

- GPCRs
- Binding/unbinding protocol
 - Small ligands
 - Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

Ligand Binding/Unbinding and Activation/Deactivation Profiles for G-Protein Coupled Receptors

Tim Clark

Jacqueline Calderón, Dr. Passainte Ibrahim

Prof. Francesco L. Gervasio, Dr. Dorothea Gobbo

Dr. David Wifling, Prof. Armin Buschauer[†]

Friedrich-Alexander-Universität Erlangen-Nürnberg

University of Geneva

Universität Regensburg

GPCR Versatility

- **GPCRs**
- Binding/unbinding protocol
 - Small ligands
 - Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

There is usually either positive or negative feedback (cooperativity) between the ligand and the IBP.

The ligand may be a sensory switch, an agonist, antagonist, inverse or partial agonist, *and may act differently for different intracellular binding partners (IBPs).*

The IBP may be one or more of three different G-Proteins or β-Arrestin

G-Protein Activation: Apo-GPCR

GPCRs

- Binding/unbinding protocol
 - Small ligands
 - Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

Binding/Unbinding Metadynamics Protocol

- GPCRs
- Binding/unbinding protocol
 - Small ligands
 - Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

Multiple walkers ensure that the relevant conformational space is sampled efficiently and improve the parallel performance of the simulation Reaction path (collective variable) We have been able to define a single collective variable that is applicable for almost all class A GPCRs. It uses the highly conserved Trp^{6.48} and the orientation of the receptor in the membrane.

> An efficient Metadynamics-based Protocol to Model the Binding Affinity and the Transition State Ensemble of GPCR-Ligands,

N. Saleh, P. Ibrahim, G. Saladino, F. L. Gervasio and T. Clark,

J. Chem. Inf. Model., **2017**, 57, 1210

Predicting binding free energies

- GPCRs
- Binding/unbinding protocol
 - Small ligands
 - Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

5 Receptors
13 Ligands
23 Data points
Binary and ternary complexes
Up to 3 binding sites per receptor
Ligands act as:

10 agonists
11 antagonists
2 partial agonists

8 receptor structures based on equilibrated homology models

MSE	= -0.13 kcal mol ⁻¹
MUE	= 0.66 kcal mol ⁻¹
RMSE	= 0.82 kcal mol ⁻¹

An efficient Metadynamics-based Protocol to Model the Binding Affinity and the Transition State Ensemble of GPCR-Ligands,

N. Saleh, P. Ibrahim, G. Saladino, F. L. Gervasio and T. Clark,

J. Chem. Inf. Model., 2017, 57, 1210

Extension to binding/unbinding of peptides

- GPCRs
- Binding/unbinding protocol
 - Small ligands
 - Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

Neuropeptide Y Y4R Receptor

8.335Å

W6.48

Collective Variable for binding/unbinding peptides

The z component of the distance between the geometric center of Trp6.48 and V3.36 (Cα) and the peptide C-terminal (Cα)

E. Plut, J. Calderón, V. Stanojlović, A. O. Gattor, C. Höring, L. Humphrys, A. Konieczny, S. Kerres, M. Schubert, M. Keller, C. Cabrele, Timothy Clark, and O. Reiser, submitted to Chem. Sci.

Free-Energy Profile using the Standard Protocol

Results: Enantiomeric Y-Peptide analogs

Centrum

A¹⁰⁰ Activation Index : Protocol

- GPCRs
- Binding/unbinding protocol
 - Small ligands
 - Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

- Partially structure-based alignment; helices only without loops/termini. Python script available as SI or interactive A¹⁰⁰ web site
 - <u>https://www.chemistry.nat.fau.eu/ccc/a100</u>
- 2. Extract five inter-helix C_{α} - C_{α} distances
- 3. Apply linear combination formula (H4R residues are indicated): $A^{100} = -14.43 \times r(V^{1.53} L^{7.55}) 7.62 \times r(D^{2.50} T^{3.37}) + 9.11 \times r(N^{3.42} I^{4.42}) 6.32 \times r(W^{5.66} A^{6.34}) 5.22 \times r(L^{6.58} Y^{7.35}) + 278.88$
- *A Universal Activation Index for Class A GPCRs*, P. Ibrahim, D. Wifling and T. Clark. *J. Chem. Inf. Model.* **2019**, *59*, 3938-3945.

X-ray Structures: Confusion Matrix

- GPCRs
- Binding/unbinding protocol
 - Small ligands
 - Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

<i>n</i> = 268	assi	assigned experimentally			
Three-State model:	active	intermediate	<u>inactive</u>		
Borders	>55	0-55	<0		
Predicted activ	ve 42	3	0		
intermediat	te 24	26	19		
inactiv	ve 1	3	150		
	62.7%	81.3%	88.8%		
Two-State model:	<u>active</u>		inactive		
Borders	>25		<25		
Predicted activ	re <mark>63</mark>		2		
inactiv	ve 4		167		
	94.0%		98.8%		

A¹⁰⁰ as Activation CV

- GPCRs
- Binding/unbinding protocol
 - Small ligands
 - Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

- A¹⁰⁰ is a linear combination of five Cα-Cα distances. It can therefore be used as a collective variable for metadynamics simulations of GPCR activation with PLUMED.
- A¹⁰⁰, like RMSDs, is not unique to a single structure. It is therefore necessary to use additional sampling techniques (in our case, multiple walkers) and select the walkers for multiple-walker metadynamics very carefully.
- The standard simulation protocol involves:
 - Preliminary single-walker metadynamics simulation to select the walkers for the production simulation
 - Multiple-walker well tempered metadynamics between approximately $-100 < A^{100} > 100$

ADRB2

GPCRs

٠

- Binding/unbinding protocol
 - Small ligands
 - Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

12

Conclusions

- GPCRs
- Binding/unbinding protocol
 - Small ligands
 - Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

- Simulations provide comparably accurate and reliable binding free energies for GPCRs as experiment.
- Multiple binding sites are the rule
 - The "small molecule" protocol can be extended to peptide ligands
- Activation can be characterized using a simple linear model that relies on five C_{α} - C_{α} distances.
- Activation free-energy profiles consistent with experiment
- Partial agonists act as full agonists in ternary complexes but as partial antagonists in binary ligand-receptor complexes

Acknowledgments

Ala19

- GPCRs
- Binding/unbinding protocol

٠

58

- Small ligands
- Extension to peptides
- Activation/ Deactivation protocol
- Conclusions

Jacqueline Calderon, Dr, Passainte Ibrahim

- Prof. Francesco Gervasio, Dr. Dorothea Gobbo, University of Geneva
- Prof. Oliver Reiser, PD Dr. Max Keller, University of Regensburg

Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities

ComputerChemie

Centrum

Gauss Centre for Supercomputing

FAU Atomic Structure Simulation Lab

Simulations at an atomistic scale

