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MPI Communication in OpenMP Tasking Programs

• Work initially presented by Schuchart et al. at IWOMP’18

• Calculation tasks generate data

• Sender tasks depend on the data to communicate

• Receiver tasks have out dependencies for the received data

➢Current MPI + OpenMP provide no scalable solution

➢TAMPI + OmpSs-2 show a feasible implementation

➢MPI – Detach presented at EuroMPI’20



OpenMP Task Dependencies
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OpenMP Task Dependencies Overview

• task, taskwait, target constructs can have a depend clause to express dependencies

• depend([depend-modifier,] dependence-type : locator-list)

• dependence-type is any in:
− In, inout/out, mutexinoutset, inoutset, depobj

• locator-list is a list of variables representing their location.

Is ordered with in out/inout mutexinoutset inoutset

in X X X

out/inout X X X X

mutexinoutset X X O X

inoutset X X X
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OpenMP Tasks: Block Cholesky Decomposition

for (int i = 0; i < n; i++) {
#pragma omp task 

potrf (A[i][i], ...);
#pragma omp taskwait 

for (int y = i + 1; y < n; y++)
#pragma omp task 

trsm(A[i][y], A[i][i], ...);
#pragma omp taskwait

for (int y = i + 1; y < n; y++)
#pragma omp task 

syrk(A[y][y], A[i][y], ...);
#pragma omp taskwait

for (int x = i + 1; x < n; x++)
for (int y = x + 1; y < n; y++)

#pragma omp task 
gemm(A[x][y], A[i][x], A[i][y], ...);

#pragma omp taskwait
}
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OpenMP Task Dependencies: Block Cholesky Decomposition

for (int i = 0; i < n; i++) {
#pragma omp task 

potrf (A[i][i], ...);
for (int y = i + 1; y < n; y++)

#pragma omp task 

trsm(A[i][y], A[i][i], ...);
for (int y = i + 1; y < n; y++)

#pragma omp task 

syrk(A[y][y], A[i][y], ...);
for (int x = i + 1; x < n; x++)

for (int y = x + 1; y < n; y++)
#pragma omp task 

gemm(A[x][y], A[i][x], A[i][y], ...);
}
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OpenMP Task Dependencies as a DAG
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Decomposition for Distributed Memory Calculation
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Distributed task dependencies

• Out/inout dependence produces data
− Needs to send data to dependent tasks

• In/inout dependence consumes data
− Needs to receive and wait for data

• OpenMP 5.0 introduced detachable tasks

• Semantically:

#pragma omp task depend(out:recvbuf) detach(req)
{
MPI_Request req; 
MPI_Irecv(recvbuf, …, &req);

} // the task finishes execution and returns, but completion 
// is coupled with completion of the receive

#pragma omp task depend(in:sendbuf) 
MPI_Send(sendbuf, …);

#pragma omp task depend(in:recvbuf)
do_something_with_buf(recvbuf);

Executing

omp_fulfill_event(req) 
completes the task



Integration of OpenMP detached tasks and MPI 
Communication



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

11

Proposed MPI detach functions

• Hand back request to MPI library and register for a completion callback.

• Compare to int MPI_Wait(MPI_Request *request, MPI_Status *status):

typedef void MPIX_Detach_status_function(void *data, MPI_Status status);

int MPIX_Detach_status(
MPI_Request *request,
MPIX_Detach_status_function *callback,
void *data);

• If we are not interested in the status, we cannot pass MPI_STATUS_IGNORE:

typedef void MPIX_Detach_function(void *data);

int MPIX_Detach(
MPI_Request *request,
MPIX_Detach_function *callback,
void *data);
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Proposed MPI detach functions

• Compare to int MPI_Waitall(int count, MPI_Request requests[],

MPI_Status statuses[]):

typedef void MPIX_Detach_statuses_function(void *data, int count, MPI_Status statuses[]);

int MPIX_Detach_all_status(
int count,
MPI_Request requests[],
MPIX_Detach_status_function *callback,
void *data);

• Again, we cannot pass MPI_STATUSES_IGNORE:

int MPIX_Detach_all(
MPI_Request *request,
MPIX_Detach_function *callback,
void *data);
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Progress in MPI communication

• MPI guarantees that once a matching 

pair of send and receive is initiated, 

one of them will (eventually) complete.

• Choices:
− Is there a progress thread, supervising 

communication progress?

− Is progress only driven during API calls?

MPI_Isend

MPI_Recv

buffer

buffer

buffer

buffer
NIC

NIC

MPI_Wait

Rank A Rank B
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Driving progress

• When should MPI make progress after calling MPIX_Detach?

• The new function MPIX_Progress can be registered with a polling service:

int MPIX_Progress(void *data);

• The polling service calls the registered function when ever it is convenient.

• The function must be non-blocking.

• Calling this function regularly will finally allow the completion callback to be called.

• The prototype starts a background polling thread, if the following env is set:
− export MPIX_DETACH = progress



Usage
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OpenMP tasks using detach clause (OpenMP 5.0)

omp_event_handle_t ev_handle;
#pragma omp task detach(ev_handle) depend(out: recvbuf) 
{
MPI_Request req; 
MPI_Irecv(recvbuf, …, &req);
MPIX_Detach(&req, (MPI_Detach_callback *) omp_fulfill_event, (void*) ev_handle);

}

#pragma omp task depend(in: recvbuf)
do_something_with_buf(recvbuf);



Evaluation
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Extending distributed Block Cholesky Factorization with MPI detach

• Presented by Schuchart et al. at 

IWOMP’18:
https://github.com/devreal/cholesky_omptasks

• Coarse-grain communication 

(singlecom) using a single 

communication task per level

• Fine-grain communication using a 

communication task per block
− taskyield: test-loop with taskyield

− detach: MPIX-detach replaces test-loop

− polling: MPIX-progress replaces progress 

thread

Graphs from: Schuchart et al., The Impact of Taskyield on the Design of Tasks Communicating Through MPI, IWOMP’18

https://github.com/devreal/cholesky_omptasks
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Node scaling experiment: (32k)² matrix, 256² blocks

• Filling 48 cores of a node with MPI processes/OpenMP threads
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Strong scaling experiment: (64k)² matrix, 256² blocks



Understanding the scalability limits
For details see EuroPar‘22 paper: On-the-fly Performance Model Factors for Multi-Level Parallelism
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Performance Model Factors

• Hierarchy of metrics developed at BSC

• Highlight issues in the parallel structure 

of an application

• Parallel Efficiency breaks down into
− Load balance

− Serialization

− Transfer

• Computational Scaling captures impact 

of scaling to node-level performance
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Load Balance

• Reflects global imbalance of work between execution units

• 𝐿𝐵 =
𝑎𝑣𝑔(𝑢𝑠𝑒𝑓𝑢𝑙 𝑡𝑖𝑚𝑒)

max(𝑢𝑠𝑒𝑓𝑢𝑙 𝑡𝑖𝑚𝑒)

• Useful time: execution time outside parallel runtimes
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Serialization Efficiency

• Reflects moving imbalance of work between execution units, 

resp., alternating dependencies

• 𝑆𝑒𝑟𝐸 =
𝑚𝑎𝑥(𝑢𝑠𝑒𝑓𝑢𝑙 𝑡𝑖𝑚𝑒)

𝑖𝑑𝑒𝑎𝑙 𝑟𝑢𝑛𝑡𝑖𝑚𝑒

• Ideal runtime: execution time on an ideal machine with 0 

communication cost (inf. BW / 0 lat)
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Transfer Efficiency

• Cost of transfer / communication / synchronization

• 𝑇𝐸 =
𝑖𝑑𝑒𝑎𝑙 𝑟𝑢𝑛𝑡𝑖𝑚𝑒

𝑟𝑒𝑎𝑙 𝑟𝑢𝑛𝑡𝑖𝑚𝑒

• Real runtime: observed execution time
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Which metrics to measure?

• Useful time: execution time outside parallel runtimes
− Track execution time on each thread excluding time inside MPI / OpenMP runtimes

• Real runtime: observed execution time
− Track wall clock time from start to end. 

• Ideal runtime: execution time on an ideal machine with 0 communication cost (inf. 

BW / 0 lat)
− Track useful time on critical path → assumes 0 communication cost
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Execution trace with tricks and tweaks

• Based on user-instrumentation API used in an OMPT tool

➢No automatic analysis of performance metrics possible
2.5s

1.9s
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Block-synchronous execution with 12 threads / MPI process
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Asynchronous execution with 12 threads / MPI process



Conclusion
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Conclusion

• Slim extension of MPI (7 new functions) to provide asynchronous local completion

• Usage presented for OpenMP tasks. (see hidden slides for C++ futures)
− Can also be used in other tasking models

• Prototype implemented as PMPI wrapper:
− https://github.com/RWTH-HPC/mpi-detach (thread-safe and just 347 sloc)

• Performance study based on distributed block cholesky factorization:
− https://github.com/RWTH-HPC/cholesky_omptasks

• What we missed during the implementation: 
− API to determine whether a given MPI_Request is a persistent request and what is the state

• Hybrid performance model factors as a means to understand scalability limits

https://github.com/RWTH-HPC/mpi-detach
https://github.com/RWTH-HPC/cholesky_omptasks
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