
Conquering Noise with
Hardware Counters on
HPC Systems
Marcus Ritter1, Ahmad Tarraf1, Alexander Geiß1, Nour Daoud2, Bernd Mohr2, Felix Wolf1

1Technical University of Darmstadt
2Forschungszentrum Jülich GmbH

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 1

Conquering Noise with Hardware Counters on
HPC Systems

Marcus Ritter1, Ahmad Tarraf1, Alexander Geiß1, Nour Daoud2, Bernd Mohr2, Felix Wolf1

1Technical University of Darmstadt

2Forschungszentrum Jülich GmbH

Performance and complexity of HPC

systems are constantly increasing

→ Important to examine the scaling

behavior of an application and identify

early performance bottlenecks

→Use empirical performance modeling

Problem:

In noisy environments → difficult to

create accurate performance models

▪ Strong variations in the measurements

▪ Measurements irreproducible and

misleading

▪ Strong deviations from the actual

application behavior

Motivation

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 3

Problem (cont.):

▪ Application runtime affected by noise

▪ Most common performance metric

Solution:

Use hardware counters

▪ Noise has little impact on some

hardware counters

▪ e.g., double precision operations

▪ Selecting the right counters requires a

thorough analysis

Motivation

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 4

A detailed noise analysis on various hardware counters on different systems:

→ Total of 26950 experiments (PAPI preset events only):

Categorized the counters across the different systems according to their noise resilience

and provided a user guide

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 5

Contributions

Five systems

Four hardware architectures

Three applications

With and without injected noise

Multiple resource configurations
(number of nodes)

Five repetitions per setup

Find noise-resilient hardware counters:

▪ Examine if counters’ values change when

repeating the measurements

▪ Expose the counters to different levels of

noise

▪ Inject different noise patterns using

NOIGENA

▪ NOIGENA processes were running on

the odd processors

Analysis Methodology

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 6

Noise pattern used by NOIGENA to configure

the amount and duration of generated noise.

Compare counter values of different call paths from three applications for the repeated experiments

→ Calculate the relative deviation from the arithmetic mean in percent:

𝑣𝑖−ത𝑣

ത𝑣
∗ 100%

For the 𝑎th application kernel, 𝑝th MPI rank, 𝑡th OpenMP thread, and 𝑖th repetition,

→ Find the arithmetic mean across the repetitions:

ҧ𝑣𝑎,𝑝,𝑡 = mean(𝑣𝑎,𝑝,𝑡,𝑖) → ҧ𝑣 = mean(𝑣𝑖)

We do this for all counters on all systems with and without noise

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 7

Analysis Methodology

• Mini-app that mimics: finite element generation, assembly, and solution

• Unstructured grid problem, required by many engineering applicationsMiniFE

• Proxy app solves a Sedov blast problem with analytic answers

• Represents algorithms, data motion, and programming style typical in
scientific applications

LULESH

• Classical molecular dynamics code focusing on materials modeling

• We use the atomic fluid, Lennard-Jones (LJ) potentialLAMMPS

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 8

Application Benchmarks

For all of them, we use OpenMP and MPI for the measurements

Alias Name Nodes Processor RAM Network

CM
DEEP-EST,

Cluster Module
50

2x Intel Xeon Skylake Gold

6146 CPUs

(12 cores, 24 threads)

192 GB DDR4 RAM

(2666 MHz)
InfiniBand EDR (100 GBit/s)

ESB

DEEP-EST,

Extreme Scale

Booster

75

1x Intel Xeon Cascade Lake

Silver 4215 CPU

(8 cores, 16 threads)

48 GB DDR4 RAM

(2400 MHz),
InfiniBand EDR (100 GBit/s)

Jureca

JURECA DC

Module, std.

compute nodes

480
2x AMD EPYC 7742 CPUs

(64 cores, 128 threads)

512 GB DDR4 RAM

(3200 MHz)
InfiniBand HDR100 (100 GBit/s)

Jetson

OACISS,

Franken-cluster

Jetson ARM64

12x Jetson

Tegra TX1

1x Quad-Core ARM Cortex®-

A57 MPCore

(4 cores, 4 threads)

4 GB 64-bit

LPDDR4 RAM
1 GBit/s ethernet

Cyclops

OACISS,

Franken-cluster

Cyclops

1
2x 20c IBM Power9 CPUs

(20 cores, 80 threads)
384 GB of RAM

BNX2 10G Ethernet NICs, 2x

Infiniband EDR

(25 GBit/s)

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 9

Evaluation Systems

Application Configurations

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 10

Visualizing the results for each counter is not an easy task:

▪ Three different application

▪ Thousands of different call paths

▪ Different resource configuration

▪ Several iterations per setup

▪ Five different systems

▪ Several hardware counters

▪ Presence and absence of noise

To compare distinct counter → scale the plots with the peak occurrence of the relative deviation

Evaluation Results

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 11

Distinct plots

Count relative metric (deviation from the mean)

Intensity (importance to the overall behavior)

Separate axes

▪ The height of each distribution plot

describes how often the corresponding

relative deviation occurs

▪ Maximum value of the peak relative

deviation was used to scale all callpaths

▪ We only show callpaths that resulted in

more than 1% of the total counter value

Evaluation Results

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 12

▪ The intensity (alpha) shows the

importance of the region to the overall

behavior

▪ The importance is the callpath’s share

of the total counted value across all

applications per counter

▪ Large values indicate the parts of the

application that exhibit more of the

behavior described by that counter

Evaluation Results

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 13

Counter strongly influenced by noise:

▪ Large distribution in the presence of noise,

while short one in the absence

Counter with large deviation:

▪ Large distribution disregarding the noise

▪ Not suited for modeling

Evaluation Results:
How to Interpret the Results

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 14

Bad Counters

Counter robust against noise:

▪ Similar distribution in the presence and

absence of noise

▪ Short deviation (< 20%)

Counter to some extent robust against noise:

▪ Short deviation (< 20%) without noise

▪ Short deviation (< 20%) in the presence of

noise for the significant callpaths

Evaluation Results:
How to Interpret the Results

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 15

Good Counters OK Counters

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 16

Evaluation Results:
Runtime

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 17

Evaluation Results:
Floating Point Operations

Evaluation Results:
Branch Instructions, Cycles

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 18

Evaluation Results:
L1, L2 Instruction Cache

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 19

Evaluation Results:
Branch Instructions, Cycles

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 20

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 21

Evaluation Results:
Stalls

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 22

Evaluation Results:
L2, L3 Cache

Impact of the Application:
Total Cycles and Load Inst.

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 23

LAMMPS MiniFELULESH

In a noisy environment, the best counters independent of the system

architecture are

▪ All counters measuring floating point operations, e.g., DP_OPS, VEC_SP

▪ All counters measuring floating point instructions, e.g., FP_INS

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 24

Best Practice User Guide
General

▪ Instructions, Cycles

▪ Strong deviation for less

important callpaths

▪ Small deviation for important

callpaths

▪ Stall and reference cycles

▪ Because of large deviations

▪ L3 counters and TLB_DM

▪ Accurate only in the absence of noise

Best Practice User Guide
Intel CPUs

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 25

Good Bad

▪ L2 cache accesses and misses,

TLB_DM, TLB_IM

▪ Have a small deviation with a

maximum of 20%

▪ Total and branch instructions have less

deviation than time

▪ Still too much to be useful for

modeling

Best Practice User Guide
AMD CPUs

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 26

Good Bad

▪ Instruction and cycle counters

▪ Only small deviations in noisy

environments

▪ Can be used for performance

modeling

▪ Exception: TOT_CYC

▪ Showing a high deviation

Best Practice User Guide
ARM CPUs

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 27

Good Bad

▪ Most counters have a small deviation

(less than 30%) for significant callpaths

▪ BR_TKN, BR_PRC, LD_INS, LST_INS

▪ Should be avoided

▪ L3 related counters

▪ High deviations in the presence of

noise

Best Practice User Guide
IBM CPUs

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 28

Good Bad

Jureca

(AMD)

ESB (Intel) CM (Intel) Jetson

(ARM)

Cyclops

(IBM)

Floating point

ops./instr.
++ ++ ++ ++ ++

Cycles - + + 0 0

Instructions
- + + + +

L1 + - - 0 +

L2 + 0 - 0 +

L3 - - -

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 29

Best Practice User Guide

▪ Examined noise resilience of hardware counters on five systems with

different architectures (Intel, AMD, ARM, IBM Power9)

▪ Analyzed all available preset and a selection of native events

▪ In general, most hardware counters are affected by noise, but still less than

the runtime

▪ Counters measuring floating-point operations or instructions are noise

resilient on all systems

▪ Their reliability significantly depends on the system architecture

▪ Our best practice guide enables developers to identify the relevant

counters for performance analysis for their system
18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 30

Conclusion

▪ Create a Tool that performs the analysis and evaluation on the system

▪ Examine more counters (i.e., native counters)

▪ Examine the correlation between the counters

▪ Identify the source of noise

▪ Started working with the PAPI developers

18 April 2023 Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 31

Future work

Questions?

Thank you for your attention!

18 April 2023

Department of Computer Science | Laboratory for Parallel Programming | Ahmad Tarraf 32

	Default Section
	Slide 1: Conquering Noise with Hardware Counters on HPC Systems
	Slide 2: Conquering Noise with Hardware Counters on HPC Systems
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Contributions
	Slide 6: Analysis Methodology
	Slide 7: Analysis Methodology
	Slide 8: Application Benchmarks
	Slide 9: Evaluation Systems
	Slide 10: Application Configurations
	Slide 11: Evaluation Results
	Slide 12: Evaluation Results
	Slide 13: Evaluation Results
	Slide 14: Evaluation Results: How to Interpret the Results
	Slide 15: Evaluation Results: How to Interpret the Results
	Slide 16: Evaluation Results: Runtime
	Slide 17: Evaluation Results: Floating Point Operations
	Slide 18: Evaluation Results: Branch Instructions, Cycles
	Slide 19: Evaluation Results: L1, L2 Instruction Cache
	Slide 20: Evaluation Results: Branch Instructions, Cycles
	Slide 21: Evaluation Results: Stalls
	Slide 22: Evaluation Results: L2, L3 Cache
	Slide 23: Impact of the Application: Total Cycles and Load Inst.

	Guide
	Slide 24: Best Practice User Guide General
	Slide 25: Best Practice User Guide Intel CPUs
	Slide 26: Best Practice User Guide AMD CPUs
	Slide 27: Best Practice User Guide ARM CPUs
	Slide 28: Best Practice User Guide IBM CPUs
	Slide 29: Best Practice User Guide
	Slide 30: Conclusion
	Slide 31: Future work
	Slide 32: Questions?

