
© 2000-2022 HLRS, Rolf Rabenseifner

New Features in MPI 4.0

Rolf Rabenseifner, Tobias Haas
rabenseifner@hlrs.de tobias.has@hlrs.de

University of Stuttgart

High-Performance Computing-Center Stuttgart (HLRS)

www.hlrs.de

Corrections from 2022

Corrections fro. 2022

Corrections fro. 2022

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 2 / 68

MPI Forum

• MPI-1 Forum

– MPI-1.0 — May 1994

– MPI-1.1 — June 1995

• MPI-2 Forum

– MPI-1.2 — July 18, 1997: mainly clarifications.

– MPI-2.0 — July 19, 1997: extensions to MPI-1.2.

• MPI-3 Forum  MPI-4 Forum

– Started Jan. 14-16, 2008 (1st meeting in Chicago)

– MPI-2.1 — June 23, 2008

— mainly combining MPI-1 and MPI-2 books to one book

– MPI-2.2 — September 4, 2009: Clarifications and a few new functions

– MPI-3.0 — September 21, 2012: Important new functionality

– MPI-3.1 — June 4, 2015: Errata & new: Nonblocking I/O, MPI_AINT_

– MPI-4.0 — June 9, 2021: Several new functionalities

(not printed)

– MPI-4.1 — scheduled for end 2023

DIFF
ADD

3.1, shorter talks + more exe.

MPI course  Chap.1 Overview Slide ~48 in the HLRS MPI course

Topics 1-19

Topics 20-24

Only a short

overview:

1-2 Minutes/topic

+

many background

slides

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 3 / 68

Acknowledgments for the HLRS MPI course

This talk is based on our HLRS MPI-3.1/4.0 five-day course

 All course slides + exercises:

https://www.hlrs.de/training/self-study-materials/mpi-course-material

 Used in many training courses: https://www.hlrs.de/training/ & https://vsc.ac.at/training

 Course acknowledgments also apply:

– The MPI-1.1 part of this course is partially based on the MPI course developed by the EPCC

Training and Education Centre, Edinburgh Parallel Computing Centre, University of Edinburgh.

– Thanks to the EPCC, especially to Neil MacDonald, Elspeth Minty, Tim Harding, and Simon Brown.

– Course Notes and exercises of the EPCC course can be used together with these slides.

– The MPI-2.0 part is partially based on the MPI-2 tutorial at the MPIDC 2000 by Anthony Skjellum,

Purushotham Bangalore, Shane Hebert (High Performance Computing Lab, Mississippi State

University, and Rolf Rabenseifner (HLRS)

– Some MPI-3.0 detailed slides are provided by the MPI-3.0 ticket authors, chapter authors, or chapter

working groups, Richard Graham (chair of MPI-3.0), and Torsten Hoefler (additional example about

new one-sided interfaces)

– Thanks to Claudia Blaas-Schenner from TU Wien (Vienna) and many other trainers and participants

for all their helpful hints for optimizing this course over so many years.

– Thanks to Tobias Haas from HLRS for his Python binding of the exercises. Thanks to Claudia

Blaas-Schenner and David Fischak from TU Wien (Vienna) for their additional hints on the Python

bindings. Additional background was a first draft from the HiDALGO project at HLRS.

MPI course  Acknowledgements

https://www.hlrs.de/training/self-study-materials/mpi-course-material
https://www.hlrs.de/training/
https://vsc.ac.at/training

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 4 / 68

Large counts

Topic 1/24

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 5 / 68

Large Counts with MPI_Count, …

• MPI uses different integer types

– int and INTEGER

– MPI_Aint = INTEGER(KIND=MPI_ADDRESS_KIND)

– MPI_Offset = INTEGER(KIND=MPI_OFFSET_KIND)

– MPI_Count = INTEGER(KIND=MPI_COUNT_KIND)

• sizeof(int) ≤ ≤ sizeof(MPI_Count)

• All count arguments are int or INTEGER.

• Real message sizes may be larger due to datatype size.

• MPI_Type_get_extent, MPI_Type_get_true_extent,

MPI_Type_size, MPI_Type_get_elements

return MPI_UNDEFINED if value is too large

• MPI_Type_get_extent_x, MPI_Type_get_true_extent_x,

MPI_Type_size_x, MPI_Type_get_elements_x

return values as MPI_Count

• MPI_Xxxx_c(…) in C: additional interfaces with large counts

MPI_Xxxx(…) !(_c) in Fortran: overloaded interfaces with large counts

sizeof(MPI_Aint)

sizeof(MPI_Offset)

New in MPI-3.0

New in MPI-3.0

New in MPI-3.0

New in

MPI-3.0

Skipped

MPI course  Chap.12-(2) Derived datatypes  advanced topics

New in

MPI-4.0

Two exceptions with explicit _c in Fortran:

MPI_Op_create_c & MPI_Register_datarep_c

Slide ~462 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 6 / 68

MPI 3.1 page 28

MPI 4.0 page 37

• Language

independent

definition

• C interface

• Fortran 2008

interface through

mpi_f08 module

• Old Fortran interface

through mpi module

and mpif.h

MPI course  Chap.2 Process Model & Language Bindings

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf#page=60

No large count in mpi / mpif.h

Large count version in MPI-4.0
MPI_Recv_c(…) in C

with MPI_Count count

MPI_Recv(…) !(_c) in Fortran

with INTEGER(KIND=MPI_

COUNT_KIND) :: count

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf#page=77

Corrections fro. 2022

INTEGER(KIND=MPI_COUNT_

Slide ~58 in the HLRS MPI course

New in MPI-4.0

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf#page=60
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf#page=77
https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 7 / 68

The Fortran support methods

Fortran

support method

MPI-1.1 MPI-2 MPI-

3

MPI-

4.0

MPI-

next

MPI-

…

far

future

USE mpi_f08 x x 5 5 5 5 5

USE mpi x 3 4 4 2b 2b 1 0

INCLUDE ´mpif.h´ 3 3 2a 2a/b 1 0 0

Level of Quality:

5 – valid and consistent with the Fortran standard (Fortran 2008 + TS 29113) 1)

4 – valid and only partially consistent

3 – valid and small consistency (e.g., without argument checking)

2 – use is strongly (a) discouraged or (b) partially frozen (i.e., not with all new functions)

1 – deprecated

0 – removed

x – not yet existing

Today Maybe in the future

Fortran

MPI course  Chap.2 Process Model & Language Bindings

In MPI-4.0, new

large count interfaces

only in mpi_f08 !

Past

1) For full consistency, Fortran 2003 + TS29113 is enough.

Fortran 2018 and later versions include TS 29113.

Without TS29113, same partial consistency as with the mpi module.

Slide ~60 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 8 / 68

MPI_Put

• C/C++: int MPI_Put(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp,

int target_count, MPI_Datatype target_datatype, MPI_Win win)

int MPI_Put_c(const void *origin_addr, MPI_Count origin_count,

MPI_Datatype origin_datatype, int target_rank, MPI_Aint target_disp,

MPI_Count target_count, MPI_Datatype target_datatype, MPI_Win win)

• Fortran: MPI_Put(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, win, ierror)

mpi_f08: TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_count

or INTEGER(KIND=MPI_COUNT_KIND), INTENT(IN) :: origin_count, target_count

INTEGER, INTENT(IN) :: target_rank

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

mpi & mpif.h: <type> ORIGIN_ADDR(*)

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

INTEGER TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

• Python: win.Put((origin_buf, origin_count, origin_datatype), target_rank,

(target_disp, target_count, target_datatype))

C

Fortran

Overloaded large count

version since MPI-4.0

Large count version,

new in MPI-4.0

MPI course  Chap.10 One-sided Communication

Python

Slide ~344 in the HLRS MPI course

The course-slides

include also the mpi4py

binding, which are not

part of the MPI standard

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 9 / 68

Window Creation with MPI_Win_create

• C/C++: int MPI_Win_create(void *base, MPI_Aint size,

int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)

int MPI_Win_create_c(void *base, MPI_Aint size,

MPI_Aint disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)

• Fortran: MPI_Win_create(base, size, disp_unit, info, comm, win, ierror)
mpi_f08: TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

INTEGER, INTENT(IN) :: disp_unit

or INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: disp_unit

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Win), INTENT(OUT) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

mpi & mpif.h: <type> base(*)

INTEGER(KIND=MPI_ADDRESS_KIND) size

INTEGER disp_unit, info, comm, win, ierror

• Python: win = MPI.Win.Create(memory, disp_unit, info, comm)

C

Fortran

Overloaded large count

version since MPI-4.0

Large count version,

new in MPI-4.0

MPI course  Chap.10 One-sided Communication

Python

e.g., a numpy array

Tobias Haas: MPI.BOTTOM

size == 0, which implies that
Slide ~334 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 10 / 68

New persistent collectives

 new terms „nonblocking & co“

Topic 2/24

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 11 / 68

Non-Blocking Communications

Separate communication into three phases:

• Initiate nonblocking communication

– returns immediately

– routine name starting with MPI_I…

 it is local,

i.e., it returns independently of any other process’ activity

• Do some work (perhaps involving other communications?)

• Wait for nonblocking communication to complete, i.e.,

– the send buffer is read out, or

– the receive buffer is filled in

1) The definition of nonblocking is clarified

“I” stands for

• Immediate (=local)

• and Incomplete

MPI course  Chap.4 Nonblocking Communication Slide ~109 in the HLRS MPI course

Complete rewording of MPI-4.0

Section 2.4 Semantic Terms

2.4.1 MPI Operations

2.4.2 MPI Procedures

MPI-1.1 – MPI-3.1:

nonblocking = incomplete

MPI-4.0:

nonblocking = incomplete AND local

= nonblocking1)

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 12 / 68

Nonblocking Operations

ok

beep

nonblocking synchronous send

Nonblocking operations consist of:

• A nonblocking procedure call: it returns immediately and allows the

sub-program to perform other work

• At some later time the sub-program must test or wait for the completion

of the nonblocking operation

MPI course  Chap.1 Overview Slide ~30 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 13 / 68

Visiting MPI Chapter 2 Terms and Conventions

Operations and Procedures, (non)blocking / (non-)local

Clarified in

MPI-4.0

MPI course  Chap. 15 Probe, Persistent Requests, Cancel

The basis
of MPI

• MPI operations consist of four stages:

– Initialization, starting, completion, freeing

• MPI operations can be

– Blocking: all four stages are combined in a single complete/blocking procedure.

 which returns when operation has completed.

– Nonblocking:  next slide

– Persistent:  2nd next slide

• MPI procedures can be

– Non-local: returning may require, during its execution, some specific

semantically-related MPI procedure to be called on another MPI process.

– Local: is not non-local. (See also discussion of “weak local”)

• MPI procedures (if they implement an operation or parts of it) can be

– Completing: on return, all resources (e.g., buffers or array arg.s) can be reused.

– Incomplete: return before resources can be reused.

– Nonblocking: incomplete AND local / Blocking: Completing OR non-local.

• Examples: – Nonblocking: • Incomplete & local: MPI_Isend, MPI_Irecv, MPI_Ibcast, MPI_Send_init

– Blocking: • Completing & non-local: MPI_Send, MPI_Recv, MPI_Bcast

• Incomplete & non-local: MPI_Mprobe, MPI_Bcast_init

• Completing & local: MPI_Bsend, MPI_Rsend, MPI_Mrecv

Orthogonal concept,

although in most cases:

• Incomplete/nonblocking

communication proc.

 local

• Complete/blocking

communication proc.

 non-local

(with some exceptions)

Slide ~543 in the HLRS MPI course

New in MPI-4.0

The semantics of all operation-related MPI procedures

is listed in Annex A.2 (since MPI-4.0)

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 14 / 68

Nonblocking Operations

ok

beep

nonblocking synchronous send

MPI course  Chap. 15 Probe, Persistent Requests, Cancel

Nonblocking operations consist of:

• A nonblocking procedure call: it is incomplete & returns immediately and allows

the sub-program to perform other work  stages initialization + starting

• At some later time the sub-program must test or wait for the completion

of the nonblocking operation  stages completion + freeing

New in MPI-4.0

Slide ~544 in the HLRS MPI course

= initiation

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 15 / 68

Persistent Requests

For communication calls with identical argument lists in each loop iteration

(only buffer content changes): Stage

• MPI_(,B,S,R)Send_init and MPI_Recv_init initialization

– Creates a persistent MPI_Request handle

– Status of the handle is initiated as inactive

– Local calls (does not communicate)

– It only setups the argument list

• MPI_Bcast_init …, also for collective operations

– Blocking & collective calls (may communicate)

• MPI_Start(request [,ierrror]) / MPI_Startall(cnt, requests [,ierrror]) starting

– Starts the communication call(s) as nonblocking call(s), i.e., handle gets active

• To be completed with regular MPI_Wait… / MPI_Test… calls  inactive completion

• MPI_Request_free to finally free such a handle freeing

• Usage sequence: init Loop(Start Wait/Test) Request_free

Completes an active request handle

 inactive

Free the inactive

persistent request

handlePersistent inactive request  active

MPI course  Chap. 15 Probe, Persistent Requests, Cancel

New in MPI-4.0

New in MPI-4.0

Recommendation:

Never free an active request handle.

Active request handles should be

completed with WAIT or TEST

Goal:
Enables additional optimizations

within the MPI library

Slide ~545 in the HLRS MPI course

Caused all

these new

definitions

of the terms

Topic 3/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 16 / 68

Partitioned Point-to-Point

Communication

Topic 4/24

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 17 / 68

Partitioned Point-to-Point Communication

• MPI-4.0:

Partitioned communication is “partitioned“ because it allows for multiple

contributions of data to be made, potentially, from multiple actors (e.g.,

threads or tasks) in an MPI process to a single communication operation.

• A point-to-point operation (i.e., send or receive)

– can be split into partitions,

– and each partition is filled and then “send” with MPI_Pready by a thread;

– And same for receiving.

• Technically provided as a new form of persistent communication.

MPI course  Chap. 14 MPI and Threads

New in MPI-4.0

New in Short tour for Ch.14Slide ~538 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 18 / 68

Partitioned Communication Example

#define PARTITIONS 8

#define COUNT 6

double message[PARTITIONS*COUNT];

MPI_Count count_send = COUNT, count_recv=COUNT/2;

int source = 0, dest = 1, tag = 1, flag = 0, rank, thread_provided;

MPI_Request request;

MPI_Init_thread(NULL,NULL,MPI_THREAD_MULTIPLE, &thread_provided);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* Sender part (rank 0) */

if (rank == 0){

MPI_Psend_init(message, PARTITIONS, count_send, MPI_DOUBLE, dest, tag,

MPI_COMM_WORLD, MPI_INFO_NULL, &request);

MPI_Start(&request);

#pragma omp parallel for shared(request) num_threads(8)

for(int i = 0; i < PARTITIONS; ++i){ /* 1 partition per thread */

/* compute and fill partition message[COUNT*i…COUNT*(i+1)-1], then mark ready: */

MPI_Pready(i, request);

}

while(!flag){

/* Do useful work */

MPI_Test(&request, &flag, MPI_STATUS_IGNORE);

/* Do useful work */

}

MPI_Request_free(&request);

}

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 19 / 68

Partitioned Communication Example

/* Receiver part (rank 1) */

else if (rank == 1){

/* We split every partition by half, i.e. count per partition divided by two, number or partitions increased by 2 */

MPI_Precv_init(message, PARTITIONS*2, count_recv, MPI_DOUBLE, source, tag,

MPI_COMM_WORLD, MPI_INFO_NULL, &request);

MPI_Start(&request);

#pragma omp parallel for shared(request) num_threads(NUM_THREADS)

for (int j=0; j< PARTITIONS*2; j+=2){

int part1_complete = 0, part2_complete = 0;

int work1_complete = 0, work2_complete = 0;

while(work1_complete == 0 || work2_complete == 0){

/* test partition #j and #j+1 */

if(!part1_complete){ MPI_Parrived(request, j, &part1_complete);}

if(part1_complete && !work1_complete){

/* Do work using partition j data */

work1_complete = 1;

}

if(!part2_complete){ MPI_Parrived(request, j+1, &part2_complete);}

if(part2_complete && !work2_complete){

/* Do work using partition j+1 data */

work2_complete = 1;

}

}

}

/* Need to complete request since MPI_PARRIVED doesn‘t. */

MPI_Wait(&request, MPI_STATUS_IGNORE); /* Alternative: MPI_Test in loop and do useful work, see previous slide*/

MPI_Request_free(&request);

}

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 20 / 68

Comments on Partitioned Communication

• Sequence is

Init (Start Pready/Rarrived Wait/Test)∗ Free

e.g.

MPI_Psend[recv]_init (MPI_Pstart MPI_Pready MPI_Wait)* MPI_Request_free

• MPI_PSEND_INIT must be combined with MPI_PRECV_INIT.

• Matching rules are the same as for normal pt-to-pt communication.

In doubt, order of initialization is used to break ties.

• Buffers must have same size for send and receive.

• Partitioning on sender/receiver may differ (as in the example).

• PREADY must be used to mark partition to be sent.

• MPI_PARRIVED(request,partition,flag) may be used to check

– if partition is complete,

– but does not complete the request (must be done with MPI_TEST/MPI_WAIT).

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 21 / 68

The new sessions model

Topic 5/24

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 22 / 68

World Model and Sessions Model

• The World Model

– MPI_COMM_WORLD can be used between MPI_Init and MPI_Finalize

– Exactly one call to MPI_Init and MPI_Finalize

– Problem, if several independent software layers want to use MPI:

• Each layer can duplicate MPI_COMM_WORLD using MPI_COMM_DUP()

• But there is no rule on which layer calls MPI_Init and which one MPI_Finalize

• The Sessions Model

– Each independent software layer xxx can initialize and finalize MPI, e.g., as follows:

• As part of layer_xxx_init

– MPI_Session_init(MPI_INFO_NULL, MPI_ERRORS_ARE_FATAL, &session);

– MPI_Group_from_session_pset(session, "mpi://WORLD", &xxx_world_group);

– MPI_Comm_create_from_group(xxx_world_group, "stringtag_xxx", MPI_INFO_NULL,

MPI_ERRORS_ARE_FATAL, &xxx_world_comm);
– MPI_Group_free(&xxx_world_group);

• As part of layer_xxx_finalize

– MPI_Comm_free(&xxx_world_comm);

– MPI_Session_finalize(&session);

– Caution: MPI objects derived from different MPI Session handles

shall not be intermixed with each other in a single MPI procedure call.

• An MPI application may use the World Model (not more than once)

together with the Sessions Model (with several overlapping or non-overlapping sessions)

Since MPI-1 New in MPI-4.0

MPI course  Chap.8-(2) Groups & Communicators, advanced topics

Since MPI-2.0:

duplicates with

associated key

values, topology

and info hints.

Since MPI-4.0:

Now without

info hints

Slide ~234 in the HLRS MPI course

e.g., each independent software layer initiates its own session and communicator

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 23 / 68

Environment inquiry – implementation information (1)

Inquire start environment

• Predefined info object MPI_INFO_ENV (in the World Model)

or info handle created with MPI_Info_create_env (in the Sessions Model)

holds arguments from

– mpiexec, or

– MPI_COMM_SPAWN

New in MPI-3.0

MPI course  Chap.8-(2) Groups & Communicators, advanced topics

see a few slides later

MPI_Info_create_env

New in MPI-4.0

Slide ~232 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 24 / 68

Sessions Model – Summary

• The Sessions Model  a method to init/finalize MPI within

independent application components / software layers

MPI course  Chap.8-(2) Groups & Communicators, advanced topics

New in MPI-4.0

Slide ~235 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 25 / 68

New ways for hardware-based

split of communicators

Topic 6/24

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 26 / 68MPI course  Chap.11-(1) Shared Memory One-sided Communication

Splitting into smaller shared memory islands,

e.g., NUMA nodes or sockets

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … comm_all

0 1 2 3
comm_sm

0 1 2 3
comm_sm

0 1 2 3
comm_sm

0 1 2 3
comm_sm

0 1 2 3
comm_sm

MPI_Comm_split_type (comm_all, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &comm_sm_large);

MPI_Comm_rank (comm_sm_large, &my_rank_sm_large); MPI_Comm_size (comm_sm_large, &size_sm_large);

MPI_Comm_split (comm_sm_large, /*color*/ my_rank_sm_large / size_sm, 0, &comm_sm);

MPI_Win_allocate_shared (…, comm_sm, …);

• Most MPI libraries have an non-standardized method to split a communicator into NUMA

nodes (e.g., sockets): (see also Current support for split types in MPI implementations or MPI based libraries)

– OpenMPI: choose split_type as OMPI_COMM_TYPE_NUMA

– HPE: MPI_Info_create (&info); MPI_Info_set(info, "shmem_topo", "numa"); // or "socket"

MPI_Comm_split_type(comm_all, MPI_COMM_TYPE_SHARED, 0, info, &comm_sm);

– mpich: split_type=MPIX_COMM_TYPE_NEIGHBORHOOD, info_key= "SHMEM_INFO_KEY“ and

value= "machine", "socket", "package", "numa", "core", "hwthread", "pu", "l1cache", ..., or "l5cache"

• Two additional standardized split types:○ MPI_COMM_TYPE_HW_GUIDED and

○ MPI_COMM_TYPE_HW_UNGUIDED
• See also Exercise 3.

• Subsets of shared memory nodes, e.g., one comm_sm on each socket with size_sm

cores (requires also sequential ranks in comm_all for each socket!)

New in MPI-4.0 Corrections

Corrections

Corrections

or (size_sm_large /number_of_sockets) here 2

May not

work with
Intel-MPI

comm_sm_large,
e.g., one ccNUMA node

Slide ~367 in the HLRS MPI course

https://github.com/mpiwg-hw-topology/hw-topology-issues/wiki/Current-support-for-split-types-in-MPI-implementations-or-MPI-based-libraries
https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 27 / 68

MPI_Neighbor communication:

Examples / bug-fixes

Topic 7/24

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 28 / 68

Periodic MPI_NEIGHBOR_ALLTOALL in direction d

with 4 processes

re
c
v
b

u
f[2

*d
+

0
] =

 +
4

0
0

s
e

n
d

b
u

f[
2

*d
+

0
]
=

 -
1
0
0

s
e

n
d

b
u

f[2
*d

+
1

] =
 +

1
0

0

re
c
v
b

u
f[

2
*d

+
1

]
=

 -
2
0
0

re
c
v
b

u
f[2

*d
+

0
] =

 +
1

0
0

s
e

n
d

b
u

f[
2

*d
+

0
]
=

 -
2
0
0

s
e

n
d

b
u

f[2
*d

+
1

] =
 +

2
0

0
re

c
v
b

u
f[

2
*d

+
1

]
=

 -
3
0
0

re
c
v
b

u
f[2

*d
+

0
] =

 +
2

0
0

s
e

n
d

b
u

f[
2

*d
+

0
]
=

 -
3
0
0

s
e

n
d

b
u

f[2
*d

+
1

] =
 +

3
0

0

re
c
v
b

u
f[

2
*d

+
1

]
=

 -
4
0
0

re
c
v
b

u
f[2

*d
+

0
] =

 +
3

0
0

s
e

n
d

b
u

f[
2

*d
+

0
]
=

 -
4
0
0

s
e

n
d

b
u

f[2
*d

+
1

] =
 +

4
0

0

re
c
v
b

u
f[

2
*d

+
1

]
=

 -
1
0
0

sendbuf

recvbuf

-100 +100

+400 -200

coord == 0 coord == 1 coord == 2 coord == 3

-200 +200

+100 -300

-300 +300

+200 -400

-400 +400

+300 -100

… grey array entries are used only if periods[d] == non-zero in C or .TRUE. in Fortran

rank_source my_rank rank_dest

This figure

represents

one

direction

d.

Of course,

it is valid

for any

direction

MPI course  Chap.9-(2) Virtual topologies  Neighborhood comm & MPI_BOTTOM

Clarified in MPI-4.0

Slide ~275 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 29 / 68

As if …

After MPI_NEIGHBOR_ALLTOALL on a Cartesian communicator returned, the content of the recvbuf is

as if the following code is executed:

MPI_Cartdim_get(comm, &ndims);

for(/*direction*/ d = 0; d < ndims; d++) {

MPI_Cart_shift(comm, /*direction*/ d, /*disp*/ 1, &rank_source, &rank_dest);

MPI_Sendrecv(sendbuf[d*2+0], sendcount, sendtype, rank_source, /*sendtag*/ d*2,

recvbuf[d*2+1], recvcount, recvtype, rank_dest, /*recvtag*/ d*2,

comm, &status); /* 1st communication in direction of displacment -1 */

MPI_Sendrecv(sendbuf[d*2+1], sendcount, sendtype, rank_dest, /*sendtag*/ d*2+1,

recvbuf[d*2+0], recvcount, recvtype, rank_source, /*recvtag*/ d*2+1,

comm, &status); /* 2nd communication in direction of displacment +1 */

}

The tags are chosen to guarantee that both communications (i.e., in negative and positive direction) cannot

be mixed up, even if the MPI_SENDRECV is substituted by nonblocking communication and the

MPI_ISEND and MPI_IRECV calls are started in any sequence.

send_buf

recv_buf

-100 +100

+400 -200

-200 +200

+100 -300

-300 +300

+200 -400

-400 +400

+300 -100

rank_source my_rank rank_dest

MPI course  Chap.9-(2) Virtual topologies  Neighborhood comm & MPI_BOTTOM

MPI_

Slide ~276 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 30 / 68

Wrong implementations of periodic

MPI_NEIGHBOR_ALLTOALL with only 2 and 1 processes

re
c
v
b

u
f[2

*d
+

0
] =

 +
2

0
0

s
e

n
d

b
u

f[
2

*d
+

0
]
=

 -
1
0
0

s
e

n
d

b
u

f[2
*d

+
1

] =
 +

1
0

0

re
c
v
b

u
f[

2
*d

+
1

]
=

 -
2
0
0

re
c
v
b

u
f[2

*d
+

0
] =

 +
1

0
0

s
e

n
d

b
u

f[
2

*d
+

0
]
=

 -
2
0
0

s
e

n
d

b
u

f[2
*d

+
1

] =
 +

2
0

0

re
c
v
b

u
f[

2
*d

+
1

]
=

 -
1
0
0

re
c
v
b

u
f[2

*d
+

0
] =

 +
1

0
0

s
e

n
d

b
u

f[
2

*d
+

0
]
=

 -
1
0
0

s
e
n
d
b
u
f[2

*d
+

1
] =

 +
1
0
0

re
c
v
b
u
f[

2
*d

+
1
]
=

 -
1
0
0

sendbuf

recvbuf

-100 +100

+200 -200

coord == 0 coord == 1 coord == 0

-200 +200

+100 -100

-100 +100

+100 -100

-200 +200 -100 +100 -100 +100

Wrong results with openmpi/4.0.1-gnu-8.3.0 and cray-mpich/7.7.6 with 2 and 1 processes:

recvbuf

Results

required by

MPI

WRONG

Results

required by

MPI

WRONG

MPI course  Chap.9-(2) Virtual topologies  Neighborhood comm & MPI_BOTTOM Slide ~277 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 31 / 68

Communication pattern of MPI_NEIGHBOR_ALLGATHER

sendbuf

recvbuf

100

300 200

200

100 300

300

200 100

100

100 100

… grey array entries are used only if periods[d] == non-zero in C or .TRUE. In Fortran

The recv_buf

represents one

direction d.

Of course, this figure

is valid for any

direction

The green recv_buf

elements are

recvbuf[2*d+0] and____

recvbuf[2*d+1]

MPI course  Chap.9-(2) Virtual topologies  Neighborhood comm & MPI_BOTTOM

Clarified in MPI-4.0

The send_buf is only

one element,

which is sent to the

neighbor processes

in all directions

Slide ~278 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 32 / 68

Other small new MPI-4 features

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 33 / 68

Info handles revisited

• New nonblocking MPI_Comm_idup_with_info

complementing blocking MPI_Comm_dup_with_info

• Use MPI_Info_get_string

instead of deprecated MPI_Info_get_valuelen and MPI_Info_get

• MPI_Comm|File|Win_set_info + MPI_Comm|File|Win_get_info

were clarified:

– The MPI library may or may not set or recognize some (system

specific) hints

New in MPI-4.0

Was new in MPI-3.0

New in MPI-4.0

MPI course  Chap.8-(2) Groups & Communicators, advanced topics Slide ~230 in the HLRS MPI course

Additional text in MPI-4.0

Topic 8/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 34 / 68

MPI_Info Object

• An MPI_Info is an opaque object that consists of a set of (key,value) pairs

– Both key and value are strings
– A key should have a unique name within one info handle
– Several keys are reserved by standard / implementation
– Portable programs may use MPI_INFO_NULL as the info argument

– Vendor keys are also portable, may be ignored by other libraries
– Several sets of vendor-specific keys may be used

• Allows applications to pass environment-specific information

• Allow applications to provide assertions regarding their usage of

MPI objects and operations  to improve performance or resource utilization

• Several functions provided to manipulate the info objects

• Used in:

– Process Creation,

– Window Creation,

– MPI-I/O,

– MPI_Comm_(i)dup_with_info,

– MPI_INFO_ENV

• The key/value list returned by MPI_Comm|File|Win_get_info in the handle
may differ from a those set by the application during Comm|File|Win creation
or stored with MPI_Comm|File|Win_set_info: The MPI library may or may not set or

recognize some (system specific) hints.

Example:

MPI_Info info_noncontig;

MPI_Info_create (&info_noncontig);

MPI_Info_set (info_noncontig,

"alloc_shared_noncontig", "true");

MPI_Win_allocate_shared (…, info_noncontig, …);

Info handle

Internally

stored in the

MPI library

Creates the list

with 0 entries

Adds 1 new entry,

or modifies the

value if key

already exists

key1 value1

key2 value2

… …

MPI course  Chap.8-(2) Groups & Communicators, advanced topics

New in MPI-4.0

New in

MPI-4.0

New in MPI-4.0: Use MPI_Info_get_string instead of

deprecated MPI_Info_get_valuelen and MPI_Info_get.

-

A general service for
many MPI procedures

Slide ~230 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 35 / 68

Wildcarding

• Receiver can wildcard.

• To receive from any source — source = MPI_ANY_SOURCE

• To receive from any tag — tag = MPI_ANY_TAG

• Actual source and tag are returned in the receiver’s status parameter.

• With info assertions

– "mpi_assert_no_any_source" = "true" and/or

– "mpi_assert_no_any_tag" = "true"

stored on the communicator using MPI_Comm_set_info(),

– an MPI application can tell the MPI library that it will never use MPI_ANY_SOURCE

and/or MPI_ANY_TAG on this communicator

 may enable lower latencies.

• Other assertions:

– "mpi_assert_exact_length" = "true"  receive buffer must have exact length

– "mpi_assert_allow_overtaking" = "true"  message order need not to be preserved

MPI course  Chap.3 Messages and Point-to-Point Communication

New in MPI-4.0

Slide ~91 in the HLRS MPI course Topic 9/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 36 / 68

Error handler revisited

• “MPI calls that are not related to any MPI objects are considered to be

attached to the communicator MPI_COMM_SELF when using the

World Model”

– If you want to change the initial error handler
• MPI_ERRORS_ARE_FATAL is the default

• May be changed when calling mpirun / mpiexec

then you must change it for both,

MPI_COMM_WORLD and MPI_COMM_SELF

• New error handler MPI_ERRORS_ABORT

– aborts only all processes of the related communicator

• Many other small additions / clarifications / …, see

– MPI-4.0 Appendix B.1.2 Changes in MPI-4.0, items 4, 19-21, 26-27

New in MPI-4.0

New in MPI-4.0

New in MPI-4.0

Slide ~202 in the HLRS MPI courseMPI course  Chap.7 Error Handling

New in MPI-4.0

Topic 10/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 37 / 68

Error Handling  “assembler for parallel computing”

2-level-concept with error codes and error classes, see MPI-3.1/MPI-4.0 Sect. 8.3-5/9.3-5

Most important aspects:

• The communication should be reliable (same rule as for processor and memory)

• If the MPI program is erroneous  no warranties:

– by default: abort, if error detected by MPI library

otherwise, unpredictable behavior

– C/C++: MPI_Comm_set_errhandler (comm, MPI_ERRORS_RETURN);
Fortran: call MPI_Comm_set_errhandler(comm, MPI_ERRORS_RETURN, ierr)

directly after MPI_INIT with both comm = MPI_COMM_WORLD and MPI_COMM_SELF, then

• ierror returned by each MPI routine (except MPI window and MPI file routines)

• undefined state after an erroneous MPI call has occurred

(only MPI_Abort(…) should be still callable)

– Exception: MPI-I/O has default MPI_ERRORS_RETURN

• Default can be changed through MPI_FILE_NULL:

• MPI_File_set_errhandler (MPI_FILE_NULL, MPI_ERRORS_ARE_FATAL)

• See MPI-3.1 Sect. 13.7, page 555 / MPI-4.0 Sect. 14.7, page 719, and course Chapter 7

– MPI_ERRORS_ARE_FATAL aborts the process and all connected processes

– MPI_ERRORS_ABORT aborts only all processes of the related communicator

MPI course  Chap.7 Error Handling

i.e., error handler MPI_ERRORS_ARE_FATAL

is the default

New in MPI-4.0

MPI_ERRORS_ARE_FATAL

New MPI_ERRORS_ABORT

Newly added in MPI-4.0

Slide ~202 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 38 / 68

Send-Receive in one routine

• MPI_Sendrecv & MPI_Sendrecv_replace

– Combines the triple “MPI_Irecv + Send + Wait” into one routine

• Nonblocking MPI_Isendrecv & MPI_Isendrecv_replace

– Whereas blocking MPI_Sendrecv was used to prevent

• serializations and

• deadlocks,

– the nonblocking MPI_Isendrecv can be used, e.g.,

to parallelize the existing communication calls in multiple directions

 e.g., to minimize idle times if only some neighbors are delayed

MPI course  Chap.4 Nonblocking Communication

New in MPI-4.0

Slide ~126 in the HLRS MPI course Topic 11/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 39 / 68

Use cases for nonblocking operations

• To prevent serializations and deadlocks

(as if overlapping of communication with other communication)
– Now also described in the intro of MPI-4.0 Section 3.7 Nonblocking Communication

MPI course  Chap.4 Nonblocking Communication

New in MPI-4.0

Corrections fro. 2022

Slide ~128 in the HLRS MPI course

3.7 Nonblocking Communication

Nonblocking communication is important both for reasons of correctness and performance.

For complex communication patterns, the use of only blocking communication

(without buffering) is difficult because the programmer must ensure that each send is

matched with a receive in an order that avoids deadlock. For communication patterns that

are determined only at run time, this is even more difficult. Nonblocking communication

can be used to avoid this problem, allowing programmers to express complex and possibly

dynamic communication patterns without needing to ensure that all sends and receives

are issued in an order that prevents deadlock (see Section 3.5 and the discussion of “safe”

programs). Nonblocking communication also allows for the overlap of communication with

different communication operations, e.g., to prevent the serialization of such operations,

and for the overlap of communication with computation. Whether an implementation is

able to accomplish an effective (from a performance standpoint) overlap of operations depends

on the implementation itself and the system on which the implementation is running.

Using nonblocking operations permits an implementation to overlap communication with

computation, but does not require it to do so.

Topic 12/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 40 / 68

Window creation or allocation

Four different methods

• Using existing memory as windows

– MPI_Alloc_mem, MPI_Win_create, MPI_Win_free, MPI_Free_mem

• Allocating new memory as windows

– MPI_Win_allocate

• Allocating shared memory windows – usable only within a shared memory node

– MPI_Win_allocate_shared, MPI_Win_shared_query

• Using existing memory dynamically

– MPI_Win_create_dynamic, MPI_Win_attach, MPI_Win_detach

MPI_Alloc_mem, MPI_Win_allocate, and MPI_Win_allocate_shared:

• Memory alignment must fit to all predefined MPI datatypes

– alternative minimum alignment through info key "mpi_minimum_memory_alignment"

New in

MPI-3.0

MPI course  Chap.10 One-sided Communication

New in

MPI-4.0

Slide ~329 in the HLRS MPI course Topic 13/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 41 / 68

Lock/Unlock

• Does not guarantee a sequence

• agent may be necessary on systems

without (virtual) shared memory

• Portable programs can use

lock calls to windows in memory

allocated only by MPI_Alloc_mem,

MPI_Win_allocate, or

MPI_Win_attach or

MPI_Win_allocate_shared

• RMA completed after MPI_Unlock

at both origin and target

• No concept of an exposure epoch

 like window is permanently exposed

 local load/stores must be enclosed

in a local lock/unlock epoch

synchronization

communication

Origin1

lock
.

put
put
.

unlock

Origin2

lock
.

get
get
.

unlock

Target

lock

unlock

lock

unlock

window

MPI course  Chap.10 One-sided Communication

New in MPI-4.0

This issue came up in questions of two participants of our MOOC on
“One
https://www.futurelearn.com/courses/mpi
It is a series of changes, the slides
(slide numbers may change over time, but the links should be stable).

Slide ~351 in the HLRS MPI course Topic 14/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 42 / 68

MPI_Request_free

• MPI_Request_free for active communication request:

– Marks a request handle for deallocation

– Deallocation will be done after active communication completion

– May be used only for active send-request to substitute MPI_Wait,

but strongly discouraged and dangerous when there is no other 100%

guarantee that the send-buffer can be reused.

• Active send handle is produced with MPI_I(,s,b,r)send

or MPI_(,S,B,R)send_init + MPI_Start

– Should never be used for active receive requests.

• Conclusion:

MPI_Request_free really useful only for inactive persistent requests

i.e., after such Loop(Start Wait/Test),

i.e., not after Start

MPI course  Chap. 15 Probe, Persistent Requests, Cancel

Clarified in MPI-4.0

Slide ~546 in the HLRS MPI course

New in MPI-4.0

Topic 15/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 43 / 68

MPI_Cancel

• Marks a active nonblocking communication handle for cancellation.

• MPI_Cancel is a local call, i.e., returns immediately.

• Subsequent call to MPI_Wait must return

irrespective of the activities of other processes.

• Either the cancellation or the communication succeeds, but not both.

• MPI_Test_cancelled(wait_status, flag [,ierror])

– flag = true  cancellation succeeded, communication failed

– flag = false  cancellation failed, communication succeeded

• Comment: Do not use it – may be reason for worse performance

• MPI_Cancel of send requests is deprecated

3.1, shorter talks + more exe.

MPI course  Chap. 15 Probe, Persistent Requests, Cancel

Cancel(

Slide ~547 in the HLRS MPI course

New in MPI-4.0

Topic 16/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 44 / 68

MPI_SIZEOF(…) – Fortran only API

• MPI_SIZEOF(…) was introduced in MPI-2.0

– in combination with MPI_Type_match_size

– as alternative to (recommended)

• MPI_TYPE_CREATE_F90_INTEGER

• MPI_TYPE_CREATE_F90_REAL

• MPI_TYPE_CREATE_F90_COMPLEX

to generate basic datatype handles

for KIND-parameterized Fortran types

• MPI_SIZEOF is deprecated

3.1, shorter talks + more exe.

Cancel(

New in MPI-4.0

MPI course  Chap.3 Messages and Point-to-Point Communication Slide ~80 in the HLRS MPI course Topic 17/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 45 / 68

Other changes …

• Tools chapter

– MPI-4.0 Appendix B.1.2 Changes in MPI-4.0, items 30-32

3.1, shorter talks + more exe.

Cancel(

New in MPI-4.0

Slide ~571 in the HLRS MPI courseMPI course  Chap. 17 Other MPI Features Topic 18/24

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 46 / 68

Semantic changes & warnings

Topic 19/24

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 47 / 68

Removed / Semantic changes & warnings / Errata

Chapter 16+17 – Deprecated + Removed Interfaces
…

Chapter 18 – Semantic Changes and Warnings

18.1 Semantic Changes

This section describes semantics that have changed in a way that would potentially cause an MPI program

to behave differently when using this version of the MPI Standard without changing the program's code.

18.1.1 Semantic Changes Starting in MPI-4.0

MPI_COMM_DUP and MPI_COMM_IDUP no longer propagate info hints from the input communicator to

the output communicator. This behavior can be achieved using MPI_COMM_DUP_WITH_INFO and

MPI_COMM_IDUP_WITH_INFO.

The default communicator where errors are raised when not involving a communicator, window, or file was

changed from MPI_COMM_WORLD to MPI_COMM_SELF.

18.2 Additional Warnings

This section describes additional changes that could potentially cause a program that relies on the semantics

described in a previous version of the MPI Standard to behave differently than with this version of MPI. The

changes in this section are limited in scope and unlikely to impact most programs.

18.2.1 Warnings Starting in MPI-4.0

The limit for length of MPI identifiers was removed. Prior to MPI-4.0, MPI identifiers were limited to 30

characters (31 with the profiling interface). This limitation was initially introduced to avoid exceeding the limit

on some compilation systems.

Annex B – Change-Log

18.x.1 Fixes to Errata in Previous Versions of MPI

MPI course  Chap. 17 Other MPI Features Slide ~569 in the HLRS MPI course

New in MPI-4.0

New subsection in each MPI version

Nothing new in MPI-4.0

Impact only for tool-providers: most be prepared for longer names in MPI

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 48 / 68

Some future MPI-4.1 / 5.0 plans

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 49 / 68

Active Working Groups  Important efforts

• Collective, Communicators, Context, Persistent, Partitioned, Groups, Topologies

 e.g. partitioned collectives, partitioned arrival / any / some

• Fault Tolerance

 new chapter on User Level Failure Mitigation / Fault Tolerance (ULFM/FT)

• Hardware-Topologies

 standardized levels for MPI_COMM_TYPE_HW_GUIDED

• Hybrid & Accelerator

• Languages  side documents (other timeline), e.g., for other bindings (e.g. C++, Python)

• Remote Memory Access  bug fixes

 completely new API allowing, e.g., offloading to the network interface controller (NIC)

 simplifying existing interface

 MPI_WIN_SHARED_QUERY also for the shared memory-part of regular windows

• Semantic Terms

 apply them to RMA; differentiation between a procedure and a specific call to it

 Progress

• Sessions

 Adding functionality for features currently supporting only for the World Model

 e.g. dynamic resources, buffered send, …

• Tools  QMPI + handling introspection and debugging interface

See https://www.mpi-forum.org/mpi-41/

See next slide

See next slides

See next slides

Topic 20-24/24

https://www.mpi-forum.org/mpi-41/

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 50 / 68

Hybrid & Accelerator

https://github.com/mpiwg-hybrid/hybrid-issues/wiki

• Active Topics

• Continuations proposal #6

• Clarification of thread ordering rules #117

• Integration with accelerator programming models:

– Accelerator info keys #3

– Stream/Graph Based MPI Operations #5

– Accelerator bindings for partitioned communication #4

– Partitioned communication buffer preparation (shared with

Persistence WG) #264

• Asynchronous operations #585

Topic 20/24

https://github.com/mpiwg-hybrid/hybrid-issues/wiki
https://github.com/mpiwg-hybrid/hybrid-issues/issues/6
https://github.com/mpi-forum/mpi-issues/issues/117
https://github.com/mpiwg-hybrid/hybrid-issues/issues/3
https://github.com/mpiwg-hybrid/hybrid-issues/issues/5
https://github.com/mpiwg-hybrid/hybrid-issues/issues/4
https://github.com/mpi-forum/mpi-standard/pull/264
https://github.com/mpi-forum/mpi-issues/issues/585

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 51 / 68

Errata to MPI shared memory

Topic 21/24

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 52 / 68

Errata to MPI shared memory

• Problem with MPI-3.0 to MPI-4.0:

The role of assertions in RMA synchronization used for direct shared memory

accesses (i.e., without RMA calls) is not clearly defined!

– Detected & communicated about March 01, 2015

– Implications for all RMA function on a shared memory window:

• Users: Always use assert=0

• Implementors: Always ignore the assert values

• MPI Forum: Specify valid assertions for shared memory windows

• MPI_Win_sync + any other process-to-process synchronization

– Rules are unclear

– AtoUsers in MPI-3.1/MPI-4.0, page 456 lines 22-29/ page 613 line 46 – 614 line 5

– And through Example MPI-3.1/MPI-4.0, pages 468f/626f, Exa. 11.21/12.21

 See next slides (skip them)

MPI course  Chap.11-(1) Shared Memory One-sided Communication  Exercise 2 Slide ~380 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 53 / 68

General MPI shared memory synchronization rules
(based on MPI-3.1/MPI-4.0, MPI_Win_allocate_shared, page 408/560, lines 43-47/22-26: “A consistent view

…”)

and A, B, C are shared variables

and having …

A=val_1

Sync-from

load(B)

Sync-from

C=val_3

Sync-from

Sync-to

load(A)

Sync-to

B=val_2

Sync-to

C=val_4

load(C)

then it is guaranteed that …

… the load(A) in P1 loads val_1

(this is the write-read-rule)

… the load(B) in P0 is not affected by the store of val_2 in P1

(read-write-rule)

… that the load(C) in P1 loads val_4

(write-write-rule)

Defining Proc 0

Sync-from

Proc 1

Sync-to

being MPI_Win_post1)

or MPI_Win_complete1)

or MPI_Win_fence1)

or MPI_Win_sync

Any-process-sync2)

or3) MPI_Win_unlock1)

and the lock on process 0 is granted first

MPI_Win_start1)

MPI_Win_wait1)

MPI_Win_fence1)

Any-process-sync2)

MPI_Win_sync

MPI_Win_lock1)

1) Must be paired according to the general one-sided synchronization rules.
2) "Any-process-sync" may be done with methods from MPI

(e.g. with sendrecv as in MPI-3.1/MPI-4.0 Example 11/12.21,

but also with some synchronization through MPI shared memory

loads and stores, e.g. with C++11 atomic loads and stores).
3) No rule for MPI_Win_flush (according current forum discussion)

3.1, shorter talks + more exe.

See next slide

MPI  Chap.11-(2) Shared memory model and synchronization rulesSlide ~407 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 54 / 68MPI course  Chap.11-(2) Shared memory model and synchronization rules

“Any-process-sync” & MPI_Win_sync on shared memory

• If the shared memory data transfer is done without RMA operation,

then the synchronization can be done by other methods.

• This example demonstrates the rules for the unified memory model if the data trans-

fer is implemented only with load and store (instead of MPI_Get or MPI_Put)

• and the synchronization between the processes is done

with MPI communication (instead of RMA synchronization routines).

Process A Process B

MPI_WIN_LOCK_ALL(MPI_WIN_LOCK_ALL(

MPI_MODE_NOCHECK,win) MPI_MODE_NOCHECK,win)

DO ... DO ...

X=...

MPI_F_SYNC_REG(X) 1)

MPI_Win_sync(win)

MPI_Send

MPI_Recv

MPI_Win_sync(win)

MPI_F_SYNC_REG(X) 1)

local_tmp = X

MPI_F_SYNC_REG(X) 1)

MPI_Win_sync(win)

MPI_Send

MPI_Recv print local_tmp
MPI_Win_sync(win)

MPI_F_SYNC_REG(X) 1) 1) Fortran only.

END DO END DO

MPI_WIN_UNLOCK_ALL(win)MPI_WIN_UNLOCK_ALL(win)

Data exchange in this direction,

therefore MPI_Win_sync is

needed in both processes:

Write-read-rule

 See Exercise 3

Corrections 2016

X is read out

At begin of

next iteration:

Next write

of X

Message

telling that

X is filled

Message telling

that X is read out

and can be refilled

MPI_WIN_SYNC acts

only locally as a

processor-memory-fence.

X is part of a shared

memory window

and should be the

same memory

location in both

processes.

For MPI_WIN_SYNC, a passive

target epoch is established with

MPI_WIN_LOCK_ALL.

A new value is written in X

2nd pair of MPI_Win_sync is needed to

guarantee the read-write-rule

Is missing in MPI-3.1/MPI-4.0,

pages 468f/626f, Exa. 11/12.21

(i,.e., page 469/627, line 31/14)

Slide ~408 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 55 / 68

Progress text / functionality

update  delayed until MPI-5

Topic 22/24

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 56 / 68

What is progress

• To internally finish a started operation

– the process that started the operation, and/or other related processes

may need to make progress from the viewpoint of the underlying MPI system.

– Example:
• Process 1: Operation MPI receive, e.g., started with MPI_Recv or MPI_Irecv

• Process 0: Is other related process

– Called MPI_Bsend, already returned,

– but data still buffered (from the viewpoint of the underlying MPI system)

• That process 1 can internally finish the receive operation, process 0 needs to make progress,

i.e., to really send the buffered data

• Which rules apply that process 0 provides progress?

MPI course  Chap. 18 Best Practice  Progress

MPI_Bsend

some numerics

MPI_Recv

some numerics

some numericsProcess 1

Process 0

See next slide

Corrections
Progress extended to 3 slides

Slide ~591 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 57 / 68

Use cases for nonblocking operations

• Real overlapping of

– several communications

– communication and computation

MPI course  Chap.4 Nonblocking Communication

Corrections fro. 2022

Slide ~128 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 58 / 68

General progress rule of MPI

• MPI is mainly defined in a way that progress on communication (and …)

is required only during MPI procedure calls.

• But then, progress is required
– for all outstanding (incomplete/nonblocking) communications

– together with operation of the current communication (…) procedure call.

• See, e.g., in MPI-4.0
– Sect. 3.5, page 54, and 3.7.4, page 75; Paragraphs “Progress”, esp. progress of repeated MPI_Test, p.7538-40

– Sect. 3.8.1 and 3.8.2 about MPI_(I)(M)PROBE

– Sect. 3.8.4 Cancel, esp. page 94 lines 8-16 & MPI_Finalize Example 11.6, page 49626-48

& MPI_Session_finalize, esp. page 50230-47 and Example 11.8 on page 503

– Sect. 4.2.2 MPI_Parrived: Same progress rule as for repeated MPI_Test, see page 11131-34

– Sect. 5.12: Nonblocking collectives: Same rules as for nonblocking pt-to-pt

– Sect. 12.7.3: Progress with one-sided communication, especially the rationale at the end

– Sect. 11.6: MPI and Threads

– Sect. 14.6.3: Progress with MPI-I/O

• Non of these rules require progress outside of called MPI routines,

– But MPI_Test and each MPI routine that blocks must do progress

on any ongoing (i.e. nonblocking) communication

• Additional progress

– By several calls to MPI_Test(), which enables progress

– Use non-standard extensions to switch on asynchronous progress

o E.g., with MPICH:

export MPICH_ASYNC_PROGRESS=1

Implies a helper thread and

MPI_THREAD_MULTIPLE (?)

MPI course  Chap.6-(2) Collective communication, advanced topics Slide ~187 in the HLRS MPI course skip examples

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 59 / 68

Progress /

weak local

• Local MPI procedures may be implemented as “weak local”:

– To complete its work locally,

it may require an unspecific MPI call on another process

• Examples (always tested with large messages):

– Bsend is local.
• Corresponding MPI_Recv may require progress

in the sending process  may be blocked

until the sending process calls

another unspecific MPI procedure

MPI course  Chap. 18 Best Practice  Progress

MPI_Bsend

some numerics

some numerics

MPI_Recv

some numerics

some other communicating

MPI routines MPI_Rsend**)

some numerics

some numerics

MPI_Irecv

some numerics . .

some other communicating

MPI routines

progress delayed until next MPI call

in the other process

An MPI procedure is non-local if returning may require, during its execution, some

specific semantically-related MPI procedure to be called on another MPI process.

An MPI procedure is local if it is not non-local.

MPI_Bsend

some numerics

Timeline of process 0

MPI_Recv

Timeline of process 1

some other communicating

MPI routines

MPI_Wait

some numerics . .

MPI_Rsend

some numerics

some numerics

MPI_Irecv

some numerics . .

some other communicating

MPI routines

MPI_Wait

some numerics . .

– Rsend is local, since the corresponding

MPI_(I)Recv must already be called.
• But the MPI_Rsend may require progress

in the receiving process  may be blocked

until the receiving process calls

another unspecific MPI routine

progress delayed until next MPI call

some numerics

some numerics

*) Additional communication that guarantees that MPI_Rsend is

called after the corresponding MPI_Irecv is already started.

**) Same for MPI_Ssend and MPI_Send.

*)

Normally perfect 
Always correct 

But may also lead to
negative surprises 

Experiments, see

MPI/tasks/C/Ch18/progress-test-bsend.c + progress-test-bsend-output.txt

progress-test-rsend.c + progress-test-rsend-output.txt

Corrections

Corrections
Progress extended to 3 slides

*)

Slide ~589 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 60 / 68

Possible consequences with MPI_Bsend

MPI_Buffer_attach(…)

MPI_Barrier(…);

for (iter=1; iter <=3; iter++){

if(my_rank>0) MPI_Bsend(…, my_rank-1, …);

if(my_rank<numprocs-1) MPI_Bsend(…, my_rank+1, …);

sleep(…); // some small delay

if(my_rank>0) MPI_Recv (…, my_rank-1, …);

if(my_rank<numprocs-1) MPI_Recv (…, my_rank+1, …);

sleep(20); // simulating 20 sec of numerical work

}

MPI_Barrier(…);

MPI_Buffer_detach(…)

MPI course  Chap. 18 Best Practice  Progress

MPI_Bsend

MPI_Recv

Process 2

Process 0

Process 1

some numerics

some numerics

some numerics

delay

Expected behavior with independent progress

MPI/tasks/C/Ch18/progress-test-bsend-3-processes.c

Real behavior without independent progress

Process 2

Process 0

Process 1

some numerics

some numerics

some numerics

delaysome numerics

some numerics

some numerics

delay some numerics

some numerics

some numerics

delay

progress-test-bsend-detach-3-processes.c

The programs and protocols

contain also a 2nd experiment:

It is without the “small delays”

and reports 120 sec vs. 60 sec,

i.e., two times slower without

detaching + re-attaching the

buffer after each comm. step 75

Solution (without independent progress): add buffer detach/attach before numerics

*)

*)

*)

*)

*)

*)

*)

*)

MPI_Buffer_detach waits until all buffered
messages are delivered to the receivers

*)

*)

*)

*)

*) The receive of the buffered message is delayed until another
unspecific MPI call in the sending process can implement the
data transfer: MPI_Recv or MPI_Buffer_detach (2nd example).

(timing of 1st experiment, see progress-test-bsend-3-processes_OUT_openmpi2.1.6.txt
or progress-test-bsend-3-processes_OUT_mpich3.3.2.txt)

MPI_Barrier
Process 2

Process 0

Process 1

some numerics

some numerics

some numerics

delay some numerics

some numerics

some numerics

delaysome numerics

some numerics

some numerics

delay

0 91 13168 11124 475 67

Caution: 2nd message is sent before 1st message is delivered  double buffer space is needed

)) *)

*)

*)

MPI_Recv

MPI_Bsend

Only for starting the experiment together

Not needed because the blocking non-collective
buffer detach would cause the same result

Newer versions, e.g. OpenMPI 3.1.6, have partially fixed the reported
problem, but portable applications should still be aware of it.

See progress-test-bsend-3-processes_OUT_openmpi3.1.6_COMMENTED.txt

Slide ~590 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 61 / 68

MPI Progress Rule

• MPI library must provide the following minimal progress:

1. Blocked MPI procedure calls must provide progress

on all enabled MPI operations.

2. Test procedures will eventually return flag=true

once the matching operation has been started:
• MPI_Test, MPI_Iprobe, MPI_Improbe,

• MPI_Request_get_status, MPI_Win_test (specification

is missing in MPI-3.1/MPI-4.0, may be clarified in MPI-4.1)

• MPI_Parrived (new procedure in MPI-4.0)

3. MPI finalization must guarantee that all required

progress will be provided before the process exits.

4. Further rules, e.g., on collectives, I/O, …

• A blocked MPI procedure call can be:

– Non-local MPI procedure
(e.g., MPI_Send, MPI_Recv, MPI_Wait for a receive/send request handle)

waits for a specific semantically-related MPI call on another MPI process
(e.g., MPI_(I)Recv, MPI_(I)Send, MPI_(I)Send / MPI_(I)Recv)

– Local MPI procedure (see also references 3.)

(e.g., MPI_Rsend)

waits for some unspecific MPI call on another MPI process
(e.g., any other MPI call that must do progress  see above 1. or 2. or 3

but it may be also a related routine, e.g., the MPI_Wait in the example).

MPI course  Chap. 18 Best Practice  Progress

MPI_Rsend

some numerics

MPI_Irecv until some other

unspecific MPI call

provides progress,

see above 1.-4.03

delayed

MPI_

Wait

some numerics . .

References in MPI-4.0:

1. Sect. 3.5, page 54, and 3.7.4, page 75.

Paragraphs “Progress”.

Sect. 11.6: MPI and Threads.

Sect. 12.7.3: Progress with one-sided

communication, especially the rationale

at the end.

2. Sect. 3.7.4 on MPI_Test, esp. p.7538-40

Sect. 3.8.1 & 3.8.2: MPI_(I)(M)PROBE,

Sect. 4.2.2 MPI_Parrived p. 11131-34

3. Sect. 3.8.4 Cancel, p. 94 lines 8-16.

MPI_Finalize Example 11.6, p. 49626-48,

MPI_Session_finalize, esp. p. 50230-47

and Example 11.8 , p. 804

4. Sect. 5.12: Nonblocking Collectives.

Sect. 14.6.3: MPI-I/O

Of course,
more progress is always allowed!

E.g., through a progress thread 

Corrections
Progress extended to 3 slides

Blocked call

will

Corrections fro. 2022

Slide ~592 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 62 / 68

Progress / weak local – summary

 In principle, program as if your MPI library provides independent progress

 But weak progress can lead to very unexpected performance behavior

 Hopefully fixed in many MPI libraries

 MPI_THREAD_MULTIPLE instead of …_SINGLE usually makes no difference

 Test with progress-test-bsend_init.c & progress-test-bsend_init-thread-multiple.c

 Nevertheless, make sure that your programs are correct & portable, e.g.:

Process 2

Process 1 Back to our loop(bsend left+right; recv left+right) example:
Only by receiving this (response) message, process 2 logically knows now
(and not earlier) that its 1st message is received.
Therefore here (still without this knowledge), process 2 must have attached
enough buffer space for both the 1st and 2nd message together.
This logical consideration is independent of weak or strong progress.

MPI_Recv

MPI_Bsend

MPI course  Chap. 18 Best Practice  Summary

next iteration

Slide ~593 in the HLRS MPI course back

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 63 / 68

Weighted Cartesian Toplogies

Topic 23/24

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 64 / 68

The problems

1. All MPI libraries provide the necessary interfaces   ,

but without re-numbering in nearly all MPI-libraries   

• You may substitute MPI_Cart_create() by Bill Gropp’s solution
William D. Gropp, Using Node [and Socket] Information to Implement MPI Cartesian Topologies, Parallel Computing, 2019, and

in: Proceedings of the 25th European MPI User' Group Meeting, EuroMPI'18, ACM, New York, NY, USA, 2018, pp. 18:1-18:9.

doi:10.1145/3236367.3236377. Slides: http://wgropp.cs.illinois.edu/bib/talks/tdata/2018/nodecart-final.pdf.

2. The existing MPI-3.1 and MPI-4.0 interfaces are not optimal

 for cluster of ccNUMA node hardware,

• We substitute MPI_Dims_create() + MPI_Cart_create()

by MPIX_Cart_weighted_create(… MPIX_WEIGHTS_EQUAL …)

 nor for application specific data mesh sizes

or direction-dependent bandwidth

• by MPIX_Cart_weighted_create(… weights ….)

3. Caution: The application must be prepared for rank re-numbering

• All communication through the newly created

Cartesian communicator with re-numbered ranks!

• One must not load data based on MPI_COMM_WORLD ranks!

EuroMPI2018_Niethammer+Rabenseifner_ML

MPI course  Chap.9-(3) Virtual topologies  Optimized reordering

Corrections

Slide ~289 in the HLRS MPI course

http://wgropp.cs.illinois.edu/bib/talks/tdata/2018/nodecart-final.pdf
https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 65 / 68

Examples

• Application topology awareness

– 2-D example with 12 MPI processes and data mesh size 1800x580

• MPI_Dims_create  4x3 • data mesh aware  6x2 processes

• Hardware topology awareness

– 2-D example with 25 nodes x 24 cores and data mesh size 3000x3000

• MPI_Dims_create  25 x 24 • Hardware aware  30 x 20

= (5 nodes x 6 cores) X (5 nodes x 4 cores)

580
290

300
1800

580
194

450
1800

600

600

Accumulated

communication

per node

O(4x600) = O(2400) 

Accumulated

communication

per node

O(10x120+12x125)

= O(2700) 

120

125

Boundary of a subdomain = 2(300+290) = 1180 Boundary of a subdomain = 2(450+194) = 1288 

MPI course  Chap.9-(3) Virtual topologies  Optimized reordering Slide ~290 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 66 / 68

Other small functionality /

changes

Topic 24/24

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 67 / 68

Environment inquiry – implementation information (2)

3.1, shorter talks + more exe.

C

Fortran

MPI course  Chap.8-(2) Groups & Communicators, advanced topics

Environmental inquiries

• C: MPI_Comm_get_attr(MPI_COMM_WORLD, keyval, &p, &flag)

– Will return in p a pointer to an int containing the attribute_val

• Fortran: MPI_Comm_get_attr(MPI_COMM_WORLD, keyval, attribute_val, flag, ierror)

• Python: attribute_val = MPI.COMM_WORLD.Get_attr(keyval)

• with keyval =

– MPI_TAG_UB

 returns upper bound for tag values in attribute_val

 must be at least 32767

– MPI_HOST

 returns host-rank (if exists) or MPI_PROC_NULL (if there is no host)

– MPI_IO

 returns MPI_ANY_SOURCE in attribute_val (if every process can provide I/O)

– MPI_WTIME_IS_GLOBAL

 returns 1 in attribute_val (if clocks are synchronized), otherwise, 0

Examples: see MPI-3.1, Sect. 17.2.7, page 664, line 43 – page 665, line 13 or

MPI-4.0, Sect. 19.3.7, page 852, line 29-47

C: pointer based attributes
Fortran: integer(kind=MPI_ADDRESS_KIND) based attributes

May be deprecates in MPI-4.1

Python:
MPI.TAG_UB

Python

Slide ~233 in the HLRS MPI course

https://www.hlrs.de/training/self-study-materials/mpi-course-material

© 2000-2022 HLRS, Rolf Rabenseifner

Slide 68 / 68

Summary

MPI-4.0 has a lot for better service /

• Large counts

• Sessions Model

• Better error handling

• More consistent standard:

– Revisited terms & semantics

– New introduction for nonblocking

operations

– Removed / Semantic changes &

warnings / Errata

better performance

• Persistent collectives

• Partitioned Point-to-Point

Communication
 MPI + OpenMP

• New ways for hardware-based split of

communicators
 shared memory on ccNUMA domains

instead of whole ccNUMA node

• Neighbor communication now usable

• Pt-to-pt assertion info for wildcards,

message order not preserving, and

using exact receive buffer count

• Nonblocking MPI_Isendrecv

Summary

Outlook on MPI-4.1 / 5.0

