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Product and property design:

Property = F (dispersity, composition) property function
Dispersity = G (process variables) process function

Colloborative Research Center (CRC) 1411: Design of Particulate Products
with exemplary focus on design of optical properties of nanoparticles (NPs)

Lycurgus cup Quantum dot display Structural colours

Challenges for the design of nanoparticulate products:
" |arge gap between synthetic protocols and technical application
" Missing process technologies for NPs, their predictive design and scale-up




Property-structure-process functions oo

RTICULATE
PRODUCTS

Predictive design:
From properties to processes ....

.... Via rigorous mathematical optimisation based on predictive models
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Process parameters
(e.g. temperature profile, residence time)



Principles of particle synthesis
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Available techniques:
» Hot wall, spray flame, plasma, sparc discharge (gas phase)

» Hot injection, solvothermal, continuous precipitation, crystallization (liquid phase)

mass, momentum phase transition transfer processes

and heat transfer, interfacial process engineering

chemical reactions
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Continuous particle synthesis in liquids ...
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feed 2 feed 1 Precipitation of BaSO,
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Homogenizing for chemical reactions
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length scale / pym

Mixing influences fast chemical reactions &
conversion of precursors

inertia S

¥ macromixing =

convection
mesomixing

10" _ _
diffusion
; micromixing
10° w 1 ' l .
10° 10’ 10° 10° 10* 10°

Specific energy input ¢ / W/kg

Mixing in micromixer
LIF measurements

Re =300 Re =1100

DNS allows resolution of fluid flow down to Kolmogorov scale

In T-mixer full resolution down to a few um

Diffusion-controlled micromixing at small scales where the reactions occur
Small mixing times (O ~ ps....ms) for NP production requires high energy input
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Simulation of flow field Decoupled mixing history
(in Eulerian space) (in Lagrangian space)
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Modeling of precipitation
(mixing history and hydrochemistry)
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Mixing in T-mixer: Flow structures
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Reynolds number Re / -

I lowRe
II transition

Mixing determined by large flow structures IT turbulent

l. Different flow field instabilities (low Re)
[l.  Various inflow conditions (Laminar-Laminar, Turbulent-Turbulent, Laminar-Turbulent)

Mixing scales with mean energy input E,,
Schikarski, Trzenschiok, WP, Avila, RCE, 2019 9
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Case study: Ibuprofen stabilized by Zr-complexes @0
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Stabilization by complex formation i, .

RTICULATE
PRODUCTS

Tyndall effect at 5 mg/ml Ibuprofen particles with different median sizes

Traditional: New:

No
Polymeric IS Barticies e o Fast charge

stabilizers
Naproxen

Mefenamic Acid

Trzenschiok, Schikarski, Avila, WP,
Chem.Eng.J. 2018
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From properties to processes ....

.... via rigorous mathematical optimisation based on predictive models

Optimal colour for FeEOOH
rod-like particles

PSD of
. technical

pigment

optimal

regions
1and 2

nanorod length
desired colour property

nanorod width

Cooperation Klupp Taylor, Peukert, Pflug, Stingl
with Lanxess. Two patents pending.

temperature / °C

Optimal process parameters
for ZnO quantum dots
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