
THE MISSING

PYTHON INTRODUCTION

FOR SCIENTISTS
TAMAS GAL – ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS (ECAP)

WHO AM I?

2

My desk in 2003

My GS

My DIY modular synth

• Tamás Gál, born 1985 in Debrecen (Hungary)

• Astroparticle physicist at the 

Erlangen Centre for Astroparticle Physics (ECAP) working on the
KM3NeT neutrino detector experiment and open science/data

• Sysadmin (DevOps) at ECAP (including the ECAP and KM3NeT IT
services)

• Programming background:

• Coding enthusiast since ~1993

• First real application written in Amiga Basic 

(toilet manager, tons of GOTOs ;)

• Mostly Julia, Python, Rust, JavaScript and C/C++ for work

• Haskell for fun

• Earlier also Obj-C, Java, Perl, PHP, Delphi, MATLAB, whatsoever…

• Started with Python around 1998 (to replace Perl/Shell)

• Editor: Vim for ~25 years but switched to Emacs (EVIL mode) in 2020

• Other: ADV motorbikes, climbing, electronics, modular synths, DIY...

@tamasgal

DISCLAIMER

3

The following presentation contains
oversimplifications and blatant omissions
due to time constraints. The viewer may

also experience well-timed product
placements.

PYTHON

THE PYTHON PROGRAMMING LANGUAGE

• Interpreted high-level general-purpose programming language

• Object-oriented, procedural (imperative), functional, structured, reflective

• Dynamically-typed and garbage-collected

• "batteries included"

• Tries to avoid premature optimisation: move time-critical functions to
extension modules written in "faster" languages (like C or Fortran) when
necessary

5

THE ZEN OF PYTHON

>>> import this

The Zen of Python, by Tim Peters 
Beautiful is better than ugly. 
Explicit is better than implicit. 
Simple is better than complex. 
Complex is better than complicated. 
Flat is better than nested. 
Sparse is better than dense. 
Readability counts. 
Special cases aren't special enough to break the rules. 
Although practicality beats purity. 
Errors should never pass silently. 
Unless explicitly silenced. 
In the face of ambiguity, refuse the temptation to guess. 
There should be one-- and preferably only one --obvious way to do it. 
Although that way may not be obvious at first unless you're Dutch. 
Now is better than never. 
Although never is often better than *right* now. 
If the implementation is hard to explain, it's a bad idea. 
If the implementation is easy to explain, it may be a good idea. 
Namespaces are one honking great idea -- let's do more of those

6
xkcd.com/535

http://xkcd.com/535

POPULAR LANGUAGES

7

Python is the most popular language (according to TIOBE)!

...and has beaten Java and C++! Btw. Julia is #33 ;)

Most loved languages https://survey.stackoverflow.co/2022

https://survey.stackoverflow.co/2022

YOUR JOURNEY THROUGH PYTHON? 
(JUST A VERY ROUGH GUESS, NOT A MEAN GAME)

• Have you ever launched the Python interpreter?

• Wrote for/while-loops or if/else statements?

• …your own functions?

• …classes?

• …list/dict/set comprehensions?

• Do you know what a generator is?

• Have you ever implemented a decorator?

• …a metaclass?

• …a C-extension?

• Do you know and can you explain the output of the following line for Python?

print(5 is 7 - 2, 300 is 302 - 2)

Explorer

Intermediate

Advanced

I am the BDFL 
of Python

Novice

8

Raise your hand and keep it up until you answer a question with “no” (means you're out).

ANSWER TO

print(5 is 7 - 2, 300 is 302 - 2)

Python 2.7: True, False

Python 3.6: True, False

Python 3.7: True, True

Python 3.8: True, True, 
and warnings...

Python 3.9: True, True, 
and warnings...

Python 3.10: True, True, 
and warnings...

9

EXPLANATION OF

print(5 is 7 - 2, 300 is 302 - 2)

PyObject* PyLong_FromLong(long v)

Return value: New reference.

Return a new PyLongObject object from v,

or NULL on failure.

10

cpython/Include/internal/pycore_interp.h

The current implementation keeps an array of integer objects for all integers between -5 and 256,
when you create an int in that range you actually just get back a reference to the existing object.

In Python 3.7+ the constant folding is moved from the peephole optimiser to the new AST
optimiser, which effectively avoids the extra allocation.

(https://github.com/python/cpython/commit/7ea143ae795a9fd57eaccf490d316bdc13ee9065)

"is" is an operator which checks if two objects are identical: "x is y" is true iff x and y are pointing
to the same object.

https://github.com/python/cpython
https://github.com/python/cpython/tree/main/Include
https://github.com/python/cpython/tree/main/Include/internal
https://github.com/python/cpython/commit/7ea143ae795a9fd57eaccf490d316bdc13ee9065

WHY IS PYTHON SO POPULAR (FOR SCIENCE)?

• Ease of use – scientists don't know/want how to program

• Readable code – source code is more often read than written

• Interactive workflow

• Lots of scientific libraries (and machine learning is everywhere)

• Batteries included: tons of (built-in) useful supplementary functionalities

• General purpose language so that scientists can 
focus on a single language to rule them all...

• ...can they?
11

PERFORMANCE OF LANGUAGES

12

Microbenchmarks from https://julialang.org/benchmarks/
Execution time

https://julialang.org/benchmarks/

TO UNDERSTAND THE PERFORMANCE ISSUES

PYTHON INTERNALS

CPYTHON
• Python (in contrast to other languages like C, Julia) has no formal specification

• The Python Language Reference is written in English: https://docs.python.org/3.9/reference

• CPython is the reference implementation which contains implementation details which are
not part of the language (e.g. GC with reference counting)

• Python is defined partly by the Python Language Reference and its main implementation
CPython

• There are several other implementations: PyPy, Jython (stuck at Python 2.7), IronPython (2.7
and 3.4), etc.

• From now on, with "Python" we refer to CPython

14

https://docs.python.org/3.9/reference

FROM SOURCE TO RUNTIME

foo.py compiler interpreter runtimefoo.pyc

bytecodesource

15
Recommended reading (Victor Skvortsov - Python behind the scenes): https://tenthousandmeters.com/blog/python-behind-the-scenes-1-how-the-cpython-vm-works/

PYTHON BYTECODE

16

import dis; dis.dis(compile('print(5 is 7 - 2, 300 is 302 - 2)', '', 'single'))

 1 0 LOAD_NAME 0 (print)

 2 LOAD_CONST 0 (5)

 4 LOAD_CONST 0 (5)

 6 COMPARE_OP 8 (is)

 8 LOAD_CONST 1 (300)

 10 LOAD_CONST 1 (300)

 12 COMPARE_OP 8 (is)

 14 CALL_FUNCTION 2

 16 PRINT_EXPR

 18 LOAD_CONST 2 (None)

 20 RETURN_VALUE

import dis; dis.dis(compile('print(5 is 7 - 2, 300 is 302 - 2)', '', 'single'))

 1 0 LOAD_NAME 0 (print)

 2 LOAD_CONST 0 (5)

 4 LOAD_CONST 6 (5)

 6 COMPARE_OP 8 (is)

 8 LOAD_CONST 3 (300)

 10 LOAD_CONST 7 (300)

 12 COMPARE_OP 8 (is)

 14 CALL_FUNCTION 2

 16 PRINT_EXPR

 18 LOAD_CONST 5 (None)

 20 RETURN_VALUE

Py
th

on
 3

.6

Tr
ue

,
Fa

ls
e

Py
th

on
 3

.7

Tr
ue

,
Tr

ue
co_consts[i]

co_consts[i]

print(5 is 7 - 2, 300 is 302 - 2)

THE TYPE OF A PyObject

“An object has a ‘type’ that determines what it represents and
what kind of data it contains. 
An object’s type is fixed when it is created. Types themselves are
represented as objects. The type itself has a type pointer
pointing to the object representing the type ‘type’, which
contains a pointer to itself!” 
 — object.h

17

DATA IN PYTHON

>>> dir(42)

['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__',
'__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__',
'__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__',
'__getnewargs__', '__gt__', '__hash__', '__index__', '__init__',
'__init_subclass__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__',
'__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__',
'__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__',
'__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__',
'__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__',
'__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__',
'__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'bit_length',
'conjugate', 'denominator', 'from_bytes', 'imag', 'numerator', 'real',
'to_bytes']

PyObject

ref. 
counttype

PyIntObject

type ref. 
count

field attr.

field attr.attr.

type
ref. 

count

42

structural 
subtype

PyTypeObject  
(_typeobject)

18

• Every piece of data is a PyObject

DATA IN PYTHON

19

arr = [23, 5, 42]

PyObject  
(PyListObject)

PyObject  
(PyIntObject)

PyObject  
(PyIntObject)

PyObject  
(PyIntObject)

ref. count

ref. count ref. count

ref. count

prev/next  
element

prev/next  
element

prev/next  
element

• Lower limit for the size in bytes (on a 64bit system), oversimplified: 

8+8+8 (list) + 3*(8+8+8+8+8+8) (integer) = 168

• "Technically" it's only 24 bytes of information if we see it as an array of integers

YOUR BEST FRIEND AND WORST ENEMY:

GIL - Global Interpreter Lock

• The GIL prevents parallel execution of (Python) bytecode

• It is a very simple solution to memory safety (Python uses reference counting, which can cause
trouble with race conditions and deadlocks)

• Even though Python has real threads, they never execute (byte)code at the same time

• Context switching between threads creates overhead (the user cannot control thread-priority)

• Threads perform pretty badly on CPU bound tasks

• They do a great job speeding up I/O heavy tasks

20

single thread:

THREADS AND CPU BOUND TASKS

This is probably not really what you expected…

two threads:

21

THREADS FIGHTING FOR THE GIL

22

By David M Beazley @PyCON'2010: http://dabeaz.com/GIL/gilvis

OS X: 4 threads on 1 CPU (Python 2.6)

http://dabeaz.com/GIL/gilvis

THREADS FIGHTING FOR THE GIL

23

By David M Beazley @PyCON'2010: http://dabeaz.com/GIL/gilvis

OS X: 4 threads on 4 CPUs (Python 2.6)

http://dabeaz.com/GIL/gilvis

OK, HUGE OVERHEAD FOR EVERY SINGLE
OBJECT, NO REAL PARALLEL
EXECUTION OF CODE...

HOW COULD PYTHON EVER COMPETE
WITH ALL THOSE SUPER FAST 
C/C++/FORTRAN SOFTWARE?

C-EXTENSIONS AND INTERFACES
TO "FAST" LANGUAGES LIKE

 C/C++/FORTRAN!

THOSE CAN RELEASE THE GIL AND
DO THE HEAVY STUFF IN THE
BACKGROUND.

A DUMB SPEED COMPARISON

26

Calculating the mean of 1000000 randomly generated numbers.

pure Python NumPy (~16x faster)

Numba (~3x faster) Julia (~16x faster)

CRAZY LLVM COMPILER OPTIMISATIONS

27

Summing up consecutive numbers from 0 to N=100,000,000

pure Python NumPy (~75x faster)

Numba (~34000000x faster)

Julia (~150000000x faster)

=> N*(N+1)/2 = 5000000050000000

AKA VECTORISE FOR YOUR LIFE!

"WHY WE CAN'T HAVE
NICE THINGS"

CLASSES TO STRUCTURE CODE
• Classes and cleverly designed class hierarchies make it easier to understand code, structure and architecture

• It's tempting to take "object-oriented" seriously and create a detailed model of your application

• The more fine-grained it gets, the bigger the impact on performance

• Imagine a neutrino detector which consists of PMTs to measure photons, each triggered signal represented by an
instance of the "Hit"-class:

29

CLASSES TO STRUCTURE CODE
• Now imagine that a KM3NeT detector (the experiment I work on) produces

several thousands of hits per event, with a trigger rate of more than 200Hz

• It's certainly a bad idea to have an array of thousands of hits with instances of
this class due to the large overhead

30

STRUCT OF ARRAYS VS ARRAY OF STRUCTS

• Instead of having an array of hits, use a single instance with multiple
arrays of the same size, one for each field

• NumPy offers the "recarray" functionality for convenient attribute access

31

STRUCT OF ARRAYS VS ARRAY OF STRUCTS
• Instead of having an array of hits, use a single instance with multiple arrays of the same size, one for each
field

• NumPy offers the "recarray" functionality for convenient attribute access

• Similar to the way "Panda DataFrames" work (columns)

32

"NUMERIC" IN 1995, "NUMPY" IN 2006 (JUST KICKED IN WHEN I STARTED STUDYING PHYSICS)

NUMPY
NumPy is the fundamental package for scientific computing with
Python.

• gives us a powerful N-dimensional array object: ndarray

• broadcasting functions

• tools for integrating C/C++ and Fortran

• linear algebra, Fourier transform and random number capabilities

• most of the scientific libraries build upon NumPy

34

NUMPY: ndarray

35

4 5 61 2 3
Contiguous array in memory with a fixed type, 

no pointer madness!

C/Fortran compatible memory layout, 
so they can be passed to those 
without any further efforts.

NUMPY: ARRAY OPERATIONS AND ufuncs

36

easy and intuitive

element-wise 
operations

a ufunc, which can operate both on scalars and arrays (element-wise)

RESHAPING ARRAYS

ndim: 1
shape: (6,)

4 5 61 2 3

No rearrangement of the elements in memory

but setting the iterator limits internally!

37

a[0] a[1]

RESHAPING ARRAYS IS CHEAP

38

OK, ALL FINE, NUMPY
TO RULE THEM ALL?

NO...

"HIDDEN" ALLOCATIONS

40

1000000 float64s are 8 MB

 +8 MB after "a" is allocated

 +8 MB after "b" is allocated

+24 MB = 8+8+8 MB after "c" is calculated

c = 2*a + 3*b

AVOIDING UNNEEDED ALLOCATIONS

41

Reusing a and b with "out="

Only a single 8 MB allocation is needed for c

(mutating the a and b!)

a = a + b vs. np.add(a, b, out=a)

MEMORY AND PERFORMANCE PROBLEMS

42

• The code may work for small sample files

• Quickly escalates the peak memory usage if not handled with care

• Users blindly perform chains of transformations

• Trigger redundant loops instead using kernels and a single loop

• Unnecessary memory allocations for temporary data

• Pandas e.g. uses NumPy behind the scenes and is a constant source of
scaling issues (hello Pandas concat/append/join/etc.)

MASKING/SLICING IS THE ROOT OF ALL EVIL

43

• Masks are often used in NumPy to reduce data

• If Python loops were fast, we could simply iterate through hits (array of structs) and select them based
on a condition => minimal memory footprint, single loop

• Potential extra loops and allocations which might blow the memory

• Instead, masks are tempting due do the nice and easy syntactic sugar

mask = (hits.tot > 23) & \ 
 (hits.time < 155667) & \ 
 (hits.time > 155000) & \ 
 (hits.triggermask == 0xFEE0101)

selected_hits = hits[mask]

(FOR EXAMPLE X EVENTS INSTEAD OF FILE-BY-FILE)

WRITE YOUR CODE SO THAT IT
ITERATES THROUGH A
CONFIGURABLE SIZE OF CHUNKS!

ROUTINES FOR THE FAST EVALUATION OF ARRAY EXPRESSIONS ELEMENT-WISE 
BY USING A VECTOR-BASED VIRTUAL MACHINE.

NUMEXPR

NUMEXPR USAGE EXAMPLE

import numpy as np

import numexpr as ne

a = np.arange(5)

b = np.linspace(0, 2, 5)

ne.evaluate("a**2 + 3*b”)

array([0. , 2.5, 7. , 13.5, 22.])

46

NUMEXPR SPEED-UP

2 * a**3 - 4 * a**5 + 6 * np.log(a)

a = np.random.random(1000000)

82.4 ms ± 1.88 ms per loop

7.85 ms ± 103 µs per loop

~10x faster (with 4 threads)

...minimal memory footprint 47

ne.set_num_threads(4)

ne.evaluate("2 * a**3 - 4 * a**5 + 6 * log(a)")

NumPy:

Numexpr with 4 threads:

NUMEXPR - SUPPORTED OPERATORS

• Logical operators: &, |, ~

• Comparison operators: 
<, <=, ==, !=, >=, >

• Unary arithmetic operators: -

• Binary arithmetic operators: 
+, -, *, /, **, %, <<, >>

48

NUMEXPR - SUPPORTED FUNCTIONS

• where(bool, number1, number2): number -- number1 if the bool condition is true, number2 otherwise.

• {sin,cos,tan}(float|complex): float|complex -- trigonometric sine, cosine or tangent.

• {arcsin,arccos,arctan}(float|complex): float|complex -- trigonometric inverse sine, cosine or tangent.

• arctan2(float1, float2): float -- trigonometric inverse tangent of float1/float2.

• {sinh,cosh,tanh}(float|complex): float|complex -- hyperbolic sine, cosine or tangent.

• {arcsinh,arccosh,arctanh}(float|complex): float|complex -- hyperbolic inverse sine, cosine or tangent.

• {log,log10,log1p}(float|complex): float|complex -- natural, base-10 and log(1+x) logarithms.

• {exp,expm1}(float|complex): float|complex -- exponential and exponential minus one.

• sqrt(float|complex): float|complex -- square root.

• abs(float|complex): float|complex -- absolute value.

• conj(complex): complex -- conjugate value.

• {real,imag}(complex): float -- real or imaginary part of complex.

• complex(float, float): complex -- complex from real and imaginary parts.

• contains(str, str): bool -- returns True for every string in `op1` that contains `op2`.

• sum(number, axis=None): Sum of array elements over a given axis. Negative axis are not supported.

• prod(number, axis=None): Product of array elements over a given axis. Negative axis are not supported.

49

AVOIDING EXTRA ALLOCATIONS WITH NUMEXPR

50

Only a single 8 MB allocation

is needed for c

BY JIM PIVARSKI (SCIKIT-HEP)

AWKARD ARRAY

MOTIVATION

• NumPy arrays are rectangular tables or tensors: cannot
express variable-length structures

• Tree-like data (very common in HEP) is difficult to express with
NumPy arrays -- in an efficient way

• Speed and performance are crucial

• Easy to use and interactive interfaces for commonly used
operations like cuts and aggregations

52

AWKARD ARRAY

• Written in Python and C++

• Has Numba support to take it to the next

level!

• Supports arbitrary tree representations with

as many jagged/ragged structures as you
need

• Offers lots of functions to work with ragged/
jagged data

53

AWKARD ARRAY
• All kinds of multiply nested structures are understood and "type stable"

• Allows fancy indexing over multiple nested elements

• Database-like operations

• Feels like Pandas, with awkwardly jagged arrays

54

AWKWARD ARRAY

• A very nice introduction by Jim himself (just search for "awkward array" on YouTube)

55
• https://www.youtube.com/watch?v=2NxWpU7NArk

https://www.youtube.com/watch?v=2NxWpU7NArk

WHEN THINGS ARE GETTING
MORE COMPLICATED THAN

2*A + 3*B

THE JIT (LLVM) COMPILER FOR PYTHON

NUMBA

NUMBA
Numba is a compiler for Python array and numerical functions that gives you the power to speed up
code written directly in Python.

• uses LLVM to boil down pure Python code to JIT optimised machine code

• only accelerates selected functions decorated by yourself

• native code generation for CPU (default) and GPU

• integration with the Python scientific software stack (thanks to NumPy)

• runs side by side with regular Python code or third-party C extensions and libraries

• great CUDA support

• N-core scalability by releasing the GIL (beware: no protection from race conditions!)

• create NumPy ufuncs with the @[gu]vectorize decorator(s)

• unfortunately: limited support of data structures

58

FROM SOURCE TO RUNTIME

foo.py foo.pyccompiler runtime

bytecodesource

59

Type inference
Typed

Numba IR

Control flow graph Data flow graph

Numba IR

bytecode

interpretation

Lowering LLVM IR

interpreter

Codegen via
LLVM

NUMBA JIT-EXAMPLE

def sum2d(arr):
 M, N = arr.shape
 result = 0.0
 for i in range(M):
 for j in range(N):
 result += arr[i,j]
 return result

@nb.jit
def sum2d_jit(arr):
 M, N = arr.shape
 result = 0.0
 for i in range(M):
 for j in range(N):
 result += arr[i,j]
 return result

numbers = np.arange(1000000).reshape(2500, 400)

289 ms ± 3.02 ms per loop 2.13 ms ± 42.6 µs per loop

~135x faster, with a single line of code
60

NUMBA VECTORIZE-EXAMPLE

np.abs(a - b) / (np.abs(a) + np.abs(b))

a = np.arange(1000000, dtype='f8')

b = np.arange(1000000, dtype='f8') + 23

23 ms ± 845 µs per loop

3.56 ms ± 43.2 µs per loop

~6x faster

61

@nb.vectorize

def nb_rel_diff(a, b):

 return abs(a - b) / (abs(a) + abs(b))

rel_diff(a, b)

NumPy:

Numba @vectorize:

PYTHON IS YOUR
EVERYDAY HAMMER

IF YOU ARE HOLDING A
HAMMER, EVERYTHING
LOOKS LIKE A NAIL

CHOOSE YOUR TOOLS WITH CARE
• Python is a powerful language and it can be used for many different tasks

• However: it's easy to write code with horrible performance

• It's even easier to write code which simply does not scale

• In contrary to Python's expressiveness, high-performant Python code is often neither nicely readable, nor
easily maintainable

• High-level Python APIs can be very useful but usually act as a barrier

• Low-level development requires multiple languages and technology stacks, which increase complexity
greatly

• You have to be more than a Python expert to write high-performant "Python code"

• Keep all this in mind and give Julia a go for scientific computing

64

PERSONAL REMARK
• I am a big fan of Julia (surprise!)

• The Julia language is built for scientific computing, it "feels like Python and runs like C".

• No fear of writing for-loops

• Define and use your own types and type hierarchy to create expressive code

• Interactive prototyping, just like in Python with a REPL

• Even naively written code is often very close to optimal performance

• You can still use your Jupyter-notebooks (fun fact: "Ju" in Jupyter stands for Julia)

• Easy package management and deployment (you can easily set up your own package registry)

• Reproducible environments are a built-in feature (crucial for reproducible science)

65

66
https://discourse.julialang.org/t/help-testing-julia-tree-sitter-mode-in-emacs/92819/11

https://juliapackages.com/

Provided by Benoît Richard

My own Emacs setup

One of my Jupyter prototyping sessions

https://discourse.julialang.org/t/help-testing-julia-tree-sitter-mode-in-emacs/92819/11

– UNCLE BEN

"WITH GREAT POWER
COMES GREAT
RESPONSIBILITY"

A FINAL WORD ON GREEN CODING/COMPUTING

• In HPC, we can easily waste energy with inefficient
code

• It's just a matter of a few keystrokes to launch
thousands of computing jobs

• It's also your responsibility to learn how to use these
resources efficiently and with care

68Source: Energy Efficiency across Programming Languages, SLE’17 https://benchmarksgame-team.pages.debian.net

THANKS
"PEOPLE ARE VERY OPEN-MINDED 
ABOUT NEW THINGS — AS LONG 

AS THEY’RE EXACTLY LIKE THE OLD ONES."

- CHARLES F. KETTERING

