quarks can form bound states (due to the strong force)
o baryons (consist of 3 quarks: g1 g2q3):
proton p (uud), neutron n (udd), lambda A (uds), sigma £ (uus), xi =~ (dss), omega Q (sss),...
@ mesons (consist of quark and anti-quark: g 3s): pion = (ud), kaon Kt (u3)
o
= masses can be calculated numerically <— part of this project (focus on strong force + light quarks (up, down, strange, charm))
v
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Physics of the Standard Model

Physics of the Standard Model

()] (almost too) perfect agreement of experimental results and theoretical predictions within the Standard Model

@ BUT, there are good reasons to believe that the Standard Model is incomplete

— e.g., it is not known how to include gravity in the Standard Model consistently
— ongoing search for little deviations from experiment results and theoretical predictions
— such deviations may hint how to extend the Standard Model
= high precision is needed in both experiments and theoretical predictions
v
At Regensburg: focus on physics related to the strong force
— theoretical calculations at Regensburg performed both numerically and analytically
— numerical projects at Regensburg:
@ light baryon spectrum/scale setting
@ heavy baryon spectrum
@ pseudoscalar decay constants (+ charm), charmonium resonances
@ quark masses (+ charm)
@ 1/n’-mixing
@ hadron structure: baryon charges, form factors, TMD, MDA/BDA, DPD, LECs
= goal: high precision results from numerical calculations
Remark: numerical simulations are also very important for quantities where accessibility w.r.t. other methods is limited
crs
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Simulation Overview

Numerical Simulations of the Strong Force

Theory of the Strong Force = Quantum Chromodynamics (QCD)

@ QCD is a non-linear theory
— many important quantities can only be calculated numerically

@ only ab-initio framework known for numerical simulations of QCD — Lattice QCD

Lattice QCD

lassical traj ri
Algorithm: Hybrid Monte Carlo (HMC) classical trajectories

@ Generate ensembles by a Langevin-type algorithm
(stochastic differential equation)

@ evolve along classical trajectory:
— integration along extra dimension (simulation time)

7

@ solve equation of motion of 5-dim. Hamiltonian

Ensembles <+ calculation of observables

= each ensemble consists of several configurations

single config. = 4d lattice grid (with lattice spacing a) . . . .
configuration n—1 configuration n configuration n+1

=

— on each site: 4 x 9 complex numbers
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—

4d = 3 spatial + 1 temp. directions (volume = L3 x T)
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Simulation Overview

Simulation Overview

Simulation details

@ dueto computational costs — simulations are performed mostly at
@ larger quark than physical quark masses
@ rather coarse lattice spacing
@ not too large finite volume

@ in addition approximation are made: light quark mass my = myp ~ Mgoyy, heavier quarks (charm and heavier) are not
simulated, no electromagnetic contributions included (also weak force neglected)
— reasonable assumptions w.r.t. precision reached at state of the art lattice QCD simulations

= however, we need to take the following limits to obtain physical results
@ chiral extrapolation: light and strange quark mass m, — My physical Ms — Ms physical
@ continuum extrapolation: lattice spacing a — 0

@ (spatial) volume Vs — oo

v
CLS 2 + 1f simulation program — see https://www-zeuthen.desy.de/alpha/public-cls-nf21/
Such simulations are a large scale project — ongoing for more than 10 years now
o large collaboration — CLS (Coordinated Lattice Simulations): HU Berlin, CERN, TC Dublin, Krakow, UA Madrid, Mainz,
Milano Bicocca, Minster, Odense/CP3-Origins, Regensburg, Roma |, Roma Il, Wuppertal, DESY Zeuthen
= main focus of this large scale project: performing a well controlled continuum limit
v
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Simulation Overview

Ensemble Overview
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@ simulations are performed at unphysical light and strange quark masses my, ms and at finite lattice spacing a
— extrapolation to physical quark masses and zero lattice spacing necessary!
— computational costs increase drastically along these limits!

6 different lattice spacings (a ~ 0.098 — 0.039 fm), 2 ensembles at the physical point

4
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geometries range from 48 x 243 10 192 x 963
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Finite volume effects «+ this project
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Finite volume effects in Lattice QCD

@ remove finite volume effects — take the limit of infinite spatial volume Vs = L3 (L — o0)

@ finite volume effects are dictated by pion mass M, and L

o area: ML <4

area: 4 < ML <5

green area: 5 < ML

@ almost all ensembles are within light green or green area (and also L 2> 2.3fm)

— small finite volume effects
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Finite volume effects «+ this project
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Dedicated ensembles with small/large volumes  « additional ensembles currently generated within this project
— small finite volume effects for m,L > 4

— given the large number of ensembles, small effects add up!

— include finite volume effects for baryons in fits: quality of fits increases significantly (Xz/dof ~14 —1.2)
— finite volume effects are relevant and a good understanding of these effects is needed

= detailed investigation of finite volume effects needed < this project (results in progress)
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Chiral and Continuum Extrapolation Baryon Spectrum

X2/d.o.f. = 1.16657
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Extrapolation in lattice spacing a (continuum limit) and quark masses my, ms (chiral limit)
@ baryon masses m: nucleon (N), lambda (A), sigma (X), xi (=), black points=physical values
@ combined chiral and continuum fit
— visualized here: only extrapolation to physical light quark mass m, — my physicar
@ note: pion mass M2 ~ my: My — My pysical +— M2 — M? physical ~ 135MeV /c?
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Light Baryon Spectrum
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Results of fits for masses of baryons: nucleon (N), lambda (A), sigma (X), xi (=), omega (Q2)

@ comparison of previous results from BMWc collaboration from 2008
and our recent results (RQCD 2022)

@ black horizontal lines represent experimental data
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Lattice QCD: Hard- and Software

Hardware

@ JURECA-BOOSTER@Jiilich: Intel KNL
JUWELS@Jilich: Intel Skylake
JUWELS-BOOSTER@Jilich: Nvidia A100
SuperMUC-NG@Munich: Intel Skylake

QPACE3@UR: Intel KNL
QPACE4@UR: ARM (Fujitsu A64FX)

o
o
o
o
o
@ FRITZ@FAU

Storage and data management: Peta Bytes of data

@ 126,000 configurations (975 TB) stored at Zeuthen and redundantly at Regensburg (on tape)

@ analysis files stored at Regensburg ~ 1.2 PB and a lot a JSC

@ tools are available for backing up data (reading and writing to tape), scripts are used for automated data handling
o

configurations are available for users outside CLS upon request

Software
@ C/C++, Python
@ high performance solver: multigrid solvers (DD-oAMG, IDFLS)
@ software packages: openQCD, Chroma, GRID + GPT (open source)
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Summary

Standard Model
@ excellent agreement of experimental and theoretical results

@ Standard Model is believed to be incomplete
— search for little deviation from the Standard Model

@ high precision results needed in both experiments and theory

This project
@ high precision results from Lattice QCD necessary
@ need to control all systematic uncertainties in Lattice QCD simulations
@ finite volume effects is a relevant source of systematics at the precision reached now
— see calculated baryon masses
= a good understanding of finite volume effects is needed
= fritz@fau: perfect environment to perform this important, intermediate scale project
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