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Performance and complexity of HPC 

systems are constantly increasing 

→ Important to examine the scaling 

behavior of an application and identify 

early performance bottlenecks 

→Use empirical performance modeling

Problem: 

In noisy environments → difficult to 

create accurate performance models

▪ Strong variations in the measurements

▪ Measurements irreproducible and 

misleading

▪ Strong deviations from the actual 

application behavior

Motivation
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Problem (cont.): 

▪ Application runtime affected by noise

▪ Most common performance metric

Solution:

Use hardware counters

▪ Noise has little impact on some

hardware counters 

▪ e.g., double precision operations

▪ Selecting the right counters requires a 

thorough analysis 

Motivation
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A detailed noise analysis on various hardware counters on different systems:

→ Total of 26950 experiments (PAPI preset events only):

Categorized the counters across the different systems according to their noise resilience 

and provided a user guide
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Contributions

Five systems

Four hardware architectures 

Three applications

With and without injected noise 

Multiple resource configurations 
(number of nodes)

Five repetitions per setup



Find noise-resilient hardware counters: 

▪ Examine if counters’ values change when 

repeating the measurements

▪ Expose the counters to different levels of 

noise

▪ Inject different noise patterns using 

NOIGENA

▪ NOIGENA processes were running on 

the odd processors 

Analysis Methodology
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Noise pattern used by NOIGENA to configure 

the amount and duration of generated noise.



Compare counter values of different call paths from three applications for the repeated experiments 

→ Calculate the relative deviation from the arithmetic mean in percent: 

𝑣𝑖−ത𝑣

ത𝑣
∗ 100%

For the 𝑎th application kernel, 𝑝th MPI rank, 𝑡th OpenMP thread, and 𝑖th repetition, 

→ Find the arithmetic mean across the repetitions: 

ҧ𝑣𝑎,𝑝,𝑡 = mean(𝑣𝑎,𝑝,𝑡,𝑖)  → ҧ𝑣 = mean(𝑣𝑖)

We do this for all counters on all systems with and without noise
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Analysis Methodology



• Mini-app that mimics: finite element generation, assembly, and solution

• Unstructured grid problem, required by many engineering applicationsMiniFE

• Proxy app solves a Sedov blast problem with analytic answers

• Represents algorithms, data motion, and programming style typical in 
scientific applications

LULESH

• Classical molecular dynamics code focusing on materials modeling

• We use the atomic fluid, Lennard-Jones (LJ) potentialLAMMPS
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Application Benchmarks

For all of them, we use OpenMP and MPI for the measurements



Alias Name Nodes Processor RAM Network

CM
DEEP-EST, 

Cluster Module
50

2x Intel Xeon Skylake Gold 

6146 CPUs 

(12 cores, 24 threads)

192 GB DDR4 RAM 

(2666 MHz)
InfiniBand EDR (100 GBit/s)

ESB

DEEP-EST, 

Extreme Scale

Booster

75

1x Intel Xeon Cascade Lake 

Silver 4215 CPU 

(8 cores, 16 threads)

48 GB DDR4 RAM 

(2400 MHz), 
InfiniBand EDR (100 GBit/s)

Jureca

JURECA DC 

Module, std.

compute nodes

480
2x AMD EPYC 7742 CPUs 

(64 cores, 128 threads)

512 GB DDR4 RAM 

(3200 MHz)
InfiniBand HDR100 (100 GBit/s) 

Jetson

OACISS, 

Franken-cluster 

Jetson ARM64

12x Jetson 

Tegra TX1

1x Quad-Core ARM Cortex®-

A57 MPCore

(4 cores, 4 threads)

4 GB 64-bit 

LPDDR4 RAM
1 GBit/s ethernet

Cyclops

OACISS, 

Franken-cluster 

Cyclops

1
2x 20c IBM Power9 CPUs 

(20 cores, 80 threads)
384 GB of RAM

BNX2 10G Ethernet NICs, 2x 

Infiniband EDR 

(25 GBit/s)
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Evaluation Systems



Application Configurations
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Visualizing the results for each counter is not an easy task:

▪ Three different application

▪ Thousands of different call paths  

▪ Different resource configuration 

▪ Several iterations per setup

▪ Five different systems

▪ Several hardware counters

▪ Presence and absence of noise

To compare distinct counter → scale the plots with the peak occurrence of the relative deviation

Evaluation Results
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Distinct plots

Count relative metric (deviation from the mean)

Intensity (importance to the overall behavior)

Separate axes



▪ The height of each distribution plot 

describes how often the corresponding 

relative deviation occurs

▪ Maximum value of the peak relative 

deviation was used to scale all callpaths

▪ We only show callpaths that resulted in 

more than 1% of the total counter value

Evaluation Results
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▪ The intensity (alpha) shows the 

importance of the region to the overall 

behavior

▪ The importance is the callpath’s share 

of the total counted value across all 

applications per counter 

▪ Large values indicate the parts of the 

application that exhibit more of the 

behavior described by that counter

Evaluation Results
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Counter strongly influenced by noise: 

▪ Large distribution in the presence of noise, 

while short one in the absence

Counter with large deviation:

▪ Large distribution disregarding the noise

▪ Not suited for modeling 

Evaluation Results:
How to Interpret the Results
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Bad Counters



Counter robust against noise: 

▪ Similar distribution in the presence and 

absence of noise

▪ Short deviation ( < 20%)

Counter to some extent robust against noise: 

▪ Short deviation (< 20%) without noise

▪ Short deviation (< 20%) in the presence of 

noise for the significant callpaths

Evaluation Results:
How to Interpret the Results
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Good Counters OK Counters
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Evaluation Results:
Runtime
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Evaluation Results:
Floating Point Operations



Evaluation Results:
Branch Instructions, Cycles
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Evaluation Results:
L1, L2 Instruction Cache
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Evaluation Results:
Branch Instructions, Cycles
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Evaluation Results:
Stalls
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Evaluation Results:
L2, L3 Cache



Impact of the Application: 
Total Cycles and Load Inst.

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 23

LAMMPS MiniFELULESH



In a noisy environment, the best counters independent of the system 

architecture are

▪ All counters measuring floating point operations, e.g., DP_OPS, VEC_SP

▪ All counters measuring floating point instructions, e.g., FP_INS
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Best Practice User Guide
General



▪ Instructions, Cycles 

▪ Strong deviation for less 

important callpaths

▪ Small deviation for important 

callpaths

▪ Stall and reference cycles 

▪ Because of large deviations

▪ L3 counters and TLB_DM 

▪ Accurate only in the absence of noise

Best Practice User Guide
Intel CPUs
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Good Bad



▪ L2 cache accesses and misses, 

TLB_DM, TLB_IM

▪ Have a small deviation with a 

maximum of 20%

▪ Total and branch instructions have less 

deviation than time

▪ Still too much to be useful for 

modeling

Best Practice User Guide
AMD CPUs
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Good Bad



▪ Instruction and cycle counters 

▪ Only small deviations in noisy 

environments

▪ Can be used for performance 

modeling

▪ Exception: TOT_CYC 

▪ Showing a high deviation

Best Practice User Guide
ARM CPUs
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Good Bad



▪ Most counters have a small deviation 

(less than 30%) for significant callpaths

▪ BR_TKN, BR_PRC, LD_INS, LST_INS

▪ Should be avoided

▪ L3 related counters

▪ High deviations in the presence of 

noise

Best Practice User Guide
IBM CPUs
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Good Bad



Jureca

(AMD)

ESB (Intel) CM (Intel) Jetson 

(ARM)

Cyclops 

(IBM)

Floating point 

ops./instr.
++ ++ ++ ++ ++

Cycles - + + 0 0

Instructions
- + + + +

L1 + - - 0 +

L2 + 0 - 0 +

L3 - - -
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Best Practice User Guide



▪ Examined noise resilience of hardware counters on five systems with 

different architectures (Intel, AMD, ARM, IBM Power9)

▪ Analyzed all available preset and a selection of native events

▪ In general, most hardware counters are affected by noise, but still less than 

the runtime

▪ Counters measuring floating-point operations or instructions are noise 

resilient on all systems

▪ Their reliability significantly depends on the system architecture

▪ Our best practice guide enables developers to identify the relevant 

counters for performance analysis for their system
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Conclusion



▪ Create a Tool that performs the analysis and evaluation on the system

▪ Examine more counters (i.e., native counters)

▪ Examine the correlation between the counters 

▪ Identify the source of noise

▪ Started working with the PAPI developers 
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Future work



Questions?

Thank you for your attention!
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