High Precision Results from Numerical Simulations of Quantum Chromodynamics

Wolfgang Söldner

Regensburg University Department of Physics

NHR@FAU Results Symposium March 16th, 2023

>cls

>cls

1/12

Lattice 2022

W. Söldner (Regensburg)

The Standard Model

Fig.: [Wiki]

э

Lattice 2022

>cls

2/12

The Standard Model

Matter particles (spin $S = 1/2\hbar \rightarrow$ fermions)

- quarks: "up" (u), "charm" (c) und "top" (t), "down" (d), "strange" (s), "bottom" (b) \rightarrow masses: $m_u = 2.3 MeV/c^2$ (up quark),, $m_t = 173 GeV/c^2$ (top quark)
- leptons: electron (e⁻), muon (μ^-), tau (τ^-), electron neutrino (ν_{θ}), muon neutrino (ν_{μ}), tau neutrino (ν_{τ})

Interaction particles (spin $S = 1\hbar \rightarrow$ bosons)

there are (only) 4 fundamental forces (with associated interaction particles):

- electromagnetic force (photon γ)
- strong force (gluons g)
- weak force $(W^{\pm}, Z^0 \text{ bosons})$
- gravitational force (graviton G (?)) ← not included in the Standard Model

Bound states

```
Quarks can form bound states (due to the strong force)
```


⇒ masses can be calculated numerically ← part of this project (focus on strong force + light quarks (up, down, strange, charm))

Physics of the Standard Model

Physics of the Standard Model

- (almost too) perfect agreement of experimental results and theoretical predictions within the Standard Model
- BUT, there are good reasons to believe that the Standard Model is incomplete
 → e.g., it is not known how to include gravity in the Standard Model consistently
- → ongoing search for little deviations from experiment results and theoretical predictions
- → such deviations may hint how to extend the Standard Model
- high precision is needed in both experiments and theoretical predictions

At Regensburg: focus on physics related to the strong force

- → theoretical calculations at Regensburg performed both numerically and analytically
- → numerical projects at Regensburg:
 - light baryon spectrum/scale setting
 - heavy baryon spectrum
 - pseudoscalar decay constants (+ charm), charmonium resonances
 - quark masses (+ charm)
 - η/η' -mixing
 - hadron structure: baryon charges, form factors, TMD, MDA/BDA, DPD, LECs
 - ⇒ goal: high precision results from numerical calculations

Remark: numerical simulations are also very important for quantities where accessibility w.r.t. other methods is limited

CIS

4/12

Lattice 2022

Numerical Simulations of the Strong Force

Theory of the Strong Force = Quantum Chromodynamics (QCD)

- $\bullet~$ QCD is a non-linear theory $\rightarrow~$ many important quantities can only be calculated numerically
- ${lackstarrow}$ only ab-initio framework known for numerical simulations of QCD ${\rightarrow}$ Lattice QCD

Lattice QCD

Algorithm: Hybrid Monte Carlo (HMC)

- Generate ensembles by a Langevin-type algorithm (stochastic differential equation)
- evolve along classical trajectory:

 → integration along extra dimension (simulation time)
- solve equation of motion of 5-dim. Hamiltonian

- \Rightarrow each ensemble consists of several configurations
- ⇒ single config. = 4d lattice grid (with lattice spacing a)
- → on each site: 4 × 9 complex numbers
- \rightarrow 4d = 3 spatial + 1 temp. directions (volume = $L^3 \times T$)

W. Söldner (Regensburg)

Simulation Overview

Simulation details

- Oue to computational costs → simulations are performed mostly at
 - Iarger quark than physical quark masses
 - rather coarse lattice spacing
 - not too large finite volume
- In addition approximation are made: light quark mass m_ℓ = m_{up} ≈ m_{down}, heavier quarks (charm and heavier) are not simulated, no electromagnetic contributions included (also weak force neglected) → reasonable assumptions w.r.t. precision reached at state of the art lattice QCD simulations
- \Rightarrow however, we need to take the following limits to obtain physical results
 - On the strapolation: light and strange quark mass m_ℓ → m_{ℓ,physical} m_s → m_{s,physical}
 - continuum extrapolation: lattice spacing a → 0
 - (spatial) volume $V_{\mathcal{S}} \to \infty$

CLS 2 + 1f simulation program

→ see https://www-zeuthen.desy.de/alpha/public-cls-nf21/

Lattice 2022

>CIS

6/12

Such simulations are a large scale project \rightarrow ongoing for more than 10 years now

- Iarge collaboration → CLS (Coordinated Lattice Simulations): HU Berlin, CERN, TC Dublin, Krakow, UA Madrid, Mainz, Milano Bicocca, Münster, Odense/CP3-Origins, Regensburg, Roma I, Roma II, Wuppertal, DESY Zeuthen
- > main focus of this large scale project: performing a well controlled continuum limit

Ensemble Overview

- Isimulations are performed at unphysical light and strange quark masses m_ℓ, m_s and at finite lattice spacing a → extrapolation to physical quark masses and zero lattice spacing necessary!
 - → computational costs increase drastically along these limits!
- 6 different lattice spacings (a ~ 0.098 0.039 fm), 2 ensembles at the physical point
- geometries range from 48×24^3 to 192×96^3

W. Söldner (Regensburg)

>cls

7/12

< 17 ▶

(3)

Lattice 2022

Finite volume effects in Lattice QCD

- remove finite volume effects \rightarrow take the limit of infinite spatial volume $V_s = L^3$ ($L \rightarrow \infty$)
- finite volume effects are dictated by pion mass M_{π} and L

• yellow area:
$$M_{\pi}L \le 4$$

light green area: $4 < M_{\pi}L \le 5$
green area: $5 < M_{\pi}L$

 almost all ensembles are within light green or green area (and also L ≥ 2.3 fm) → small finite volume effects

Chiral and Continuum Extrapolation Baryon Spectrum

Extrapolation in lattice spacing a (continuum limit) and quark masses m_{ℓ} , m_s (chiral limit)

- baryon masses m: nucleon (N), lambda (Λ), sigma (Σ), xi (Ξ), black points=physical values
- combined chiral and continuum fit \rightarrow visualized here: only extrapolation to physical light quark mass $m_{\ell} \rightarrow m_{\ell,physical}$
- note: pion mass $M_{\pi}^2 \sim m_{\ell}$: $m_{\ell} \rightarrow m_{\ell,physical} \longleftrightarrow M_{\pi}^2 \rightarrow M_{\pi,physical}^2 \approx 135 MeV/c^2$

Light Baryon Spectrum

Results of fits for masses of baryons: nucleon (*N*), lambda (Λ), sigma (Σ), xi (Ξ), omega (Ω)

- comparison of previous results from BMWc collaboration from 2008 and our recent results (RQCD 2022)
- black horizontal lines represent experimental data

Lattice QCD: Hard- and Software

Hardware

- JURECA-BOOSTER@Jülich: Intel KNL
- JUWELS@Jülich: Intel Skylake
- JUWELS-BOOSTER@Jülich: Nvidia A100
- SuperMUC-NG@Munich: Intel Skylake
- QPACE3@UR: Intel KNL
- QPACE4@UR: ARM (Fujitsu A64FX)
- FRITZ@FAU

Storage and data management: Peta Bytes of data

- 126,000 configurations (975 TB) stored at Zeuthen and redundantly at Regensburg (on tape)
- analysis files stored at Regensburg \sim 1.2 PB and a lot a JSC
- tools are available for backing up data (reading and writing to tape), scripts are used for automated data handling
- configurations are available for users outside CLS upon request

Software

- C/C++, Python
- high performance solver: multigrid solvers (DD- α AMG, IDFLS)
- software packages: openQCD, Chroma, GRID + GPT (open source)

Summary

Standard Model

- excellent agreement of experimental and theoretical results
- Standard Model is believed to be incomplete
 → search for little deviation from the Standard Model
- high precision results needed in both experiments and theory

This project

- high precision results from Lattice QCD necessary
- need to control all systematic uncertainties in Lattice QCD simulations
- finite volume effects is a relevant source of systematics at the precision reached now \rightarrow see calculated baryon masses
- ⇒ a good understanding of finite volume effects is needed
- ⇒ fritz@fau: perfect environment to perform this important, intermediate scale project

>cls

12/12

Lattice 2022