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Application areas

Application:
Turbulent flows

▶ Incompressible Navier-Stokes

▶ Fast solution of Poisson
equation

▶ Multigrid

Application: Coupled flows

▶ Simulation of flow in biomedical
settings

▶ Navier-Stokes coupled to
transport

▶ Poisson + multigrid

Application:
Acoustics

▶ Acoustic wave equation

▶ Explicit time stepping for
DG
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Efficient discretizations

▶ Desire 1: Low number of degrees of freedom → high accuracy per unknown
▶ Desire 2: Methods applicable to general geometries

▶ Challenge: High-Reynolds number incompressible flows develop fine-scale features
▶ Need to track solution over long times
▶ Need accurate “dispersive” behavior

▶ Solution: High-order finite element methods
▶ Geometrically flexible by use unstructured

meshes

▶ Hexahedral meshes preferred

▶ High-order methods add unknowns inside
elements

▶ Range of attractive degrees: p = 3, . . . ,7

▶ Discontinuous Galerkin especially attractive:
upwind fluxes

degree 1, 82 mesh degree 4, 22 mesh
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Stability of discretization

▶ Stable schemes for fluid dynamics need problem-adapted discretizations
▶ Advanced mathematical ingredients to ensure stability
▶ As an example, for incompressible Navier–Stokes must fulfill

▶ inf–sup condition (e.g. Taylor–Hood finite element)
▶ point-wise divergence-free velocity field needed for energy stability and pressure

robustness1

▶ For H(div) velocity field, L2 conforming discontinuous Galerkin discretization of
pressure is the natural space

1Fehn, Kronbichler, Lehrenfeld, Lube, Schroeder, High-order DG solvers for underresolved turbulent incompressible flows: A comparison of L2 and H(div) methods,
Int. J. Numer. Meth. Fluids 91, 2019
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Outline

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary
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Developing fast finite element solvers

▶ Complex iterative solvers, block preconditioners, multigrid
▶ Usually 60–95 % of time spent in matrix-vector products
▶ Large structured/unstructured meshes and adaptivity: traditionally solved with sparse

matrices at 0.16–0.25 Flop/Byte
▶ Bottleneck: memory-limited, only 1–5 % of arithmetic peak
▶ Goal: change algorithm by reading less from memory and computing more on the fly
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Matrix-based vs matrix-free algorithms

Matrix-based algorithm in finite elements
▶ Loop through cells and assemble from cell matrices into global sparse matrix
▶ Apply action of sparse matrix in iterative solver (CG, GMRES, . . . )
▶ Build preconditioner from sparse matrix
▶ Traditionally considered necessary for unstructured, adaptively refined meshes

Matrix-free algorithm
▶ Apply action of discretized operator within iterative solver on the fly
▶ Classical approach: Assume locally structured mesh, coefficients constant or slowly

varying
▶ Leads to set of a few stencils, similar optimization steps as for FDM
▶ Research by U. Rüde and co-workers

▶ My choice: Compute integrals underlying FEM operator with fast integration, tailored to
unstructured meshes & variable coefficients, but preconditioner selection limited
▶ Matrix diagonal feasible → multigrid with special smoothers feasible
▶ ILU on original matrix not feasible because performance will not be any better
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Matrix-free operator evaluation by fast integration

matrix-based: A =
Nel

∑
e=1

GT
eAeGe (assembly)

v = Au (matrix-vector product
within iterative solver)

matrix-free:

v =
Nel

∑
e=1

GT
eAe (Geu)

implication: assembly facilities within
iterative solvers

Matrix-vector product
Matrix-free evaluation of FEM Laplacian
▶ v = 0
▶ loop over elements e = 1, . . . ,Nel

(i) Extract local vector values:
ue = Geu

(ii) Apply operation locally by
integration: ve = Aeue, do not
form Ae, compute its action by
FEM integrals, ve = ST

e DeSeuu
(iii) Sum results from (ii) into the

global solution vector:
v = v +GT

eve

M. Kronbichler, K. Kormann, A generic interface for parallel finite element operator application. Comput. Fluids 63:135–147, 2012
M. Kronbichler, K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM TOMS 45(3), 29, 2019
Included in deal.II finite element library, www.dealii.org
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Opportunities of matrix-free algorithms

▶ Sparse matrix
▶ memory: 8 bytes entry + 4 bytes for index, i.e., 12

byte per nnz + 8 byte per row + vectors
▶ 1 multiply + 1 add / nnz

▶ High-order methods get increasingly expensive
due to denser coupling

▶ Matrix-free
▶ vectors + affine geometry (lower bound) versus

separate Jacobian at each quadrature point
(upper bound)

▶ sum factorization for O(p) complexity per DoF

▶ Work for matrix-free goes down from p = 1 to p = 3
due to fewer DoFs shared by several elements
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Matrix-free vs. matrix-based methods

▶ Performance of matrix-vector product
essential for iterative solvers

▶ Sparse matrices unsuitable for higher
orders p ≥ 2 on modern hardware due to
memory-bandwidth limit

▶ Matrix-free algorithm successful in
trading computations for less memory
transfer
▶ Software: Specify operation at

quadrature points
▶ Combine with reference cell

interpolation matrices
▶ Indirect access into vector entries for

continuous FEM

Throughput of matrix-vector product (unknowns pro-
cessed per second) of 3D Laplacian

1 3 5 7 9
0

1

2

3

4

5

6

Polynomial degree

bi
lli

on
D

oF
s

/s
ec
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System: 1 node of 2×24 cores of Intel Xeon Platinum 8174 (Skylake)
Memory bw: 205 GB/s, arithmetic peak 3.5 TFlop/s

Kronbichler, Kormann: A generic interface for parallel cell-based finite element operator application. Comput Fluids 63:135–147, 2012
Kronbichler, Wall: A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. SISC 40(5):A3423–48, 2018
Kronbichler, Kormann: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM TOMS 45(3):29/1–40, 2019
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Explanation of performance difference: Modeling

Matrix-based
▶ Ideal memory access matrix-based: A single load to sparse matrix (12 bytes per DP

entry), a single load to source, a single store
▶ Balance: 0.16 FLOPs/Byte

Matrix-free
▶ Ideal memory access matrix-free: A single load to source, a single store (or

load+store with read-for-ownership)
▶ Arithmetics: Around 120–250 operations per DoF
▶ Balance: 1.5–10 FLOPs/Byte
▶ Caches beneficial because they can hold neighboring data that is re-used

Matrix-based must only consider memory, matrix-free must consider both compute and
memory access!
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Data access patterns in DG methods

Typical DG discretization with matrix-free computations involves access akin to a block-finite
difference stencil
▶ Choice 1 (spectral elements): Minimize arithmetic

operations (diagonal mass matrix)
▶ Access all (p+1)d unknowns on neighbors
▶ Interpolation matrix from neighbor points to values

on face
▶ Around 170–200 Flop/DoF

▶ Choice 2: Basis with minimal non-zero values
across faces φi(0) ̸= 0 and φ ′

i (0) ̸= 0 (Hermite)
▶ Less access into neighbor
▶ More direct use of values on faces
▶ More arithmetic operations, 190–250 Flop/DoF

▶ In figure, highlighted area (in black/green) is
interleaved with computation of integrals

Choice 2 gives (much) better performance

Data access spectral p = 5

Data access Hermite-like p = 5

only read
read + write

M. Kronbichler HPC for High-Order FEM 13



Node-level performance for DG Laplacian (including RFO transfer)

▶ Evaluate on 2×24 cores of Intel Skylake Platinum, 3D Laplacian, affine mesh

▶ Compact Hermite-like basis faster than spectral despite more work → data access more
important than arithmetic work

▶ Compare: Simple copy from input to output (no RFO) gives 11 GDoF/s
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Roofline evaluation: Modeled data transfer

▶ Minimize arithmetic operations
▶ Sum factorization
▶ Avoid full derivative matrices

S⊗D,D⊗S by transforming to
collocation space with I ⊗Dco,Dco ⊗ I

▶ Symmetry: even-odd decomposition
▶ Vectorization

▶ Data access optimizations
▶ Use single loop to compute all data (DG

cell + face integrals)
▶ Grid traversal: neighbor data hits cache
▶ On CPUs: re-compute metric terms on

the fly from node positions
▶ Use lower/intermediate order geometry
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Kronbichler, Kormann: A generic interface for parallel cell-based finite element operator application. Comput Fluids 63:135–147, 2012
Kronbichler, Kormann: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM TOMS 45(3):29/1–40, 2019
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Architectural comparison: hardware

▶ Ice Lake 72C: 2× 36 core Intel Xeon Platinum 8360Y, nominal power 250 W, released
in 2021 (Fritz cluster)

▶ Skylake 48C: 2× 24 core Intel Xeon Platinum 8174, nominal power 205 W, released in
2017 (SuperMUC-NG)

▶ Broadwell 40C: 2× 20 core Intel Xeon E5-2698 v4, nominal power 135 W, released in
2016

▶ Haswell 28C: 2× 14 core Intel Xeon E5-2697 v3, nominal power 145 W, released in
2014 (SuperMUC Phase 2)

▶ Haswell 16C: 2× 8 core Intel Xeon E5-2630 v3, nominal power 85 W, released in 2014
▶ Sandy Bridge 16C: 2× 8 core Intel Xeon E5-2680, nominal power 130 W, released in

2012 (SuperMUC Phase 1)
▶ Opteron 16C: 2× 8 core AMD Opteron 6128, nominal power 80 W, released in 2010
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Architectural comparison: performance and energy efficiency

Matrix-vector product of 3D Laplacian with DG-SIP, OpenMP parallelization
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Outline

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary
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Beyond the matrix-vector product

▶ CEED benchmark problem BP4
▶ 3D Poisson, deformed geometry,

continuous elements
▶ Conjugate gradient + diagonal

preconditioner
▶ Metric terms computed on the fly

from tri-quadratic geometry
▶ 1 node of dual-socket AMD Epyc 7742

▶ bandwidth from RAM: 400 GB/s
theory, ∼ 300 GB/s achievable

▶ 4.6 TFlop/s

▶ Matrix-vector product no longer
dominant operation for large sizes

▶ Vector operations take significant
share of time when operated from
RAM
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Behavior dependent on hardware?

▶ BP4 problem, Poisson with p = 5,q = 7, time of one iteration with CG
▶ Intel Xeon Skylake, 48 cores, 205 GB/s, 3.5 TFlop/s at 2.3 GHz, 2×205W
▶ AMD Epyc Zen 2, 128 cores, 295 GB/s, 4.6 TFlop/s at 2.25 GHz, 2×225W
▶ Fugaku’s Fujitsu A64FX, 48 cores, 830 GB/s, 2.8 TFlop/s at 1.8 GHz, ∼ 130W
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Reduce impact of vector operations in CG

▶ Idea: Combine arithmetic intensive matrix-vector
product with memory intensive vector operations

▶ Fuse loops with repeated vector access (e.g.
AXPY and dot product)

▶ Classical conjugate gradient contains several
barriers that prevent effective fusion

▶ Variant on the right: Redundant computation of
some information, several application of
preconditioner (diagonal = cheap, no long-range
dependency)

▶ Run vector updates before Apk first
touches vector entries, dot products
after Apk last touches vector entries

▶ Access 87% of vector entries only
once per CG iteration

fused loop
3.3 read
0 write

fused loop
3.83 read
2.5 write

while not converged do
if k even then

xk = xk−1 +αk−1pk−1
+

αk−2
βk−2

(
pk−1 −M−1rk−1

)
end if
rk = rk−1 −αk−1vk−1
pk = M−1rk +βk−1pk−1
vk = Apk
γk = rT

k rk

ak = pT
k vk

bk = rT
k vk

ck = vT
k vk

dk = rT
k M−1rk

ek = rT
k M−1vk

fk = vT
k M−1vk

αk = dk
ak

if
√

γk −2αk bk +α2
k ck < ε then

xk+1 = xk +αk pk
end if

βk =
dk −2αk ek +α

2
k fk

dk
end while
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Improvement of combined CG algorithm

▶ Analyze load and store behavior of CG variants
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Kronbichler, Sashko, Munch: Enhancing data locality of the conjugate gradient method for high-order matrix-free finite-element implementations. IJHPCA, 2022
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Summary key ideas

▶ Classical wavefront/diamond blocking difficult for high-order schemes due to wide stencil
→ especially with MPI, additional transfer ruins possible performance gains
▶ Initial test: matrix power kernel with k = 3 steps runs with ∼20% lower throughput than

single matrix-vector product
▶ Reason: data locality of evaluation of integrals destroys data locality

▶ Proposed method interleaves vector operations before or after a single matrix-vector
into matrix-vector product
▶ Utilize that operator evaluation not completely memory limited
▶ Reduce memory access before and after loop

M. Kronbichler HPC for High-Order FEM 23



Comparison of throughput on 512 nodes

▶ BP4: vector-valued Poisson
▶ Reduction of memory transfer

increases throughput by almost 2× on
512 nodes

▶ New combined CG method runs more
quickly also near the scaling limit due to
a single MPI Allreduce

▶ Scaling limit on 512 nodes similar to
pipelined CG and s-step CG (without
preconditioner)
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Behavior for different polynomial degrees

Run BP4 on 2×64 core AMD Epyc 7742 for degrees p = 1,3,5,7,9
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Conclusion: New methods are 2−3× faster on CPUs with caches!
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Cross-platform comparison for BP5

▶ 3D Poisson problem, GLL quadrature,
p = 5,q = 6

▶ Intel CPU: Xeon Skylake 8174, 48
cores

▶ AMD CPU: Epyc 7742, 128 cores
▶ NVIDIA V100 GPU

▶ Note: US CEED group reaches
15–20% higher throughput for BP5
with plain CG

▶ Combined CG run globally on
vectors, no overlap into mat-vec

▶ Fujitsu A74FX, 48 cores
▶ Note: combined CG performs really

badly (vectorization dot products,
latency from context shift (mat-vec
vs. vector blocks)?
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Node-level performance of Chebyshev smoother on Skylake

Chebyshev smoother in multigrid at iteration j :

t(j) = ρ
(j)t(j−1)+θ

(j)P−1
(

Au(j−1)−b
)
,

u(j) = u(j−1)− t(j),
Inner preconditioner: P = diag(A)

▶ Default vector kernel: One vector update
at a time, daxpy style

▶ Fused vector kernel: Separate mat-vec,
all vector updates within single loop

▶ Fully fused: Apply vector updates within
loop over cells in DG operator
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Power efficiency: default vs merged vector operations

Architectural comparison of one Chebyshev smoother iteration on 3D Laplacian with DG-SIP,
OpenMP parallelization
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Outline

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary
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Better algorithms for hanging nodes

Example: 2 coarse cells; scalar, linear Lagrange elements (p = 1); non-conformal refinement

x0

x1

x2

hanging nodes

▶ Task: guarantee H1 conformity
▶ Traditional algorithm in deal.II via general-purpose sparse matrix: xi = Cijxj +bi

... locally dense O(k2(d−1)) 
Shephard: Linear multipoint constraints applied via transformation as part of a direct stiffness assembly process. IJNME, 1984
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Efficient algorithm for hanging node constraints

101 1 0 001 (8 bits)

+z

−y

1) update DoF map 2) encode refinement config. 3) inplace interpolation

▶ Idea: Use sum-factorization algorithms for interpolation from coarse DoFs to refined
basis representation

▶ Challenge: 137 refinement configurations, need to select appropriate algorithm

P.F. Fischer et al: Spectral element methods for transitional flows in complex geometries. J. Sci. Comput., 2002
K. Ljungkvist: Matrix-free finite-element computations on graphics processors with adaptively refined unstructured meshes. In SpringSim (HPC), 2017
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Implementation on the CPU

▶ Step 1: split application of constraints into general-purpose constraints (e.g. Dirichlet,
no-normal flux) and hanging nodes → C HN

e ◦C GP
e ◦Ge

▶ Step 2: Merge general-purpose constraints with gather of unknowns on cell, C GP
e ◦Ge,

as proposed in 2

▶ Inplace interpolation on each object in sequence:

▶ Requirements:
1. Determine which objects are constrained
2. Determine which 1D interpolation to use

▶ Costs: O((d −1)kd)
▶ Done on GPU with masking and appropriate access to array
▶ Downside on CPU: several if statements and control logic
2M. Kronbichler, K. Kormann: A generic interface for parallel cell-based finite element operator application. Computers & Fluids, 63, 135–147, 2012
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Result: serial (shell)

Cost definition: η1 ∼ THN−TNO
THN
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▶ Implication for parallel simulations: less load imbalance
▶ Non-affine constraint application can be hidden behind loading the metric terms
3P. Munch, K. Ljungkvist, M. Kronbichler: Efficient Application of Hanging-Node Constraints for Matrix-Free High-Order FEM Computations on CPU and GPU,

Proceedings ISC High Performance 2022 (LNCS 13289)
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Result: serial (shell)

Cost definition: η1 ∼ THN−TNO
THN
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▶ Implication for parallel simulations: less load imbalance
▶ Non-affine constraint application can be hidden behind loading the metric terms
3P. Munch, K. Ljungkvist, M. Kronbichler: Efficient Application of Hanging-Node Constraints for Matrix-Free High-Order FEM Computations on CPU and GPU,

Proceedings ISC High Performance 2022 (LNCS 13289)
M. Kronbichler HPC for High-Order FEM 33



Performance in parallel

▶ Even with optimized sum factorization, hanging-node constraints need more time
▶ To optimize performance, weight cells with hanging nodes with factor w > 0 as 1+w

general-purpose new HN algorithm w. comm wo. comm
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16 nodes (768 cores)
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Results and cross-platform validation (shell, parallel)

Intel (2×24 cores) Nvidia (Tesla V100, Summit, 1 device) AMD (Epyc 7742 CPU, 2×64 cores)
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▶ GPU overhead looks higher, but is actually lower, because we execute the HN algorithm
on all cells for the GPU

M. Kronbichler HPC for High-Order FEM 35



Outline

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

M. Kronbichler HPC for High-Order FEM 36



Scaling of multigrid for the Poisson equation

Geometric multigrid with deal.II and matrix-free implementations, reduce residual by 10−3

Continuous FEM, degree p = 3, Intel Xeon Sandy Bridge (Su-
perMUC) from 2013, up to 9,216 nodes
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Discontinuous Galerkin, p = 4, Intel Xeon Skylake
(SuperMUC-NG) from 2019, up to 6,336 nodes
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∼ 1.2× throughput per core (despite DG vs FEM), 2× lower scaling limit
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Multigrid on complicated meshes

▶ Simulation of air flow in human
respiratory system

▶ Much more complicated geometry
▶ All-hex mesh, deformed from STL file
▶ Adaptive mesh with hanging nodes
▶ Polynomial degree p = 3
▶ # CG iterations with hybrid MG: 7

Exemplary mesh Computed geometry

Simulation of Poisson with tolerance 10−3 on
SuperMUC-NG machine (Intel Xeon Platinum
8174, 48 cores / node)
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▶ Scaling limit 3× higher vs simple geometry
▶ Largest computations on 6,400 nodes

subject to noise (dynamic load balancing)
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Matrix-free algorithms are fast on all HPC architectures

Geometric multigrid with full multigrid cycle, Chebyshev (5,6) smoother, Q4 elements
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256 nodes, 7168 cores

Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SISC 40:A3423–48, 2018
Kronbichler, Ljungkvist, Multigrid for matrix-free high-order finite element computations on graphics processors, ACM TOPC, 6(1), 2019
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Matrix-free algorithms are fast on all HPC architectures

Geometric multigrid with full multigrid cycle, Chebyshev (5,6) smoother, Q4 elements
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Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SISC 40:A3423–48, 2018
Kronbichler, Ljungkvist, Multigrid for matrix-free high-order finite element computations on graphics processors, ACM TOPC, 6(1), 2019

One matrix-vector product
with SpMV for statically con-
densed finite elements with
Q4 elements, 17m DoF, 79
million DoF/s on Broadwell

Matrix-free solves a linear
system in less time than
one SpMV!
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Impact of matrix-free algorithms on CFD application

3D Taylor–Green vortex at Re=
1600: iso-contours of q-criterion
(value 0.1) colored by velocity
magnitude

t=0

t=10

t=20

Result of my research group around 10x faster than all results of Wang et
al. (2013), normalized run time
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ExaDG, k = 7, 2018

ExaDG, k = 7, 2021

Daten Wang et al (2013)

FLEXI (2018), k = 7

OpenFOAM (2019)

Huismann (2019), k = 8,16

Wang, Fidkowski et al., High-order CFD methods: current status and perspective, Int. J. Numer. Meth. Fluids 72(8), 2013

Fehn, Wall, Kronbichler, Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved
turbulent incompressible flows, Int. J. Numer. Meth. Fluids 88, 2018
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Summary

▶ Fast matrix-free methods for high-order elements
▶ Scalable multigrid infrastructure
▶ Reach 20–30% of arithmetic peak of Intel/AMD CPUs, > 85% of memory bandwidth
▶ Memory bandwidth bottlenecks → compute more, store (even) less
▶ Matrix-vector product no longer dominant

▶ Fuse vector operations into matrix-vector product for conjugate gradient or multigrid
smoothers

▶ Fuse vector operations into operator evaluation for explicit time stepping

M. Kronbichler HPC for High-Order FEM 42


	Accelerating FEM with matrix-free methods
	Enhancing data locality in conjugate gradient solver
	Algorithms for adaptive meshes
	Performance of multigrid solver
	Summary

