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Product design of nanoparticles

Challenges for the design of nanoparticulate products:
 Large gap between synthetic protocols and technical application 
 Missing process technologies for NPs, their predictive design and scale-up

Product and property design:

Property    = F (dispersity, composition) property function
Dispersity = G (process variables) process function

Colloborative Research Center (CRC) 1411: Design of Particulate Products
with exemplary focus on design of optical properties of nanoparticles (NPs)
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Property-structure-process functions

Predictive design:
From properties to processes …. 

…. via rigorous mathematical optimisation based on predictive models 

Process parameters
(e.g. temperature profile, residence time)

Property
(e.g. colour, separation efficiency) 

Dispersity 
(e.g. size, shape, porosity, surface) 

Dispersity
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and heat transfer,
chemical reactions

phase transition transfer processes
interfacial process engineering

generation of
supersaturation nucleation

growth

coagulation

stabilization

ripening, sintering

Principles of particle synthesis

Peukert et al, Adv. Chem. Eng. 2015

Available techniques: 
 Hot wall, spray flame, plasma, sparc discharge (gas phase)
 Hot injection, solvothermal, continuous precipitation, crystallization (liquid phase)

Key: 
Profiles of supersaturation

in space and time !
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Continuous particle synthesis in liquids

feed 1feed 2

mixing & reaction

nucleation
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Schwarzer et al, AIChE Journal 2004, CES 2005, Gradl et al. CES 2009 

Modelling:
Global: mixing = f(∆p) + PBM x50
DNS + PBM along Lagragian tracks full PSD

mean specific power input εmean in W/kg
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Homogenizing for chemical reactions
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Mixing in micromixer
LIF measurements

 DNS allows resolution of fluid flow down to Kolmogorov scale
 In T-mixer full resolution down to a few µm
 Diffusion-controlled micromixing at small scales where the reactions occur
 Small mixing times (O ~ µs….ms) for NP production requires high energy input

Mixing influences fast chemical reactions & 
conversion of precursors
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Simulation framework

Simulation of flow field
(in Eulerian space)

population balance 
equation 

precipitated mass
Result

Particle size distribution

flow

Decoupled mixing history
(in Lagrangian space)

Modeling of precipitation
(mixing history and hydrochemistry)

Tr. 1

Tr. 2

Tr. 2
Tr. 1

𝝓𝝓(𝒙𝒙, 𝒕𝒕)

Ibu +
NaOH

ZrCl4

𝒖𝒖(𝒙𝒙, 𝒕𝒕)

supersaturation
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Ⅰ Ⅱ Ⅲ

Mixing determined by large flow structures
I. Different flow field instabilities (low Re)
II. Various inflow conditions (Laminar-Laminar, Turbulent-Turbulent, Laminar-Turbulent)

Mixing scales with mean energy input EV
𝑡𝑡𝑚𝑚 ∝ EV−0.48

Mixing in T-mixer: Flow structures

engulfment Ⅰ

symmetric Ⅲ

Ⅰ low Re
Ⅱ transition
Ⅲ turbulent

Schikarski, Trzenschiok, WP, Avila, RCE, 2019
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Case study: Ibuprofen stabilized by Zr-complexes

Ⅰ Ⅱ Ⅲ

Schikarski, Avila, WP, Chem.Eng.J. 2022

Ⅲ Ⅱ Ⅰ

𝒙𝒙𝟓𝟓𝟓𝟓,𝟑𝟑 ∝ 𝒕𝒕𝒎𝒎𝟓𝟓.𝟐𝟐
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Stabilization by complex formation

New:
Fast charge
stabilization

Mefenamic Acid

Naproxen

Traditional: 
Polymeric
stabilizers
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Trzenschiok, Schikarski, Avila, WP, 
Chem.Eng.J. 2018
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Thank you for your attention
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Optimal Property-structure-process functions

From properties to processes …. 
…. via rigorous mathematical optimisation based on predictive models 

Optimal colour for FeOOH
rod-like particles

Cooperation Klupp Taylor, Peukert, Pflug, Stingl 
with Lanxess. Two patents pending.
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Optimal process parameters 
for ZnO quantum dots

Segets, Pflug, Peukert et al., Chem. Eng. J. 2015
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