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Some history

e Started my career at Inmos in Bristol in 1994
* Transputers, Occam, ...

* Worked as an architect on “Chameleon” designing a SIMD instruction
set for a dual-core, 64-bit, dual-issue, out-of-order CPU

* VVery advanced workflow for the time

* Asingle ‘master’ instruction set database drove everything

* Documentation

e Simulator

* Compiler / assembler
e Test / verification/ ...
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Early design space exploration

* The electronic spec-led workflow enabled rapid CPU design space
exploration

* We could change most parameters about the architecture and
microarchitecture, and regenerate everything quickly to try rigorous
experiments

* From the ISA to the number and spec of execution units etc.
* Size and structure of reservation stations, memory hierarchy, ...

* | rejoined academia in 2009 and wanted to try these kinds of
experiments — this wasn’t as straightforward as | expected...
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Motivation — designing gas turbines ‘in silico’

ASiMoV 5-year project with Rolls-Royce
Aiming to design new gas turbines completely in simulation
Many different kinds of physics need to be modelled simultaneously

Electromagnetic
Thermo-mechanical

Contact and Friction
Computational Fluid Dynamics

Combustion
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So what do we want to be able to do for
ASiMoV?

Explore the design of an “optima

III

processor for 5—-10 years' time

* Core level
* 000 parameters, number and width of vector units, prefetch capability...

* Co-processor level
e Accelerators for vector—matrix math, FFTs, ...

* Memory hierarchy level
* Network level?
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To address these questions...

... we need a fast, easy to modify, accurate-enough simulator to support
semi-automated design space exploration.

In theory, we could do this with gem5 or a number of other simulators

But we found they didn’t have the specific combination of speed and
accuracy to let us do the things we needed.

The “Simulation Engine” was born to investigate these issues...
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SimEng design goals

Primary goals:
* Fast — millions of 000 instructions per second on a single core
* Accurate — within 10% of real hardware

 Easy to modify — just hours or days to create a radically different
processor model

Secondary goals:

e Use existing frameworks where possible
* CAPSTONE for instruction decode, SST for memory hierarchy / multicore
* Gem5-compatible tracing, checkpointing, ...
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SImEng
initially

targeted
ThunderXx?2
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The ThunderX2 simulation
was within 5-10% of the real
hardware
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SimEng’s
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Configuration YAML Files

The generic SimEng pipeline can be parameterised to reflect
existing microarchitectures, such as Marvell’s ThunderX2 or
Fujitsu’s A64fx, or to model hypothetical core designs

Excerpts from SimEng’s a64fx.yaml:

Core LSQ-L1-Interface
Simulation-Mode: outoforder Access-Latency
# Clock Frequency is in GHz. Exclusive: True
Clock-Frequency Load-Bandwidth
# Timer—-Frequency 1s in MHz. Store-Bandwidth
Timer—-Frequency Permitted-Requests-Per-Cycle
Fetch-Block-Size Permitted-Loads-Per-Cycle
Micro-Operations: True Permitted-Stores-Per-Cycle

Vector-Length
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Apple M1 Firestorm
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I Rename Retire Queue (~623 Entry) I

ranch Predicto| aetun
(BPU)

L1 Instruction Cache

Instruction TLE|_
(48-entry)

.::r':::::vyll P LT 64 KiB 4-Way
Main 8T8 (8K) ::I.Gnivlcyd-
Ll udu Hm_ulx 1
F X 64KiB, 4-way predicter [ Instru(tlorj Fetch Fro nt
=4-81
w
N N
uj Its u MOP Cache | Decode Queue | End \g
Instruction Buffer ) (16 x ‘az b) : = b)
(3K-entries) - - - - - a
‘— 5-Way Decode
dles T |
] I EETEERE. N
RSEQ RSEl RSAO RSAl RSBR Rename / Allocate / Commit ‘ E g
20 entries 20 eniries 10 entries 10 entries 19 entries ReOrder Buffer (256-entry) : =
EEXIEIEXIEX:; ERr
; 1 i geh
PReeas] [ Cllpich - E .
i P>
LA i ; EXB EAGA EAGH T 3 © | i
= TEN
ge "%
Load ! Swee Unit
Swre duta sSp w
| 24 entries " {%
b - 5
1 | e r— ceisbiL
26y 6, g %, "
PPR FPR GPR L1D cache CSI ‘\4".‘#‘6 ‘b'b ) “ =
48 entnes 128 entnes 96 entries 64 KiB, d-way 128 entries Memory L1 Data Cache '1;‘_:;'—; §§
| T T — e Arm Neoverse V1 = ===

-% University of
A BRISTOL

ASIMGYV

https://uob-hpc.github.io



Current Status and Work In Progress

* Primarily targeting Armv9.2-a+SVE+SME+SVE2.
o SimEng now supports ~950 instructions, ~15% of the ISA supported by Capstone-Engine
o Broad SVE support to match Fujitsu A64FX, Graviton 3 and other Arm cores
= Can vary SVE widths and number of units
o Initial RISC-V support with | (base isa), A (atomic), and M (multiply/divide) extensions
o Initial support for load/store macro-op splitting

e Support for syscall emulation:
o Enough to handle libc startup routines in real binaries (~50)

* Integration with the Structural Simulation Toolkit (SST) allows us to model a variety of data memory
hierarchies

o In-house base implementation is an infinite L1 cache. Looking to explore faster, simpler,
alternatives to SST

o http://sst-simulator.org
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http://sst-simulator.org/

To date, a variety of workloads have been run through SimEng including
C/C++/FORTRAN codes.

We've compiled codes with GNU 7-10 and ArmClang 20/22 (LLVM 9 / 13).

Current limitations:
e Must be statically compiled
o Exploring how best to support dynamically linked binaries
* OpenMP codes supported running on a single thread
e Untested single rank MPI

* Environment variables must be/i)assed into the simulated memory space manually;
for example, OMP_NUM_ THREADS=1

* Objects residing in memory but not sourced from the binary, such as the vDSO (virtual
dynamic shared object), not yet officially supported

Bl University of
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miniBUDE - mini-app for Bristol University
Docking Engine (BUDE) Chemistry code

Example
. STREAM
SImEng
Te Sted Cloverleaf (SPEChpc 2021)

Workloads

Tealeaf (SPEChpc 2021)

FFTW
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r[TIMELINE]

r[INSN_NUM]—[CYCLE]—[PC]
4261478 1301319 0x60159C 0
4261479 1301320 0Ox6015A0
4261480 1301320 0Ox6015A4
4261481 1301320 0Ox6015A8
4261482 1301320 0Ox6015AC
4261483 1301321 0x6015B0
4261484 1301321 0x6015B4
4261485 1301322 0x6016FC
4261486 1301323 0x601700
4261487 1301323 0x601704
4261488 1301323 0x601708
4261489 1301324 Ox768EBO
4261490 1301324 Ox768EB4
4261491 1301324 Ox768EBS8
4261492 1301324 Ox768EBC
4261493 1301325 0x60170C
4261494 1301325 0x601710
4261495 1301325 0x601714
4261496 1301325 0x601718
4261497 1301326 0x60171C
4261498 1301327 0x601720
4261499 1301327 0x601724
4261500 1301327 0x601728
4261501 1301327 0x60172C
4261502 1301328 0x601730
4261503 1301329 0x400280
4261504 1301329 0x400284
4261505 1301329 0x400288
4261506 1301330 0x601734
4261507 1301330 0x601738
4261508 1301330 0x60173C
4261509 1301331 0x601740
4261510 1301331 0x601744

(ool oMol oMo Mool oo Mool o Moo Mo Mol oMo Mo Mo Moo Moo oMo lo Mo Mo Mol

—————[pu_NUM]—[DISASM]

movprfx zl6, z5

fcadd z16.d, p0/m, z16.d, z6.d, #0x1lOe
mov z16.q, qlé6

stid {z16.d}, p0®, [x21, z0.d, lsl #3]
fcadd z5.d, p0/m, z5.d, z6.d, #0x5a
mov z5.q, q5

stld {z5.d}, p0, [x20, z0.d, 1lsl #3]
1s1l x1, x4, #6

neg x3, x4, lsl #5

add x10, x0, x1

sl x5, x4, #4

cmp x19, x2

mov x1, x22

csel x2, x19, x2, 1s

add x22, x22, x2

add x11, x10, x3

neg x6, x4, 1lsl #3

add x8, x11, x1

1did {z6.d}, pl/z, [x8]

add x7, x8, x5

sub x6, x6, x4

sub x8, x7, x1

1did {z16.d}, pl/z, [x7]

add x7, x8, x3

1did {z5.d}, pl/z, [x8]

adrp x16, #0x496000

1dr x17, [x16, #8]

add x16, x16, #8

add x8, x7, x1

1ldid {z3.d}, pl/z, [x7]

add x7, x8, x6, lsl #3

1ldid {z17.d}, pl/z, [x8, x6, lsl #3]
add x6, x7, x1

Trace

d — decode
n —rename
p — dispatch
| —issue

c —complete
r —retire

= - flushed

Output

r[PROBES SELECTED]
Stalled.fetch.instructionFetch
Stalled.fetch.instructionDecode
Stalled.rename.robFull
Stalled.rename.lsqFull
Stalled.rename.allocation
Stalled.dispatch.rsFull
Stalled.1issue.portBusy
Stalled.issue.rsEmpty
Stalled.loadStoreQueue.notReady
Branch.execute.misprediction
Flush.rob.storeViolation
Halt.fetch.programMemoryExceeded
Exception.rob.robCommit

Exception.fixedLatencyMemoryRead

r[ASSOCIATED_INSTRUCTIONS]

4261496, 4261496, 4261496, 4261496, 4261496, 4261496, 4261496, 4261500, 4261500, 4261500, 4261500, 4261500, 4261500,

4261469




CPU_CYCLES

Experiments with SImEng —
LARC from RIKEN

STREAM triad

40000000

30000000

I 20000000

10000000

A64FX - Hardware

AB4FX - Simulation

4.6%

CPU_CYCLES

LARCa
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CacheBW
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Vector unit design space exploration

* What is the optimal vector width?

* What is the optimal number of vector units?

* Focus on Arm’s SVE to facilitate varying vector widths: 128-2048 bits

University of

BRISTOL

256-bit vector, 64-bit elements

255 192191 128|127 64 (63
64b 64b 64b
1 1 1
31 24123 16| 15 8 (7
full predicate
256-bit vector, packed 32-bit elements
255 192|191 128(127 64 (63
32b 32b 32b 32b 32b 32b 32b 32b
K [1 K [1 K K K
31 24|23 16 | 15 8|7
full predicate

Source: The ARM Scalable Vector Extension paper, doi: 10.1109/MM.2017.35

https://uob-hpc.github.io
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Methodology

* Model a very wide frontend with
large Out-of-Order resources and

64B/cycle

L1ICACHE %  Fetch _ ~ Branch BTB

T vovnire wide load/store to support it
oGzren * Two vector unit arrangements:
Dﬂdﬂ 1. Single vector unit spanning
s ron Renam%,A"mte va rlo.us widths (12§b to 2948b)
T Dpts;q;; 2. Multiple vector units totaling the
1 osuors same vector width (16x128b to
Central Reservatiori ft/a::): c: : :124 entries) 2 X 1 O 2 4 b )
e T T H'H - T T  Arm Compiler for Linux 20.0 used to
P (e IR A ety e P compile workloads with target
J | N — L - LS”:P ﬂ -march=armv8.4-a+sve
L1D CAHE
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DAXPY

Problem size of 524288 elements.

40leld4 : 1dld {zl.d}, p0/z, [x1l, x4, lsl #3] €—
40lel8 : 1dld {z2.d}, p0/z, [x2, x4, 1lsl #3]
40lelc : fmla z2.d, p0/m, z0.d, zl.d
401e20 : stld {z2.d}, pO0, [x2, x4, 1lsl #3]
40le24 : incd x4
401e28 : whilelt p0.d, x4, x0
40le2c : b.mi 401leld
RS
d1d Id1d
st1d Id1d 3 cycles
ld1d st1d
v v
ADDR_O0 ADDR_1
=74 University of

BRISTOL

Number of Cycles

350,000
300,000
250,000
200,000
150,000
100,000

50,000

0

https://uob-hpc.github.io

Y:=a*X+Y

3937312

B Simulated cycles

Expected cycles

/ \ o




DGEMM C:=a*A*B+B *C

Problem size of M=256 N=128 K=256

- B Simulated cycles I Cycles in which backend stalls occur
4.000.000 Linear speedup

T B Simulated cycles 800.000

0 700,000
< 3,000,000 n

6 % 600,000
Y— >

2 4,488,355 & 500,000

o 2,000,000 o 876,541

g @ 400,000
= £

= S 300,000
=

1,000,000 200,000

100,000

0 0 7,254
> © ) ™ )
v v 34 " g 2
g
Vector Length (Bits) o
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Arm Neoverse V1 model

Source: Arm Neoverse V1 Software Optimization Guide

BN 4x128 bits W 2x256 bits EEE 1x512 bits

_'| Branch O ‘
] rancn \ 2,000,000
—D| Integer Single-Cycle O ‘ 1’750'000
. N Eeer::g\eé N _’I Integer Single-Cycle 1 | )

Dispatcr; 2 1,500,000

—D‘ Integer Single /Multi-Cycle O I g
O 1,250,000
_’I Integer Single /Multi-Cycle 1 | “6 2 115 456
—>| FP/ASIMD O | g 1,000,000
EH N p—— | € 750,000 1,465,915
= AU
"{ FP/ASIMD 2 | 500’000 1'1571401
“’I FP/ASIMD 3 |
250,000 | W IRIL:
»| Load/Store O |
—»| Load/Store 1 ‘ 0
| Load2 |
Lol storedatao | Workloads
| storedsta | For both the DAXPY and DGEMM workloads, the 1x512b
N ORDER SUTOF ORDER V1 variant was the most optimal.
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Scalable Matrix Exctension (SME) Support

* Implemented initial support in SimEng, along with SVE2
* SVCR sys_reg & SVE Streaming Mode

* Currently supports 7 instructions
« LD1IW{h,v}, STIW{h,v}, ZERO, FMOPA, PSEL

e Started initial evaluation of SME performance vs. SVE

* Modelling in-core SME accelerator...

Bl University of
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Hypothetical A64fx-like Core with SME

32B/cycle ——
L1 Cache 4 Fetch Bl

L 3 Predictor

Decode
> ROB (128 entries) *
Rename / Allocate
Physical Register Files *
L]
rL 2?5):;:/(35\1/5 96x GP | 48x Predicate |  System ZA Register SRR S M E u n It
9 bit) Registers Registers Registers (Size varied) Spar
_: RSE_1 RSE_2 RSBR RSA_1 RSA_2 RS_SME_ARITH RS_SME_LDSTR
’ (20 entries) (20 entries) (19 entries) (10 entries) (10 entries) (20 entries) (10 entries)
In-Core SME Accelerator
\ 4 \ 4 Y A 4 Y Y Y Y \ 4 Y
EXA EXB EAGA EAGB
FLA PR FLB BR
(Int ALU, Int (Int ALU, Int (Int ALU, LD, | | (Int ALU, LD, SME_ARITH SME_LDSTR
(FP & SVE) (Pred) Mul & STR) (FP & SVE) Div/Sqrt) (Branch) STR) STR)
— 1
LsQ .
| (40 entries) (24 entries)

1 ZSB/cycIeI I 64B/cycle

V L= SV L: 5 1 2 - b |t (5-cycles access latency)
- % University of

https://uob-hpc.github.io IA\ — I | I |%§%\vl




SME MatMul Kernel Results vs. A64FX

A64FX SVE on SimEng vs. Hypothetical Core (SVL=512-bits)

Bl SVE Cycles B SME Cycles (Phys. Rows = 128)
mmm SME Cycles (Phys. Rows = 64)

Cycles (Normalised)

32 64 96 128 192 256
Input SizeM =N =K
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SME ResNet-50 Kernel Results vs. A64FX

Instructions Cycles Time (Seconds) | GFLOPs/s
64x64x64 GEMM, 100 iterations
Hardware 5,939,076 4,135,983 0.001202 43.6
Simulation 5,854,947 3,111,429 0.001010 51.9
Simulation w/ SME | 1,942,164 (3.0x) 2,580,216 (1.2x) 0.000467 112.2

1024x1024x1024 GEMM 100 iterations

Hardware 14,095,511,071 5,888,145,390 3.00 71.5
Simulation 14,095,426,848 4,336,526,197 2.23 96.4
Simulation w/ SME | 1,589,378,697 (8.9x) 2,407,339,782 (1.8x) |1.08 198.0

% University of
BRISTOL https://uob-hpc.github.io IA\ S l m %@%\VI



Planned Development

New processor models

e Continued development of Apple M1
* NVIDIA Grace / Neoverse V2

Multi-core and SMT support
Improved memory hierarchy

Further set of supported codes to cover more of the simulated parch

e SPEC_CPU 2017, SPEChpc 2021, MLPerf, RIKEN Kernels, BERT, ResNet-50,...

More compiler support

e Cray, Fujitsu, Nvidia

Support for advanced branch prediction, cache prefetching

RISC-V support

¢ Included in next release with floating point

Improved Cl testing

e Testing on multiple OS’s

R J Improved tooling for design space exploration

8 ] | https://uob-hpc.github.io ,A\c: Im%\vl
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Conclusions

* SimEng is letting us explore how fast we can make a microarchitecture
level simulator

* We can now easily make major changes to a microarchitecture to
enable rapid design space exploration

* SimEng achieving >4-5X speedup over gem5 while being more accurate
and much, much simpler to use and modify

» SST works well for adding memory hierarchy models, soon multicore

 We now have a fast, accurate, stand-alone, single-core model in
O(10,000) lines of code — what can you use this for?
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