
https://uob-hpc.github.io

Enabling next-
generation processor
simulations with SimEng

Simon McIntosh-Smith
University of Bristol, UK
HPC research group

Prof. Simon McIntosh-Smith Mr Jack Jones

Mr Dan Weaver

Mr Finn Wilkinson

https://uob-hpc.github.io/SimEng

Mr Rahat Muneeb

https://uob-hpc.github.io/

Some history

• Started my career at Inmos in Bristol in 1994
• Transputers, Occam, …

• Worked as an architect on “Chameleon” designing a SIMD instruction
set for a dual-core, 64-bit, dual-issue, out-of-order CPU
• Very advanced workflow for the time
• A single ‘master’ instruction set database drove everything

• Documentation
• Simulator
• Compiler / assembler
• Test / verification / …

http://uob-hpc.github.io

Early design space exploration

• The electronic spec-led workflow enabled rapid CPU design space
exploration
• We could change most parameters about the architecture and

microarchitecture, and regenerate everything quickly to try rigorous
experiments
• From the ISA to the number and spec of execution units etc.
• Size and structure of reservation stations, memory hierarchy, …

• I rejoined academia in 2009 and wanted to try these kinds of
experiments – this wasn’t as straightforward as I expected…

http://uob-hpc.github.io

Motivation – designing gas turbines ‘in silico’

https://sc22.supercomputing.org/presentation/?id=svs104&sess=sess277

ASiMoV 5-year project with Rolls-Royce
Aiming to design new gas turbines completely in simulation
Many different kinds of physics need to be modelled simultaneously

Electromagnetic

Thermo-mechanical

Combustion

Computational Fluid Dynamics

Contact and Friction

https://sc22.supercomputing.org/presentation/?id=svs104&sess=sess277

So what do we want to be able to do for
ASiMoV?
Explore the design of an “optimal” processor for 5–10 years' time

• Core level
• OoO parameters, number and width of vector units, prefetch capability…

• Co-processor level
• Accelerators for vector–matrix math, FFTs, …

• Memory hierarchy level
• Network level?

http://uob-hpc.github.io

To address these questions…
… we need a fast, easy to modify, accurate-enough simulator to support
semi-automated design space exploration.

In theory, we could do this with gem5 or a number of other simulators

But we found they didn’t have the specific combination of speed and
accuracy to let us do the things we needed.

The “Simulation Engine” was born to investigate these issues…

http://uob-hpc.github.io

SimEng design goals
Primary goals:
• Fast – millions of OoO instructions per second on a single core
• Accurate – within 10% of real hardware
• Easy to modify – just hours or days to create a radically different

processor model

Secondary goals:
• Use existing frameworks where possible
• CAPSTONE for instruction decode, SST for memory hierarchy / multicore
• Gem5-compatible tracing, checkpointing, …

http://uob-hpc.github.io

SimEng
initially

targeted
ThunderX2

The ThunderX2 simulation
was within 5-10% of the real
hardware

http://uob-hpc.github.io

Processor
Models

SimEng’s
Generic OoO

Processor
Model

http://uob-hpc.github.io

https://uob-hpc.github.io

Configuration YAML Files

The generic SimEng pipeline can be parameterised to reflect
existing microarchitectures, such as Marvell’s ThunderX2 or
Fujitsu’s A64fx, or to model hypothetical core designs
Excerpts from SimEng’s a64fx.yaml:
Core:

Simulation-Mode: outoforder
Clock Frequency is in GHz.
Clock-Frequency: 1.8
Timer-Frequency is in MHz.
Timer-Frequency: 100
Fetch-Block-Size: 32
Micro-Operations: True
Vector-Length: 512

LSQ-L1-Interface:
Access-Latency: 5
Exclusive: True
Load-Bandwidth: 128
Store-Bandwidth: 64
Permitted-Requests-Per-Cycle: 2
Permitted-Loads-Per-Cycle: 2
Permitted-Stores-Per-Cycle: 1

Latest
Models

https://uob-hpc.github.io

Apple M1 Firestorm

Fujitsu
A64FX

Arm Neoverse V1

Current Status and Work In Progress

• Primarily targeting Armv9.2-a+SVE+SME+SVE2.
o SimEng now supports ~950 instructions, ~15% of the ISA supported by Capstone-Engine
o Broad SVE support to match Fujitsu A64FX, Graviton 3 and other Arm cores

§ Can vary SVE widths and number of units
o Initial RISC-V support with I (base isa), A (atomic), and M (multiply/divide) extensions
o Initial support for load/store macro-op splitting

• Support for syscall emulation:
o Enough to handle libc startup routines in real binaries (~50)

• Integration with the Structural Simulation Toolkit (SST) allows us to model a variety of data memory
hierarchies
o In-house base implementation is an infinite L1 cache. Looking to explore faster, simpler,

alternatives to SST
o http://sst-simulator.org

https://uob-hpc.github.io

http://sst-simulator.org/

To date, a variety of workloads have been run through SimEng including
C/C++/FORTRAN codes.

We’ve compiled codes with GNU 7-10 and ArmClang 20/22 (LLVM 9 / 13).

Current limitations:
• Must be statically compiled

o Exploring how best to support dynamically linked binaries
• OpenMP codes supported running on a single thread
• Untested single rank MPI
• Environment variables must be passed into the simulated memory space manually;

for example, OMP_NUM_THREADS=1
• Objects residing in memory but not sourced from the binary, such as the vDSO (virtual

dynamic shared object), not yet officially supported

https://uob-hpc.github.io

Example
SimEng
Tested
Workloads

miniBUDE - mini-app for Bristol University
Docking Engine (BUDE) Chemistry code

STREAM

Cloverleaf (SPEChpc 2021)

Tealeaf (SPEChpc 2021)

FFTW

http://uob-hpc.github.io

https://uob-hpc.github.io 16

Trace Output
f – fetch
d – decode
n – rename
p – dispatch
i – issue
c – complete
r – retire
= - flushed

Experiments with SimEng –
LARC from RIKEN

https://uob-hpc.github.io

4.6%
5.7%

4.9%

6.5%

5.5%
4.6%

STREAM triad CacheBW

Memory size in KiB

Vector unit design space exploration

• What is the optimal vector width?
• What is the optimal number of vector units?
• Focus on Arm’s SVE to facilitate varying vector widths: 128-2048 bits

Source: The ARM Scalable Vector Extension paper, doi: 10.1109/MM.2017.35

https://uob-hpc.github.io

Methodology • Model a very wide frontend with
large Out-of-Order resources and
wide load/store to support it

• Two vector unit arrangements:
1. Single vector unit spanning

various widths (128b to 2048b)
2. Multiple vector units totaling the

same vector width (16x128b to
2x1024b)

• Arm Compiler for Linux 20.0 used to
compile workloads with target
-march=armv8.4-a+sve

https://uob-hpc.github.io

DAXPY Y := α * X + Y

3 cycles

Problem size of 524288 elements.

https://uob-hpc.github.io

DGEMM C := α * A * B + β * C
Problem size of M=256 N=128 K=256

https://uob-hpc.github.io

Arm Neoverse V1 model
Source: Arm Neoverse V1 Software Optimization Guide

For both the DAXPY and DGEMM workloads, the 1x512b
V1 variant was the most optimal.

https://uob-hpc.github.io

https://uob-hpc.github.io

Scalable Matrix Exctension (SME) Support

• Implemented initial support in SimEng, along with SVE2
• SVCR sys_reg & SVE Streaming Mode

• Currently supports 7 instructions
• LD1W{h,v}, ST1W{h,v}, ZERO, FMOPA, PSEL

• Started initial evaluation of SME performance vs. SVE
• Modelling in-core SME accelerator…

https://uob-hpc.github.io

Hypothetical A64fx-like Core with SME

VL=SVL=512-bit

SME unit

SME MatMul Kernel Results vs. A64FX
A64FX SVE on SimEng vs. Hypothetical Core (SVL=512-bits)

https://uob-hpc.github.io

1.
1X

1.
7X

4.
0X

1.
9X

4.
9X

5.
5X

2.
2X

6.
2X

2.
3X

6.
4X

2.
2X 2.

1X

SME ResNet-50 Kernel Results vs. A64FX

Instructions Cycles Time (Seconds) GFLOPs/s

64x64x64 GEMM, 100 iterations

Hardware 5,939,076 4,135,983 0.001202 43.6

Simulation 5,854,947 3,111,429 0.001010 51.9

Simulation w/ SME 1,942,164 (3.0x) 2,580,216 (1.2x) 0.000467 112.2

1024x1024x1024 GEMM 100 iterations

Hardware 14,095,511,071 5,888,145,390 3.00 71.5

Simulation 14,095,426,848 4,336,526,197 2.23 96.4

Simulation w/ SME 1,589,378,697 (8.9x) 2,407,339,782 (1.8x) 1.08 198.0

https://uob-hpc.github.io

Planned
developments

New processor models
• Continued development of Apple M1
• NVIDIA Grace / Neoverse V2

Multi-core and SMT support

Improved memory hierarchy

Further set of supported codes to cover more of the simulated µarch
• SPEC_CPU 2017, SPEChpc 2021, MLPerf, RIKEN Kernels, BERT, ResNet-50,…

More compiler support
• Cray, Fujitsu, Nvidia

Support for advanced branch prediction, cache prefetching

RISC-V support
• Included in next release with floating point

Improved CI testing
• Testing on multiple OS’s

Improved tooling for design space exploration

Planned Development

https://uob-hpc.github.io

Conclusions

• SimEng is letting us explore how fast we can make a microarchitecture
level simulator
• We can now easily make major changes to a microarchitecture to

enable rapid design space exploration
• SimEng achieving >4-5X speedup over gem5 while being more accurate

and much, much simpler to use and modify
• SST works well for adding memory hierarchy models, soon multicore
• We now have a fast, accurate, stand-alone, single-core model in

O(10,000) lines of code – what can you use this for?

http://uob-hpc.github.io

Acknowledgments

• Key development team in Bristol:
• SimEng started by Hal Jones, James Price, Andrei Poenaru

• Funders:
• EPSRC ASiMoV project (Advanced Simulation and Modelling of Virtual

systems) - EP/S005072/1
• Arm via a Centre of Excellence in HPC at University of Bristol

http://uob-hpc.github.io

