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How do we reconcile this hostile environment with HPC scientific applications?
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Revisiting the Hourglass
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@KAUST_ECRC

https://www.facebook.com/ecrckaust

A x = b



Reshaping Linear Algebra for 
Massively Parallel Architectures
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• Enhance user-productivity using layers of abstraction

• Expose parallelism using fine-grained computations

• Achieve scalability using asynchronous executions

• Exploit data sparsity using low-rank approximations

• Maintain code portability using standard basic blocks

Are you willing to redesign your algorithm?

One possible productive solution: Matricization
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THE EUROPEAN EXTREMELY LARGE TELESCOPE

THE SUBARU TELESCOPE

THE VERY LARGE TELESCOPE

MICADO

MULTI-ADAPTIVE OPTICS IMAGING 

CAMERA FOR DEEP OBSERVATIONS

MAVIS 
MCAO ASSISTED VISIBLE

IMAGER AND SPECTROGRAPH

MAORY

MULTI-CONJUGATE 

ADAPTIVE OPTICS RELAY

SCEXAO

THE SUBARU 

CORONOGRAPHIC 
EXTREME AO

EPICS

EXOPLANET IMAGING CAMERA 

AND SPECTROGRAPH 



The Atmospheric Turbulence
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The sun observed with a compact camera

• Disturbs the trajectory of light rays
• Reduces astronomical images quality



Adaptive Optics for Giant Telescopes
20

Control in real-time the shape of the incoming wavefront
● Sensors are cameras equipped with an optical device 

(lenslet array, pyramidal prism, etc…)
● Deformable mirrors 

to compensate for
wavefront distortions

● Typical rate of 
operation is 1kHz

● Compute pipeline 
latency below 
1 millisecond

● Stable time-to-solution
is critical to ensure stable 
operations (jitter of the 
order of 10s of µs)

● Matrix-Vector Multiplication (MVM)
is the most critical computational kernel



One of The Key Hardware Components:
The Deformable Mirrors
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MAVIS in a nutshell
22

Flagship 3rd-generation instrument 
for the Very Large Telescope

● Imager & Spectrograph fed by
Multi-Conjugate AO

● Scaling up the whole AO concept:
○ More actuators
○ Faster control system
○ Exquisite calibrations

● Fast-track project:
○ First-light by 2026

● Deeper & Sharper than any
space-based instrument



Rank Analysis of the Tomographic Reconstructor
23

Splitting the matrix into tiles and looking at ranks
• Tiles size aligned with system parameters
• Data sparse, opportunity for low-rank matrix approximations
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Tile Dense
Matrix-Vector Multiplication x

A

y

4 x 6 tiles

TLR-MVM
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1) Compress once up-front
(SVD-like algorithms) x

A

y

U bases V bases

TLR-MVM
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2) Stack the bases

x

A

y

U bases V bases

TLR-MVM
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3) Calculate (per red part):
Yv = V . x x

Yv

V bases

TLR-MVM
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4) Translate
Yv (V bases) to Yu (U bases)

Yu

Yv

TLR-MVM
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5) Calculate
y = U . Yu

Yu

U bases y

TLR-MVM



30

5) Calculate
y = U . Yu

Yu

U bases y

Rely on batch GEMV calls

w/ variable sizes

TLR-MVM



Numerical Accuracy Assessment
on MAVIS Datasets
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Accelerators
ROCm / CUDA
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Sustained Bandwidth on Synthetic Datasets
39

Higher
is

better

Rely on batch GEMV calls

w/ variable sizes

EP
IC



Time to Solution on Synthetic Datasets
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Rely on batch GEMV calls

w/ variable sizes

Lower
is

better

EP
IC



Roofline Performance Model
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Performance Across AMD x86 Generations
42



The Case for Mixed Precisions
43

Data transactions with AO hardware rely on UINT16 
● WFS cameras provide 12-16 bits data stream as input
● Deformable mirror actuators are controlled through a set of UINT16 commands



MAVIS Instrument
44
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Powering Seismic Redatuming w/ TLR-MVM
Seismic redatuming is an important technique to get 
insights from the Earth’s subsurface.

This requires solving an inverse problem. 
Traditionally, due to computational challenges, only 
the adjoint is applied.

Some latest research show an alternative method to 
improve the solution of inverse problems by using 
an iterative solver, e.g., conjugate gradient iterative 
solver. This comes at the cost of evaluating multiple 
expensive MVM operations, as shown in the 
following equations:
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Powering Seismic Redatuming w/ TLR-MVM
We use tile low-rank matrix-vector multiplication (TLR-MVM) to address the complexity bottleneck.
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SEG/EAGE Overthrust Model 
52

• 3D Geological open model
• 3 x 5 x 2.3 km3

• 217 × 120 sources 
• 177×90 receivers 
• 230 complex-valued frequency matrices of size 26040 × 15930 

Jointly developed between the 
Society of Exploration Geophysicists 
(SEG) and the European Association of 
Geo- scientists and Engineers (EAGE) 



Numerical Accuracy

Good

Bad

Ground Truth

Checking the traces of 8 receivers

Accuracy Threshold: 1e-4



Numerical Accuracy

Post-acquisition processing powered by TLR-MVM
to remove free-surface related effects 
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● Algorithms first!
● Low-rank matrix approximations are key for solving challenging 

scientific problems at scale
● Reconciling HPC workloads with the hostile hardware 

landscape
● Steering AI-focused hardware for HPC scientific applications is 

worth exploring (ISC23 paper presentation)
● Exploiting cache size and leveraging its high bandwidth
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Summary
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We are recruiting!
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