Porting of Lattice QCD simulation software to GPUs

Nils Meyer, Stefan Solbrig, Tilo Wettig (University of Regensburg)

HPC Cafe, KONWIHR Workshop Feb. 14, 2023

Overview of Lattice QCD

- QCD = Quantum Chromodynamics
 - Fundamental theory in the standard model of particle physics
 - Describes interaction of quarks and gluons and formation of bound states (e.g., proton)
 - Needed for interpretation of experiments at accelerators like CERN and in searches for "new physics"

Source: https://www.energy.gov/science/np/articles/zooming-gluons-contribution-proton-spin

- Lattice QCD = QCD on a 4-dimensional space-time lattice
 - Dominant problem: inversion of Dirac matrix, which is a very large sparse matrix whose dimension can be as large as O(10⁹)

Main goals of the project

- "Grid" Lattice QCD framework already ported to GPUs (using CUDA, HIP and SYCL), but it does not meet all demands of U Regensburg particle physics group
- Here, focus on Wilson clover fermions and multigrid methods in Grid
- Work plan
 - 1. Optimization of global reductions (in progress)
 - In strong-scaling limit, global reductions become performance relevant
 - · Root causes can be different in GPU systems compared to CPU systems
 - 2. Porting and optimization of multigrid methods (done)
 - Port our Grid multigrid code to GPUs
 - Algorithmic improvements (MRHS = multiple right-hand sides)
 - 3. Elimination of performance bottlenecks due to vendor libraries (in progress)
 - Performance analysis of dslash on available machines
 - Root cause of performance issues can be in vendor libraries (e.g., UVM issues in HIP)
 - Work with vendors to eliminate them or develop workarounds

Porting and optimization of multigrid methods

- We already implemented multigrid methods in Grid, but only single right-hand side and not optimized for GPU
- Major overhaul and extension of existing codebase thanks to KONWIHR funding
 - Now supports multiple right-hand sides
 - Developed on (and optimized for) JUWELS Booster (NVIDIA A100)
 - By-product for free: Other architectures also supported (incl. Intel/AMD CPU, Arm NEONv8 and 512-bit SVE, AMD GPU), but performance not necessarily optimal
- JUWELS Booster results presented at annual Lattice QCD conference in 2022, proceedings paper submitted to PoS (LATTICE 2022), preprint available [arXiv:2211.13719]

Porting and optimization of multigrid methods

- Performance
 - Solve time per RHS of FGMRES preconditioned by two-level multigrid method for CLS configuration U101 (volume = $24^3 \times 128$) on 16 GPUs on JUWELS Booster
 - + Speedup \sim 10x solving 30 RHS simultaneously compared to 30 sequential solves (SRHS)

Access to production grade AMD machine

- LUMI: Fastest (and greenest) supercomputer in Europe, located in Finland
 - TOP500 #3 as of Nov. 2022
 - Rpeak = 428.70 PFlop/s
- LUMI-G: GPU partition https://docs.lumi-supercomputer.eu/hardware/compute/lumig/
 - 2560 nodes, each with
 - 4x AMD Instinct MI250X GPUs
 - 4x 200 Gb/s HPE slingshot interconnect
- We now have access to LUMI-G (via PRACE; until end of March 2023)
 - Joint project with U Bielefeld
 - Project plan (in progress)
 - Benchmark Grid and Bielefeld Lattice QCD codes
 - Test software stack and tune application parameters
 - Compare performance of Grid with JUWELS Booster