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WHO AM 17

Tamas Gal, born 1985 in Debrecen (Hungary)

My desk 1n 2003

Astroparticle physicist at the

Erlangen Centre for Astroparticle Physics (ECAP) working on the

KM3NeT neutrino detector experiment and open science/data

Sysadmin (DevOps) at ECAP (including the ECAP and KM3NeT IT
services)

Programming background:
- Coding enthusiast since ~1993
- First real application written in Amiga Basic
(toilet manager, tons of GOTOs ;)
- Mostly Julia, Python, Rust, JavaScript and C/C++ for work
- Haskell for fun
- Earlier also Obj-C, Java, Perl, PHP, Delphi, MATLAB, whatsoever...
Started with Python around 1998 (to replace Perl/Shell)
Editor: Vim for ~25 years but switched to Emacs (EVIL mode) in 2020
Other: ADV motorbikes, climbing, electronics, modular synths, DIY...

y O @tamasgal




The following presentation contains
oversimplifications and blatant omissions
due to time constraints. The viewer may
also experience well-timed product
placements.



PYTHON




THE PYTHON PROGRAMMING LANGUAGE

Interpreted high-level general-purpose programming language
Object-oriented, procedural (imperative), functional, structured, reflective

Dynamically-typed and garbage-collected

"batteries included”

Tries to avoid premature optimisation: move time-critical functions to
extension modules written in "faster" languages (like C or Fortran) when
necessary



THE ZEN OF PYTHON

>>> 1import this

The Zen of Python, by Tim Peters
Beautiful 1s better than ugly.
Explicit 1s better than implicit.
Simple 1s better than complex.
Complex 1s better than complicated.
Flat 1s better than nested.

Sparse 1s better than dense.
Readability counts.

Specilal cases aren't special enough to break the rules.
Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do 1t.
Although that way may not be obvious at first unless you're Dutch.
Now 1s better than never.

Although never 1s often better than xrightx now.

If the 1mplementation 1s hard to explain, 1t's a bad 1idea.

If the 1mplementation 1s easy to explain, 1t may be a good 1dea.
Namespaces are one honking great idea -- let's do more of those

T DUNNO... /
DYNAMIC TYPING? T JUST TYPED
WHITEGPRCE? import ontigmuity
/ COME JOIN US! THATS IT? /
T LEARNED IT LAST PROGRAMMING ... T ALS0 SAMPLED
NIGHT! EVERYTHING IS FUN AGAIN EVERYTHING IN THE
I5 SO SIMPLE! ITS A WHOLE MED\CINE CABINET
' NEW WORLD FOR COMPARISON.
HELLO WORLD IS JUST \_ UP HERE! ,
print "Hello, world! BUT HOW ARE BUT I THINK THIS
YOU FLYING? 1S THE PYTHON.
xkcd.com/535
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POPULAR LANGUAGES

Most loved languages https://survey.stackoverflow.co/2022

Rust

Elixir

Clojure

TIOBE Programming Community Index

Source: www.tiobe.com TypeScript

Julia

Python

2006 2008 2010 2012 2014 2016 2018 2020 2022

«= Python e= C Java C++ == C# == Visual Basic JavaScript e= SQL == PHP Go

Python is the most popular language (according to TIOBE)!
... and has beaten Java and C+! Btw. Julia is #33 ;)


https://survey.stackoverflow.co/2022

YOUR JOURNEY THROUGH PYTHON?

(JUST A VERY ROUGH GUESS, NOT A MEAN GAME)

Raise your hand and keep it up until you answer a question with “no’’ (means you're out).

Have you ever launched the Python interpreter?
Wrote for/while-loops or if/else statements?
...your own functions?

...classes?

...list/dict/set comprehensions?

Do you know what a generator is?

Have you ever implemented a decorator?

...a metaclass?

...a C-extension?
Do you know and can you explain the output of the following line for Python?

print(5 is 7 - 2, 300 is 302 - 2)

Explorer

Intermediate

Advanced

| am the BDFL
of Python




ANSWER TO

print(5 is 7 - 2, 300 is 302 - 2)

Python 2.7:
Python 3.6:
Python 3.7:
Python 3.8:

and warnings ...

Python 3.9:

and warnings ...

Python 3.10:

and warnings ...

False
False

This plcture makes none




EXPLANATION OF
print(5 is 7 - 2, 300 is 302 - 2)

. cpython/Include/internal/pycore_interp.h
PyObJeCt* (-Long V) /* Small integers are preallocated in this array so that they
Return value: New reference. can be shared.
o . The 1ntegers that are preallocated are those in the range
Return a new PyLongObject object from v, T O - o |
~PY _NSMALLNEGINTS (inclusive) to PY NSMALLPOSINTS (not 1inclusive).

or NULL on failure. "
PyLongObject* small_ints [ _PY_NSMALLNEGINTS + _PY_NSMALLPOSINTS];

The current implementation keeps an array of integer objects for all integers between -5 and 256,
when you create an int in that range you actually just get back a reference to the existing object.

"is" is an operator which checks if two objects are identical: "x is y" is true iff x and y are pointing
to the same object.

In Python 3.7+ the constant folding is moved from the peephole optimiser to the new AST
optimiser, which effectively avoids the extra allocation.
(https://aithub.com/python/cpvython/commit/7eal43ae795a9td57eaccf490d316bdc13ee9065)
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https://github.com/python/cpython
https://github.com/python/cpython/tree/main/Include
https://github.com/python/cpython/tree/main/Include/internal
https://github.com/python/cpython/commit/7ea143ae795a9fd57eaccf490d316bdc13ee9065

WHY IS PYTHON SO POPULAR (FOR SCIENCE)?

e Ease of use - scientists don't know/want how to program

e Readable code - source code is more often read than written

e Interactive workflow

o Lots of scientific libraries (and machine learning is everywhere)

o Batteries included: tons of (built-in) useful supplementary functionalities

e General purpose language so that scientists can
focus on a single language to rule themall...

e ...can they?




Execution time

104

2
107

10

10() ®

C

PERFORMANCE OF LANGUAGES

Julia

®))

LuaJIT

Microbenchmarks from https://julialang.org/benchmarks/

Rust

Go

Fortran

Java

JavaScript Matlab Mathemat

R

Octave

benchmark

® iteration pi sum
matrix_multiply

® matrix_statistics

® parse_integers
print_to file

® recursion_fibonacci
recursion_quicksort
userfunc_mandelbrot
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https://julialang.org/benchmarks/

PYTHON INTERNALS



CPYTHON

e Python (in contrast to other languages like C, Julia) has no formal specification

e The Python Language Reference is written in English: https://docs.python.org/3.9/reference

o CPython is the reference implementation which contains implementation details which are
not part of the language (e.g. GC with reference counting)

e Python is defined partly by the Python Language Reference and its main implementation
CPython

e There are several other implementations: PyPy, Jython (stuck at Python 2.7), lIronPython (2.7
and 3.4), etc.

e From now on, with "Python" we refer to CPython
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https://docs.python.org/3.9/reference

FROM SOURCE TO RUNTIME

source bytecode

compiler foo.pyc interpreter

8 LOAD_NAME 8 (add)
2 LOAD_CONST 8 (1)

4 LOAD_CONST 1 (2)

6 CALL_FUNCTION 2

8 PRINT_EXPR

18 LOAD_CONST 2 (None)
12 RETURN_VALUE

Recommended reading (Victor Skvortsov - Python behind the scenes): https://tenthousandmeters.com/blog/python-behind-the-scenes-1-how-the-cpython-vm-works/
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PYTHON BYTECODE

print(5 is 7 - 2, 300 is 302 - 2)

import dis; dis.dis(compile('print(5 is 7 - 2, 300 is 302 - 2)', '', 'single'))

1 ® LOAD_ NAME

2 LOAD_CONST

4 LOAD_CONST

6 COMPARE_OP

8 LOAD CONST
10 LOAD_CONST
12 COMPARE_OP
14 CALL_FUNCTION
16 PRINT_EXPR
18 LOAD_CONST
20 RETURN_VALUE

False

Python 3.6

True,

0 (print)

Y

%ﬁ%%fziiizzzzﬁ |
B (1s) co_consts|I]
73 (300) ://///,,,,//”””*

. 7 €300)

"..8.,” ( iS )

2

5 (None)

import dis; dis.dis(compile('print(5 is 7 - 2, 300 is 302 - 2)', '', 'single'))

1 © LOAD_ NAME

2 LOAD_CONST

4 LOAD_CONST

6 COMPARE_OP

8 LOAD_CONST
10 LOAD_CONST
12 COMPARE_OP
14 CALL_FUNCTION
16 PRINT EXPR
18 LOAD_CONST
20 RETURN_VALUE

Python 3.7
True, True

. v,
o AN

£ 0 (5)
. 0 (5) ::::::::::::::::E} |
8. (is) CO_consts|1]
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THE TYPE OF A PyObject

“An object has a ‘type’ that determines what it represents and
what kind of data it contains.
An object’s type is fixed when it is created. Types themselves are
represented as objects. The type itself has a type pointer
pointing to the object representing the type ‘type’, which
contains a pointer to itself!”

— object.h

17



DATA IN PYTHON

e Every plece of data 1s a PyObject

>>> dir(42)

I O e s dde et and o Tt beol T M tscedl St dellasisiani

B C TGRSR S e S d T Vmed= = e i=docta e st teqe el o float Els,
S 66 et e S OO TESRE SN IS foEmat = L et ger it =l oatatttribhute sty

SN cclNeV AT e SRR R R Shashs S andex e Ay S e ATl b e s,

R ke s H v c EiS SHEs Bt e SRS nivie it T e e, ' s Tisha ittt R LT
o IO e e T e e [ e U =1 e s 11 =1, et N o ) &R 0 10
SR o RS S rand =t 1 ardavmod L, i i reduce T T U Fedlice texa iy
C @ oY e T Lo A e o DR ol K ¢ e A o || o]0 MCEN N, of | ] FEERRNRRLE o)
S o | B = s D G E Ty, o e P T SHLFT S sy ~irshift =" 5l psubs '

R e MR R SR IO, L cseta s v o Sussizeofsr . sttt Sidsub iy
e e SO S E R e TV o U EURC 2 e L A XOr e b1t Lengitht
‘conjugate', 'denominator', 'from_bytes', 'imag', 'numerator', 'real'’,
'to_bytes']

PyObject

ref.

type

structural
subtype

PyIntObject

ref.

type

PyTypeObject
(_typeobgect)
type

/)

fie

ref.
count

attr. . d  attr.



DATA IN PYTHON

arr = [23, 5, 42]

/ \ \ TR PyObject

' (PyIntObject)
PyObject
ref. count
(PyL1istObject) . °
PyObject PyObJect prev/next
ref. count (PyIntObiect)
(PyIntObject) . . element
ref. coun
ref. count
prev/next prev/next
element
element

Lower limit for the size in bytes (on a 64bit system), oversimplified:
8+8+8 (list) + 3%(8+8+8+8+8+8) (integer) = 168

"Technically" it's only 24 bytes of information if we see 1t as an array of integers
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YOUR BEST FRIEND AND WORST ENEMY:
GIL - Global Interpreter Lock

The GIL prevents parallel execution of (Python) bytecode

It is a very simple solution to memory safety (Python uses reference counting, which can cause
trouble with race conditions and deadlocks)

Even though Python has real threads, they never execute (byte)code at the same time
Context switching between threads creates overhead (the user cannot control thread-priority)
Threads perform pretty badly on CPU bound tasks

They do a great job speeding up 1/O heavy tasks

20



THREADS AND CPU BOUND TASKS

single thread:

>>> N = 100_000_0066
>>> def count(n):

while n != 0:
n -=1

>>> %time count(N)

CPU times: aSer 297 s, sys: 6.28 ms, total: 2.98 s
Wall time:( 2.98 s

SasEEReg

two threads:

>>> from threading import Thread

>>> def count_threaded(n):
t1 = Thread(target=count, args=(N/2,))
t2 = Thread(target=count, args=(N/2,))
t1.start()
t2.start()
t1.join()
t2.join()

>>> %time count_threaded(N)

CPU times: .18 s, sys: 15.3 ms, total: 3.19 s
Wall time: 3.22 s

N

This 1s probably not really what you expected..

21



THREADS FIGHTING FOR THE GIL

0S X: 4 threads on 1 CPU (Python 2.6)

3276800 6053600 53504900 3107200 1635849000 1 966800

Pixel = 32768 ticks | Acquired and running | Busy | Retry

By David M Beazley @PyCON'2010: http://dabeaz.com/GIL/gilvis
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http://dabeaz.com/GIL/gilvis

THREADS FIGHTING FOR THE GIL

0S X: 4 threads on 4 CPUs (Python 2.6)

1 S@992010 131003800 13180249800 13104000 13105600 131807208 131053800 1311049800

Plxel 16 ticks Acquired and running ‘ Busy ' Retry

By David M Beazley @PyCON'2010: http://dabeaz.com/GIL/gilvis
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OK, FOR EVERY SINGLE
OBJECT,
EXECUTION OF CODE...

COULDPYTHON EVER
WITHALL THOSE
SOFTWARE?




AND
TO "FAST" LANGL,’AGES LIKE

THOSE CAN THE /. AND
DO THE INTHE




A DUMB SPEED COMPARISON

Calculating the mean of 1000000 randomly generated numbers.

pure Python

>>> def mean(numbers):
return sum(numbers) / len(numbers)

>>> numbers = list(range(1_006_060))

>>> %timeit mean(numbers)

2.98 ms + 21.7 ps per loop (mean * std. dev. of 7 runs,

100 loops each)

NumPy (~16x faster)

>>> import numpy as np
>>> numbers = np.random.random(1_666_000)

>>> %timeit np.mean(numbers)
198 ps + 1.35 ps per loop (mean * std. dev. of 7 runs, 16,008 loops each)

Numba (~3x faster)

>>> ([@nb.njit
. def numba_mean(numbers):
s =0
N = len(numbers)
for i in range(N):
s += numbers[i]
return s/N

>>> numbers = np.random.random(1_666_600)

>>> %timeit numba_mean(numbers)

1.83 ms + 35.2 pus per loop (mean * std. dev. of 7 runs, 1 loop each)

Julia (~16x faster)

julia> numbers = rand(1_000_008);
julia> using BenchmarkTools

julia> @benchmark mean($numbers)
BenchmarkTools.Trial: 10008 samples with 1 evaluation.

Range (min ...max): 182.292 ps ...230.167 pys | GC (min ...max): 0.80% ...0.00%

Time (median): 183.166 ps . GC (medlan) 0.00%

Time (mean + o): 183.927 ps + 2.457 pus | GC (mean # 0.00% + 0.00%
182 ps Histogram: log(frequency) by time 195 ps <

Memory estimate: 8 bytes, allocs estimate: 6.
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CRAZY LLVM COMPILER OPTIMISATIONS

Summling up consecutive numbers from @ to N=100,000,000

pure Python NumPy (~75x faster)

e LD :i':pée-su"‘('\')‘ >>> np_numbers = np.arange(1, N+1, dtype=np.int64)
for i in range(1, N+1):
s += i >>> %timeit np.sum(np_numbers)
return s 38 ms + 27.8 ps per loop (mean + std. dev. of 7 runs, 18 loops each)

>>> %timeit simple_sum(N)

3.82 s + 56.6 ms per loop (mean * std. dev. of 7 runs, 1 loop each) Ju-lia (~15®@@®@®®X faster)

L S Sl m(N julia> @code_native debuginfo=:none simple_sum(1_006_006_008)
J unction s PR S ( ) .section __TEXT,__text,regular,pure_instructions

=9 : .
N umba ( ~3 Ll' @ @ @ @ @ @ X -F a S t e r ) ;Or‘ i€ 1:N :gllj;l?lj—vfgzi(ijz_zai‘;gié_‘slil;l_?BZS ; —— Begin function

s += 1 .p2align 2

= _julia_simple_sum_1625: ; Bjulia_simple_sum_1625
e gn2°nJ1tl (N) end .cfi_startproc
... def simple_sum(N): s ; %bb.0: ; %top
S =p8 end cmp x8, #1 s =1
: : : : b.1t  LBBB_2
for i in range(1, N+1): SHLPLCLEUL (generlc function with 1 methOd) ; %bb.1: ; %L18.preheader
S += i o ) bic x8, x8, xB8, asr #63
julia> @benchmark simple_sum(N) sub  x9, x8, #1 s =
return s BenchmarkTools.Trial: 16008 samples with 997 evaluations. sub x18, x8, #2 ;=2
Range (min ...max): 19.815 ns ...489.468 ns | GC (min ...max): 0.00% A L
Time (median): 19.267 ns . GC (median): 0.00% extr  x9, x9, x11, #1
>>> %timeit simple_sum(N) Time (mean + 0): 20.846 ns + 6.731 ns | GC (mean + 0): B.46% = add  x8, x9, x8, 1sl #1
b 8, x8, #1 ;=1
85.6 ns + 0.602 ns per loop (mean *+ std. dev. of 7 runs, 16,000,080 loops each) ,sizt e
LBBO_2:
I mov x0, #9
19 ns Histogram: log(frequency) by time 23.9 ns < ret

.cfi_endproc

: N*(N+1)/2 = 50@@@@@@5@@00@0@ Memory estimate: 16 bytes, allocs estimate: 1.
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"WHY WE CAN'T HAVE
NICE THINGS"




CLASSES TO STRUCTURE CODE

e Classes and cleverly designed class hierarchies make it easier to understand code, structure and architecture
o It's tempting to take "object-oriented" seriously and create a detailed model of your application
e The more fine-grained it gets, the bigger the impact on performance

o Imagine a neutrino detector which consists of PMTs to measure photons, each triggered signal represented by an
instance of the "Hit"-class:

>>> class Hit:
def __init__(self, pmt_id, time, tot, triggermask):
self.pmt_id = pmt_id
self.time = time

self.tot = tot
self.triggermask = triggermask




CLASSES TO STRUCTURE CODE

e Now imagine that a KM3NeT detector (the experiment | work on) produces

several thousands of hits per event, with a trigger rate of more than 200Hz

o It's certainly a bad idea to have an array of thousands of hits with instances of

this class due to the large overhead

>>> class Hit:
def __init__(self, pmt_id, time, tot, triggerm
self.pmt_id = pmt_id
self.time = time

self.tot = tot
self.triggermask = triggermask

>>> hits
[<__main__.

<_
<_
<_
<_
<__ _c
<_
<_
<_
<_
<_

11t
.Hit
.Hit
JHit
LHit
11t
(Hit
(Hit
.Hit
.H1it
.Hit

at
at

Bx’
Bx’
Bx’
Bx’
Bx’
Bx’
Bx’
Bx’
Bx’
Bx’
Bx’

B846e430>,
B8ha210606>,
B8422490>,
B8bdb66ab>,
B85d6h8B>,
B85d61cB>,
B8c366a0>,
B8c36850>,
B8c36460>,
B8c360/06>,
B8c362hB>,
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STRUCT OF ARRAYS VS5 ARRAY OF STRUCTS

o Instead of having an array of hits, use a single instance with multiple
arrays of the same size, one for each field

e NumPy offers the "recarray" functionality for convenient attribute access

>>> hit_dtype = np.dtype([("pmt_id", np.uint32), ("time", np.floaté4), ("tot", np.uint8), ("triggermask", np.uinté4)])
>>> hits = np.array([(1, 2, 3, 4), (5, 6, 7, 8), (9, 18, 11, 12)], dtype=hit_dtype).view(np.recarray)

>>> hits.time
array([ 2., 6., 18.])

>>> hits.tot
array([ 3, 7, 11], dtype=uint3)

>>> hits[2].time
10.0
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STRUCT OF ARRAYS VS5 ARRAY OF STRUCTS

e Instead of having an array of hits, use a single instance with multiple arrays of the same size, one for each
field

e NumPy offers the "recarray" functionality for convenient attribute access

e Similar to the way "Panda DataFrames" work (columns)
>>> hit_dtype = np.dtype([("pmt_id", np.uint32), ("time", np.floaté4), ("tot", np.uint8), ("triggermask", np.uinté4)])
>>> hits = np.array([(1, 2, 3, 4), (b, 6, 7, 8), (9, 10, 11, 12)], dtype=hit_dtype).view(np.recarray)

>>> hits.time
array([ 2., 6., 18.])

>>> hits.tot O 0.0
arrav([ 3, 7, 111, dtype-uints) $(SIGNATURES) JUIIa

Return only triggered hits.

>>> hits[2].time .

16.9 ~triggered(hits::Vector{T}) where {T<:AbstractHit} = filter(h->h.trigger_mask > 0, hits)

32
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%5 NumPy

"NUMERIC" IN 1995, "NUMPY" IN 2006 (JUST KICKED IN WHEN | STARTED STUDYING PHYSICS)



NUMPY

NumPy is the fundamental package for scientific computing with
Python.

- gives us a powerful N-dimensional array object: ndarray

- broadcasting functions
- tools for integrating C/C++ and Fortran
- linear algebra, Fourier transform and random number capabilities

- most of the scientific libraries build upon NumPy

34



NUMPY: ndarray

>>> a = np.arange(6) >>> a.dtype
dtype('inté4")

>>> g

array([8, 1, 2, 3, 4, 5]) ;» a.ndim

oo -

Contiguous array in memory with a fixed type,
no poilnter madness'!

C/Fortran compatible memory layout,
so they can be passed to those
without any further efforts.



NUMPY: ARRAY OPERATIONS AND ufuncs

a * 23

array([ 0, 23, 46, 63, 232, 115]) easy and 1intuitive

element-wise
operations
a**a

array (| 1, 1, 4, 27, 256, 3125])

a ufunc, which can operate both on scalars and arrays (element-wise)

np.exp(a)

array ([ 1. / 2.71828183, 7.3890561 , 20.08553692,
54.59815003, 148.4131591 ])

36



RESHAPING ARRAYS

a
a

array([0, 1,

HEEEEE

al0]

a.reshape(2,

array([[0, 1,
[3, 4,

3)

2],
>11)

= np.arange(6)

2,

ndim: 1
3, 4, 5y Shape: (0,)

al1]

No rearrangement of the elements 1n memory
but setting the iterator limits internally!

37



RESHAPING ARRAYS IS CHEAP

>>> 3 = np.arange(10_000_600)

38



OK, ALL FINE,
TO RULE THEM ALL?



"HIDDEN" ALLOCATIONS

import resource
import sys
import numpy as np

def peak_memory usage():

def

"""Return peak memory usage in MB"""
mem = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
factor_mb = 1 / 1024
if sys.platform == "darwin':
factor_mb = 1 / (1024 % 1024)
return mem x factor_mb

main():
print(f"AlLL libraries loaded: {peak_memory_usage()} MB")
N=1 000 000

a = np.random.rand(N)
print(f"'a' allocated: {peak_memory_usage()} MB")

b = np.random.random(N)
print(f"'b' allocated: {peak_memory_usage()} MB")

C = 2%a + 3xb
print(f"'c' calculated: {peak_memory_usage()} MB")

if _name__ == "_main__":

main()

tamasgal@silentbox:tmp/missing_python_intro
00:16:38 > python3 hidden_allocations.py

11 libraries loaded: 28.578125 MB

a' allocated: 36.28125 MB

'b' allocated: 43.921875 MB

'c' calculated: 67.59375 MB

= > NN\

1000000 float64s are 8 MB
+8 MB after "a" 1s allocated

+8 MB after "b" 1is allocated
+24 MB = 8+8+8 MB after "c" 1is calculated

40



AVOIDING UNNEEDED ALLOCATIONS

import resource
import sys
import numpy as np

def peak_memory_usage():
""YUReturn peak memory usage in MB"""
mem = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
factor_ mb =1 / 1024
if sys.platform == "darwin":
factor mb =1 / (1024 x 1024)
return mem x factor_mb

def main():
print(f"All libraries loaded: {peak_memory_usage()} MB")

N =1_000_000

a = np.random.rand(N)
print(f"'a' allocated: {peak_memory_usage()} MB")

b = np.random. random(N)
print(f"'b' allocated: {peak_memory_usage()} MB")

np.multiply(a, 2, out=a)
print(f"'2xa' calculated: {peak_memory_usage()} MB")

np.multiply(b, 3, out=b)
print(f"'3%b' calculated: {peak_memory_usage()} MB")

= np.add(a, b)
print(f"'c' calculated: {peak_memory_usage()} MB")

if _name__ == "__main__":
main ()

~ tamasgal@silentbox:tmp/missing_python_intro
~ 14:53:23 > python3 numpy_out.py

All libraries loaded: 28.763125 MB

'a' allocated: 36.421875 MB

'b' allocated: 44.8625 MB

'2*a' calculated: 44.0625 MB

'3*h' calculated: 44.0625 MB

'c' calculated: 51.763125 MB

Reusing a and b with "out="

a=a+b vs. np.add(a, b, out=a)

Only a single 8 MB allocation is needed for ¢
(mutating the a and b!)

41



MEMORY AND PERFORMANCE PROBLEMS

e The code may work for small sample files

e Quickly escalates the peak memory usage if not handled with care
e Users blindly perform chains of transformations

o Trigger redundant loops instead using kernels and a single loop

e Unnecessary memory allocations for temporary data

e Pandas e.g. uses NumPy behind the scenes and is a constant source of
scaling issues (hello Pandas concat/append/join/etc.)

42



MASKING/SLICING IS THE ROOT OF ALL EVIL

e Masks are often used in NumPy to reduce data

o If Python loops were fast, we could simply iterate through hits (array of structs) and select them based
on a condition => minimal memory footprint, single loop

o Potential extraloops and allocations which might blow the memory
o Instead, masks are tempting due do the nice and easy syntactic sugar
REES RO 3 )3 IES R
nits.time < 155667)

nits.time > 155000 )
n1ts.triggermask =

mask =

\

\
xFEE0101)

RN AN TN AT

selected hits = hits[mask]
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NUMEXPR

ROUTINES FOR THE FAST EVALUATION OF ARRAY EXPRESSIONS ELEMENT-WISE
BY USING A VECTOR-BASED VIRTUAL MACHINE.




NUMEXPR USAGE EXAMPLE

import numpy as np
import numexpr as ne

a
b

np.arange(5)
np.linspace(0, 2, 5)

ne.evaluate("a*x2 + 3%b")

v e Bty R T B e
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NUMEXPR SPEED-UP

a = np.random.random(1000000)

NumPy :
2 * a**¥3 - 4 % a**¥5 + 6 * np.log(a) 82.4 ms * 1.88 ms per loop

Numexpr with 4 threads:
ne.set num threads() /.85 ms £ 103 ps per loop

ne.evaluate("2 * a**3 - 4 * a**x5 + 6 * log(a)")

~10x faster (with 4 threads)
...minimal memory footprint
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NUMEXPR - SUPPORTED OPERATORS

e Logical operators: &, |, ~

e Comparison operators:
ST ST e, <

e Unary arithmetic operators: -

e Binary arithmetic operators:
+' Y/ *' ’ **' %' <L, >
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NUMEXPR - SUPPORTED FUNCTIONS

where(bool, numberl, number2): number -- number1 if the bool condition is true, number2 otherwise.
{sin,cos,tan}(float|complex): floatlcomplex -- trigonometric sine, cosine or tangent.
{arcsin,arccos,arctan}(float|complex): floatlcomplex -- trigonometric inverse sine, cosine or tangent.
arctan2(floatl, float2): float -- trigonometric inverse tangent of float1/float2.
{sinh,cosh,tanh}(float|complex): float|complex -- hyperbolic sine, cosine or tangent.
{arcsinh,arccosh,arctanh}(float|complex): float|complex -- hyperbolic inverse sine, cosine or tangent.
{log,log10,loglp}(float|complex): float|complex -- natural, base-10 and log(1+x) logarithms.
{exp,expm1}(float|complex): floatlcomplex -- exponential and exponential minus one.
sqrt(float|complex): float|complex -- square root.

abs(float|complex): float|complex -- absolute value.

conj(complex): complex -- conjugate value.

{real,imag}(complex): float -- real or imaginary part of complex.

complex(float, float): complex -- complex from real and imaginary parts.

contains(str, str): bool -- returns True for every string in op1 that contains op2 .

sum(number, axis=None): Sum of array elements over a given axis. Negative axis are not supported.

prod(number, axis=None): Product of array elements over a given axis. Negative axis are not supported.



AVOIDING EXTRA ALLOCATIONS WITH NUMEXPR

import resource
import sys

import numexpr as ne
import numpy as np

def

def

peak_memory_usage():
"""Return peak memory usage in MB"""
mem = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
factor_mb = 1 / 1024
if sys.platform == "darwin':
factor_mb = 1 / (1024 x 1024)
return mem * factor_mb

main():
print(f"ALL libraries loaded: {peak_memory_usage()} MB")
N =1_000_000

a = np.random.rand(N)
print(f"'a' allocated: {peak_memory_usage()} MB")

b = np.random.random(N)
print(f"'b' allocated: {peak_memory_usage()} MB")

¢ = ne.evaluate("2xa + 3xb")
print(f"'c' calculated: {peak_memory_usage()} MB")

if _name__ == "_main__":

main()

% tamasgal@silentbox:tmp/missing_python_intro
7 80:37:25 > python3 numexpr_example.py
All libraries loaded: 29.408625 MB

a' allocated: 37.189375 MB
'b' allocated: 44.75 MB
'c' calculated: 52.59375 MB

Only a single 8 MB allocation
Is needed for c
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BY JIM PIVARSKI (SCIKIT-HEP)




AWKARD ARRAY

MOTIVATION

e NumPy arrays are rectangular tables or tensors: cannot
express variable-length structures

o Tree-like data (very common in HEP) is difficult to express with
NumPy arrays -- in an efficient way

e Speed and performance are crucial

e Easy to use and interactive interfaces for commonly used
operations like cuts and aggregations
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AWKARD ARRAY

Written in Python and C++

Has Numba support to take it to the next
level!

Supports arbitrary tree representations with
as many jagged/ragged structures as you
need

Offers lots of functions to work with ragged/
jagged data

arr = ak.Array((L, , 1, L, 1, [, ,, 1))

arr
<Array [[1, 2, 3], [4, 5], [6, 7, 8, 9]] type='3 * var * int64'>

arr[:, ]
<Array [1, 4, 6] type='3 * inté4'>

ak.mean(arr, axis= )
<Array [2, 4.5, 7.5] type='3 * ?floaté4'>
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AWKARD ARRAY

All kinds of multiply nested structures are understood and "type stable”

Allows fancy indexing over multiple nested elements

Database-like operations 1
2 - arr = ak.Array([( 0o, 1), ( ) R ( , )1

arr

Feels like Pandas, with awkwardly jagged arrays 3 <Array [(True, 1), (False, 3), (False, 9)] type='3 * (bool, int64)'>

arr = ak.Array([{

arr

<Array [{pos_x: [3, 45, 65, ... pos_y: [5, 6]}] type="'2 * {"pos_x": var * inté4,...'>

arr.pos_x
<Array [[3, 45, 65], [1, 3]] type='2 * var * int64'>




AWKWARD ARRAY

e A very nice introduction by Jim himself (just search for "awkward array" on YouTube)

collection 1 collection 2 derived collection

event 1 1(2](]3 l”il L|J1

event2 |1][2]|[3]|4] |1} —

, 1H1H1H1]
event3 |1 on
event4 [1/[2 [1][2] L‘ljf-’ 2 231

Some libraries™ can represent arrays of unequal-length arrays,
known as “jagged” or “ragged’ arrays.
*Apache Arrow, XND, TensorFlow, Zarr (genetics), and ROOT (particle physics)

17 / 43

e https://ww.youtube.com/watch?v=2NxWpU7NArk
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WHEN THINGS ARE GETTING
THAN

2*A + 3*B




THE JIT (LLVM) COMPILER FOR PYTHON



NUMBA

Numba is a compiler for Python array and numerical functions that gives you the power to speed up
code written directly in Python.

e uses LLVM to boil down pure Python code to JIT optimised machine code
e Only accelerates selected functions decorated by yourself
e native code generation for CPU (default) and GPU

e integration with the Python scientific software stack (thanks to NumPy)

e runs side by side with regular Python code or third-party C extensions and libraries
e great CUDA support

e N-core scalability by releasing the GIL (beware: no protection from race conditions!)
e create NumPy ufuncs with the @[ gu]vectorize decorator(s)

e unfortunately: limited support of data structures
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FROM SOURCE TO RUNTIME

source bytecode

foo.py compiller foo.pyc interpreter

Control flow graph Data flow graph

Typed ,
Nu>r/TF1)ba R Lowering LL\/M ‘R
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NUMBA JIT-EXAMPLE

numbers = np.arange(1000000).reshape(2500, 400)

def sum2d(arr): @nb.j1t
M, N = arr.shape def sum2d_jit(arr):
result = 0.0 M, N = arr.shape
for 1 1n range(M): result = 0.0
for 3 1n range(N): for 1 1n range(M):
result += arr[1i,]] for 3 1n range(N):
return result result += arr[1i,]]

return result

289 ms £ 3.0 ms per loop .13 ms £ 42.6 us per loop

~135x faster, with a single line of code
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NUMBA VECTORIZE-EXAMPLE

a = np.arange(1000000, dtype='f8')
b = np.arange(1000000, dtype='f8') + 23

NumPy :

np.abs(a - b) / (np.abs(a) + np.abs(b)) 23 ms * 845 pus per loop

Numba gvectorize:

anb.vectorize
def nb_rel diff(a, b):
return abs(a - b) / (abs(a) + abs(b))

rel diff(a, b) 3.56 ms +* 43.2 pus per loop

~BXx faster
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PYTHON IS YOUR
EVERYDAY HAMMER




IF YOUAREHOLDINGA
HAMMER, EVERYTHING
LOOKSLIKEA




CHOOSE YOUR TOOLS WITH CARE

e Python is a powerful language and it can be used for many different tasks
o However: it's easy to write code with horrible performance
e It's even easier to write code which simply does not scale

e In contrary to Python's expressiveness, high-performant Python code is often neither nicely readable, nor
easily maintainable

o High-level Python APIs can be very useful but usually act as a barrier

o Low-level development requires multiple languages and technology stacks, which increase complexity
greatly

e You have to be more than a Python expert to write high-performant "Python code"

e Keep all this in mind and give Julia a go for scientific computing
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PERSONAL REMARK

e | am a big fan of Julia (surprise!)
o The Julialanguage is built for scientific computing, it "feels like Python and runs like C".

e No fear of writing for-loops

@
. : : o Q0
e Define and use your own types and type hierarchy to create expressive code J u I a

o Interactive prototyping, just like in Python with a REPL

o Even naively written code is often very close to optimal performance

e You can still use your Jupyter-notebooks (fun fact: "Ju" in Jupyter stands for Julia)

o Easy package management and deployment (you can easily set up your own package registry)

e Reproducible environments are a built-in feature (crucial for reproducible science)
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o

, tamasgal@silentbox:NeRCA.jl P use-km3io-jl @ ® % v1.8.5
7 11:36:084 > julia

Activating project at “~/Dev/NeRCA.jl1°

https://juliapackages.com/

; ) | Documentation: https://docs.julialang.org
. ) Q) () |
% I35 |l —— - | Type "?" for help, "]?" for Pkg help.
julia IR
1 I_l || (Il | | Version 1.8.5 (2623-01-88)
I\l ZIZINZZ' 2] | Official https://julialang.org/ release
CATEGORIES |/ |
Mathematics julia> |

Matrix Theory

Graph Theory This should be used to transfer the trigger information to the

*vterm*<4> - Doom Emacs

time::Floatb4

My own Emacs setup

end

ruct NoRecoTrack<:AbstractRecoTrack end

mutable struct SingleDUParams
d::Floatb4 ) File Edit Selection View Go Run Terminal Help @ run_reconstruction.jl - workspace (Workspace) - Visual Studio Code
.. /
t::Floato64 JULIA s run_reconstruction.jl @ s analyze results.jl M S plo D~ @ - = 4
z::Floatb4 1

~ WORKSPACE CEIReconstruction ) scripts > iodopyridine > & run_reconstruction.jl >

dZ: . F108t64 hydrogen =1

carbonA = 2

> [@) ans DataFrame

> @ attribute_carbon_pairs attribut...

te::Floatb4 i } carbonB = 3
end # carbona 2 nitrogen = 4
end $ carbonB 3 iodine = 5 w o - - - PR
[ ] carbons2d Matrix{Float64} ... ] EA AN B Mo
struct ROyFit > [ ] charges Matrix{Int32} with 5x1... for k in axes(momenta, 3)
sdp::SingleDUParams [ ] dims UnitRange{Int6 momenta[:, :, k] = reframe(momental:,
sdp_initial::SingleD > [ ] elems e : . . .

.. e s ~d e Ve e
Q::Floatb4 [] folder N ) full momenta = copy(momenta) ;
selected_hits::Vecto [] full_momenta Array{Float¢ end | 3x5x111280 Array{Float64, 3}:
mOdel 0o MOdOl > [] group HDF5.Group

] guess_params Vector{Float64}... include("cleanup data.jl") | v

[
snapshot hits from a DAQEvent. The triggered hits are a subset > [ ] guessE Matr
of the snapshot hits. [ ] guessp V
Math > (el h5file HDF5.File
4 hydrogen 1 begin bonsad = heat( cal1is o (%] Cherenkov Photon Yield ar X | = ORCA4 Single DU RBR-MC X
N e ) - caroons = ncatimomentall:Z, CarbonA, :j, mon
) X ) $ (SIGNATURES) Hi7 (L IEN G CANET IOV MEMLESEE § + 3 [ (] » ®m C » Code v
Numerlcal A o > [ ] ii UnitRange{Int64} with 2 detection unit
init . 4 . : ) . : S eeSernE SNE FEE®s o iodine 5 ¥ = Matrix{Float64}(I, 3n_atoms, 3n_atoms
p 52?'56P4 ) 22 function combine(snapshot_hits::Vector{KM3io.SnapshotHit}, triggered_hits::Vectc Performs the prefit alg@ [#]fold':e'b gﬂ::“ _ er;i)((gn Z:;;)}( e s
_ . e - triggermasks = Dict{Tuple{UInt8, Int32, Int32, UInt8}, Int64}() | - ot probe . l [41]: duplot(df, :x?; label="\$\\chi*2\$")
Numerical Li epoch:: Tepoch, for hit € triggered_hits function prefit(hits::Ve o Ioss_eSgL for (k, C) in enumerate(sim carbons) it @ ° °
.e 0 > [@ aver A . . [
n_0:: Number, triggermasks[(hit.channel_id, hit.dom_id, hit.t, hit.tot)] = hit.trigger N = length(hits) > DOCUMENTATION 1 = C.index [41]: 17 ® O
e_0:: Number, end D = \ PLOT NAVIGATOR 117s731:2:51.1 16 4 ®
Applled Mat < Numb enc — 8 guessX[ii, ii] = covars(C_gmm) [k] 15 o O @
L umober, = length(snapshot_hits) dir = [6.8, O Plot 43 11:45:54 AM Qe L e Camn ) L] 13 H s
0_0::Number, hits = sizehint!(Vector{Hit}(), n) pos = [8.8, , 0.0 Plot 42 11:45:54 AM DUTPUT  DEBUG CONSOLE  TERMINAL T o 9 8
Linear Algeb w_0:: Number, for hit in snapshot_hits 39 pes = [max(1, (h.to® Plot 41 11:45:54 AM L 18 - - s
M_0:: Number, channel_id = hit.channel_id Plot 40 11:45:52 AM S SN : ; < 9@ o o 4
. _ q . i 11:45:52 £ Info: nitia 1z1ng M, ausslans dlag covarilance 8
bStaP : Number dom—lq = hit.dom_id @inbounds for i < Il Plot 39 11.45.51 :: -means converged with 21 iterations (objv = 1.620860257 7 : : : :
Sparse Matri {Tepoch, T t = hit.t 1nbounds tor 1 i Plot 38 e Info: K-means with 5000 data points using 21 iteratior 6 @ o o o
P tot = hit.tot @inbounds for k Plot 37 11:45:50 AM 333.3 data points per parameter 3 : : : (O
trinnermack = net(trinnermacke (rchannel id dom id t+ +tnt) ) if 1 ==k Plot 36 11:45:50 AM SRRSO TLEED (DS CETE: 3 @ o o o
s Plot 35 11:45:49 AM ) . 2 ‘ . . .
: Some of the types have been truncated in the stacktrace
View more s Plot 34 LU L in the stack trace, evaluate ‘TruncatedStacktraces.VERBO : 3 .3 ‘1 g
Plot 33 11:45:47 AM : / I
n_ T(n_@) Plot 32 11:45:47 AM 5}??(% racf . detection unit
4545 2 op-level scope
H = Plot 31 11:45:45 AM . . .
File 10 e _ 1Ee‘g; Plot 30 11:45:45 AM o CEIReconstructio using CSV
o 1 e oL using Tables
0_ = T(0_0) Plot 29 11:45:44 AM julia> [] ing T et
- X P masterx C0l1t P ®0A0@S53 Git Graph Julia env: CEIReconstruction  -- INSERT - uS.‘!.ng izl ] A
Graphics W_ = T(w_0) using HDF5
M — T(M 0) - using NeRCA
- P 'd d b B t R' h d using StatsBase
bstar = T(bstar) I’OVI e y en0| |C ar using Optim
Al using LandauDistribution
153 clamp using Distributions: pdf, Normal
©clamp! (Function) using LaTexXStrings
Optimizatio :
P Qclamp ) ) o e ' . ' (FunCt}on) using PrettyTables
Q@cumulative_compile_timing This is an unexported symbol and will be explicitly imported. (Function)
Qcumulative_compile_time_ns This is an unexported symbol and will be explicitly imported. (Function) struct TimeResMinimiser <: Function
Supef Comp * g Y b E 5 timeresiduals::Vector{Float64}
bins
Biology
T(1)
Programming +T(1 / 2) * J2 * AE * AE

= k_2 * k_2
= -T(3 / 8) * J4 * AE * AE * AE * AE

- =12 « AFE «+ AFE +« AFE

44k B SatelliteToolbox/src/submodules/SGP4/sgp4_model.jl 153:9 10% 1929/41 o LF Julia (TS)

© 261

P master function (t::TimeResMinimiser) (p)

LA, Ly, Lo, GA, Gu, Go, offset = p

function TimeResMinimiser(timeresiduals::
limit = Int(round(At / 2))
bins = -limit:limit
t = filter(x->abs(x) < At / 2, timeresiduals)
h = fit(Histogram, t, bins)
new(h.weights, bins[1:end-1])

end

end

["] ORCA4 Single DU Timeres X

1.60
1.40 =

>

1.20

jupyter

Vector{T}; At=100) where 7

ol o s d L oftsel xS e
One of my Jupyter prototyping sessions
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“WITH GREAT POWER
COMES GREAT
RESPONSIBILITY"

- UNCLE BEN




A FINAL WORD ON GREEN CODING/COMPUTING

o IN HPC, Wwe Can €asl ly waste energy with inefficient Table 4. Normalized global results for Energy, Time, and

code Memory
Total
| n Energy Time Mb
o It's just a matter of a few keystrokes to launch e B D [
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
thousands of computing jobs oy = | | Bey | [ e
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
: e (c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
e It's also your responsibility to learn how to use these () Lisp 227 || @Pascal | 302 | | (Lisp 192
(c) Ocaml 2.40 (c) Ocaml 3.09 (c) Haskell 2.45
o 7 a . (c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
resources efficiently and with care © Swit 279 | | @ Lisp 340 | | (@ Swif 271
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 (c) Swift 4.20 (c) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
X source secs mem gz cpu secs cpu load How many times slower? (i) Dart 3.83 (f’) F# _ 6.30 (i) Hack 3.34
1.0 Classic Fortran #3  0.71 10,984 638  2.84  100% 98% 98% 100% Bi0|p S + EF c o b o ® YE QF (¥) =5 () Javadcript | 16.92 (v) Racket 3-8
' = RS N - z 8223 3 9 5= O & (i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
1.0 Rust #7 0.72 11,128 932 2.84 100% 100% 100% 100% g 100 @) N :Hj, E 6 :u: n - S =0 8 8 V) Raikat 791 ) Racket 11.27 © Chapel 4.00
1.0 Rust #4 0.72 11,124 817 2.84 100% 100% 100% 98% v § 9 CL) I_“ O o _*+*¢& 2Y %) o B (i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25
1.0 Rust #5 0.72 11,124 1055 2.84 100% 100% 100% 100% § gg = C B T " u T oW T N i (i) Hack 24.02 (i) PHP 27.64 (1) JaVﬁSCTiPt 4.59
1.0 Chapel #2 0.73 10,948 335 2.89  100% 98% 98% 98% E 2 < . r O (i) PHP 29.30 (‘V) Erlang 36.71 (i) TypeScript 4.69
- o 2 1o T ‘ - (v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
1.5 Julia #4 1.09 185,772 429 3.67 99% 78% 79% 79% a o] .I. ], (i) Lua 45 98 i) TypeScript 46.20 (i) Perl 6.62
1.8 Julia #2 1.26 192,016 370 4.14 76% 76% 76% 98% TE) 5 . T T T I T = T (i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
2.0 Go #4 1.42 11,244 548 5.67 99% 100% 99% 99% © 3+ T i P g =69 9T - [ () rert ————-6579 | i (v) Erlang 7.20
(@)} . - N\ /:

2.0 Swift #3 1.43 11,344 601 5.68  100% 100% 99% 99% g_ 1| llll L] I l J. 1 1 l L 1 ’Cf\‘g‘ (f) ython 75-8 (f) Python 1~ | (f) Dall;t 189.6844

2.0 Cgcc #3 1.44 11,392 463 5.70 100% 99% 99% 99% benchmarks game 01 Mar 2023 ub4q I —— T BEREESRE = (i) Jru y :

https://benchmarksgame-team.pages.debian.net Source: Energy Efficiency across Programming Languages, SLE'17 68




THANKS

"PEOPLE ARE VERY OPEN-MINDED
ABOUT NEW THINGS — AS LONG
AS THEY'RE EXACTLY LIKE THE OLD ONES."

- CHARLES F. KETTERING



