
Asynchronous MPI communication with OpenMP tasks
spawning task dependency graphs across nodes

Dr. Joachim Jenke (jenke@itc.rwth-aachen.de)



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

2

MPI Communication in OpenMP Tasking Programs

• Work initially presented by Schuchart et al. at IWOMP’18

• Calculation tasks generate data

• Sender tasks depend on the data to communicate

• Receiver tasks have out dependencies for the received data

➢Current MPI + OpenMP provide no scalable solution

➢TAMPI + OmpSs-2 show a feasible implementation

➢MPI – Detach presented at EuroMPI’20



OpenMP Task Dependencies



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

4

OpenMP Task Dependencies Overview

• task, taskwait, target constructs can have a depend clause to express dependencies

• depend([depend-modifier,] dependence-type : locator-list)

• dependence-type is any in:
− In, inout/out, mutexinoutset, inoutset, depobj

• locator-list is a list of variables representing their location.

Is ordered with in out/inout mutexinoutset inoutset

in X X X

out/inout X X X X

mutexinoutset X X O X

inoutset X X X



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

5

OpenMP Tasks: Block Cholesky Decomposition

for (int i = 0; i < n; i++) {
#pragma omp task 

potrf (A[i][i], ...);
#pragma omp taskwait 

for (int y = i + 1; y < n; y++)
#pragma omp task 

trsm(A[i][y], A[i][i], ...);
#pragma omp taskwait

for (int y = i + 1; y < n; y++)
#pragma omp task 

syrk(A[y][y], A[i][y], ...);
#pragma omp taskwait

for (int x = i + 1; x < n; x++)
for (int y = x + 1; y < n; y++)

#pragma omp task 
gemm(A[x][y], A[i][x], A[i][y], ...);

#pragma omp taskwait
}

potrf

A[0][0]

syrk

A[1][1]

syrk

A[2][2]

syrk

A[3][3]

trsm

A[0][1]

trsm

A[0][2]

trsm

A[0][3]

gemm

A[1][2]

gemm

A[1][3]

gemm

A[2][3]



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

6

OpenMP Task Dependencies: Block Cholesky Decomposition

for (int i = 0; i < n; i++) {
#pragma omp task 

potrf (A[i][i], ...);
for (int y = i + 1; y < n; y++)

#pragma omp task 

trsm(A[i][y], A[i][i], ...);
for (int y = i + 1; y < n; y++)

#pragma omp task 

syrk(A[y][y], A[i][y], ...);
for (int x = i + 1; x < n; x++)

for (int y = x + 1; y < n; y++)
#pragma omp task 

gemm(A[x][y], A[i][x], A[i][y], ...);
}

potrf

A[0][0]

syrk

A[1][1]

syrk

A[2][2]

syrk

A[3][3]

trsm

A[0][1]

trsm

A[0][2]

trsm

A[0][3]

gemm

A[1][2]

gemm

A[1][3]

gemm

A[2][3]

depend(inout:A[i][i])

depend(in:A[i][i]) \
depend(inout:A[i][y])

depend(in:A[i][y]) \
depend(inout:A[y][y])

depend(in:A[i][x], A[i][y]) \
depend(inout:A[x][y])

potrf

A[1][1]



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

7

OpenMP Task Dependencies as a DAG

potrf

A[0][0]

syrk

A[1][1]

syrk

A[2][2]

syrk

A[3][3]

trsm

A[0][1]

trsm

A[0][2]

trsm

A[0][3]

gemm

A[1][2]

gemm

A[1][3]

gemm

A[2][3]

potrf

A[1][1]



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

8

Decomposition for Distributed Memory Calculation

potrf

A[0][0]

syrk

A[1][1]

syrk

A[2][2]

syrk

A[3][3]

trsm

A[0][1]

trsm

A[0][2]

trsm

A[0][3]

gemm

A[1][2]

gemm

A[1][3]

gemm

A[2][3]

potrf

A[1][1]

P0

P2

P1

P3

P0

P2 P3

P0

P2 P3

local

remote



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

9

Distributed task dependencies

• Out/inout dependence produces data
− Needs to send data to dependent tasks

• In/inout dependence consumes data
− Needs to receive and wait for data

• OpenMP 5.0 introduced detachable tasks

• Semantically:

#pragma omp task depend(out:recvbuf) detach(req)
{
MPI_Request req; 
MPI_Irecv(recvbuf, …, &req);

} // the task finishes execution and returns, but completion 
// is coupled with completion of the receive

#pragma omp task depend(in:sendbuf) 
MPI_Send(sendbuf, …);

#pragma omp task depend(in:recvbuf)
do_something_with_buf(recvbuf);

Executing

omp_fulfill_event(req) 
completes the task



Integration of OpenMP detached tasks and MPI 
Communication



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

11

Proposed MPI detach functions

• Hand back request to MPI library and register for a completion callback.

• Compare to int MPI_Wait(MPI_Request *request, MPI_Status *status):

typedef void MPIX_Detach_status_function(void *data, MPI_Status status);

int MPIX_Detach_status(
MPI_Request *request,
MPIX_Detach_status_function *callback,
void *data);

• If we are not interested in the status, we cannot pass MPI_STATUS_IGNORE:

typedef void MPIX_Detach_function(void *data);

int MPIX_Detach(
MPI_Request *request,
MPIX_Detach_function *callback,
void *data);



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

12

Proposed MPI detach functions

• Compare to int MPI_Waitall(int count, MPI_Request requests[],

MPI_Status statuses[]):

typedef void MPIX_Detach_statuses_function(void *data, int count, MPI_Status statuses[]);

int MPIX_Detach_all_status(
int count,
MPI_Request requests[],
MPIX_Detach_status_function *callback,
void *data);

• Again, we cannot pass MPI_STATUSES_IGNORE:

int MPIX_Detach_all(
MPI_Request *request,
MPIX_Detach_function *callback,
void *data);



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

13

Progress in MPI communication

• MPI guarantees that once a matching 

pair of send and receive is initiated, 

one of them will (eventually) complete.

• Choices:
− Is there a progress thread, supervising 

communication progress?

− Is progress only driven during API calls?

MPI_Isend

MPI_Recv

buffer

buffer

buffer

buffer
NIC

NIC

MPI_Wait

Rank A Rank B



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

14

Driving progress

• When should MPI make progress after calling MPIX_Detach?

• The new function MPIX_Progress can be registered with a polling service:

int MPIX_Progress(void *data);

• The polling service calls the registered function when ever it is convenient.

• The function must be non-blocking.

• Calling this function regularly will finally allow the completion callback to be called.

• The prototype starts a background polling thread, if the following env is set:
− export MPIX_DETACH = progress



Usage



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

18

OpenMP tasks using detach clause (OpenMP 5.0)

omp_event_handle_t ev_handle;
#pragma omp task detach(ev_handle) depend(out: recvbuf) 
{
MPI_Request req; 
MPI_Irecv(recvbuf, …, &req);
MPIX_Detach(&req, (MPI_Detach_callback *) omp_fulfill_event, (void*) ev_handle);

}

#pragma omp task depend(in: recvbuf)
do_something_with_buf(recvbuf);



Evaluation



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

20

Extending distributed Block Cholesky Factorization with MPI detach

• Presented by Schuchart et al. at 

IWOMP’18:
https://github.com/devreal/cholesky_omptasks

• Coarse-grain communication 

(singlecom) using a single 

communication task per level

• Fine-grain communication using a 

communication task per block
− taskyield: test-loop with taskyield

− detach: MPIX-detach replaces test-loop

− polling: MPIX-progress replaces progress 

thread

Graphs from: Schuchart et al., The Impact of Taskyield on the Design of Tasks Communicating Through MPI, IWOMP’18

https://github.com/devreal/cholesky_omptasks


Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

21

Node scaling experiment: (32k)² matrix, 256² blocks

• Filling 48 cores of a node with MPI processes/OpenMP threads



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

22

Strong scaling experiment: (64k)² matrix, 256² blocks



Understanding the scalability limits
For details see EuroPar‘22 paper: On-the-fly Performance Model Factors for Multi-Level Parallelism



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

24

Performance Model Factors

• Hierarchy of metrics developed at BSC

• Highlight issues in the parallel structure 

of an application

• Parallel Efficiency breaks down into
− Load balance

− Serialization

− Transfer

• Computational Scaling captures impact 

of scaling to node-level performance

Global Scaling

Computational 
Scaling

Parallel Efficiency

Load Balance 
Efficiency

Communication 
Efficiency

Serialization 
Efficiency

Transfer Efficiency

75

90 90

81

6190

55

x

x

x



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

25

Load Balance

• Reflects global imbalance of work between execution units

• 𝐿𝐵 =
𝑎𝑣𝑔(𝑢𝑠𝑒𝑓𝑢𝑙 𝑡𝑖𝑚𝑒)

max(𝑢𝑠𝑒𝑓𝑢𝑙 𝑡𝑖𝑚𝑒)

• Useful time: execution time outside parallel runtimes

Global Scaling

Computational 
Scaling

Parallel Efficiency

Load Balance 
Efficiency

Communication 
Efficiency

Serialization 
Efficiency

Transfer 
Efficiency

75

90 90

81

6190

55

Load Balance



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

26

Serialization Efficiency

• Reflects moving imbalance of work between execution units, 

resp., alternating dependencies

• 𝑆𝑒𝑟𝐸 =
𝑚𝑎𝑥(𝑢𝑠𝑒𝑓𝑢𝑙 𝑡𝑖𝑚𝑒)

𝑖𝑑𝑒𝑎𝑙 𝑟𝑢𝑛𝑡𝑖𝑚𝑒

• Ideal runtime: execution time on an ideal machine with 0 

communication cost (inf. BW / 0 lat)

Global Scaling

Computational 
Scaling

Parallel Efficiency

Load Balance 
Efficiency

Communication 
Efficiency

Serialization 
Efficiency

Transfer 
Efficiency

75

90 90

81

6190

55

Load Balance SerE

SerE



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

27

Transfer Efficiency

• Cost of transfer / communication / synchronization

• 𝑇𝐸 =
𝑖𝑑𝑒𝑎𝑙 𝑟𝑢𝑛𝑡𝑖𝑚𝑒

𝑟𝑒𝑎𝑙 𝑟𝑢𝑛𝑡𝑖𝑚𝑒

• Real runtime: observed execution time

Global Scaling

Computational 
Scaling

Parallel Efficiency

Load Balance 
Efficiency

Communication 
Efficiency

Serialization 
Efficiency

Transfer 
Efficiency

75

90 90

81

6190

55

Load Balance

SerE

SerE

TE TE

TETE



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

28

Which metrics to measure?

• Useful time: execution time outside parallel runtimes
− Track execution time on each thread excluding time inside MPI / OpenMP runtimes

• Real runtime: observed execution time
− Track wall clock time from start to end. 

• Ideal runtime: execution time on an ideal machine with 0 communication cost (inf. 

BW / 0 lat)
− Track useful time on critical path → assumes 0 communication cost

Global Scaling

Computational 
Scaling

Parallel Efficiency

Load Balance 
Efficiency

Communication 
Efficiency

Serialization 
Efficiency

Transfer 
Efficiency

75

90 90

81

6190

55



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

29

Execution trace with tricks and tweaks

• Based on user-instrumentation API used in an OMPT tool

➢No automatic analysis of performance metrics possible
2.5s

1.9s



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

30

Block-synchronous execution with 12 threads / MPI process



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

31

Asynchronous execution with 12 threads / MPI process



Conclusion



Asynchronous MPI communication with OpenMP tasks –

spawning task dependency graphs across nodes

Joachim Jenke

33

Conclusion

• Slim extension of MPI (7 new functions) to provide asynchronous local completion

• Usage presented for OpenMP tasks. (see hidden slides for C++ futures)
− Can also be used in other tasking models

• Prototype implemented as PMPI wrapper:
− https://github.com/RWTH-HPC/mpi-detach (thread-safe and just 347 sloc)

• Performance study based on distributed block cholesky factorization:
− https://github.com/RWTH-HPC/cholesky_omptasks

• What we missed during the implementation: 
− API to determine whether a given MPI_Request is a persistent request and what is the state

• Hybrid performance model factors as a means to understand scalability limits

https://github.com/RWTH-HPC/mpi-detach
https://github.com/RWTH-HPC/cholesky_omptasks

	Folie 1: Asynchronous MPI communication with OpenMP tasks spawning task dependency graphs across nodes
	Folie 2: MPI Communication in OpenMP Tasking Programs
	Folie 3: OpenMP Task Dependencies
	Folie 4: OpenMP Task Dependencies Overview
	Folie 5: OpenMP Tasks: Block Cholesky Decomposition
	Folie 6: OpenMP Task Dependencies: Block Cholesky Decomposition
	Folie 7: OpenMP Task Dependencies as a DAG
	Folie 8: Decomposition for Distributed Memory Calculation
	Folie 9: Distributed task dependencies
	Folie 10: Integration of OpenMP detached tasks and MPI Communication
	Folie 11: Proposed MPI detach functions
	Folie 12: Proposed MPI detach functions
	Folie 13: Progress in MPI communication
	Folie 14: Driving progress
	Folie 15: Usage
	Folie 18: OpenMP tasks using detach clause (OpenMP 5.0)
	Folie 19: Evaluation
	Folie 20: Extending distributed Block Cholesky Factorization with MPI detach
	Folie 21: Node scaling experiment: (32k)² matrix, 256² blocks
	Folie 22: Strong scaling experiment: (64k)² matrix, 256² blocks 
	Folie 23: Understanding the scalability limits
	Folie 24: Performance Model Factors
	Folie 25: Load Balance
	Folie 26: Serialization Efficiency
	Folie 27: Transfer Efficiency
	Folie 28: Which metrics to measure?
	Folie 29: Execution trace with tricks and tweaks
	Folie 30: Block-synchronous execution with 12 threads / MPI process
	Folie 31: Asynchronous execution with 12 threads / MPI process
	Folie 32: Conclusion
	Folie 33: Conclusion

