
High-Performance Implementations for High-Order
Finite-Element Discretizations of PDEs

Martin Kronbichler

Institute of Mathematics, University of Augsburg, Germany

Collaboration with Momme Allalen, Niklas Fehn, Katharina Kormann, Karl Ljungkvist, Peter Munch, Dmytro Sashko

NHR PerfLab Seminar

M. Kronbichler HPC for High-Order FEM 1



Application areas

Application:
Turbulent flows

▶ Incompressible Navier-Stokes

▶ Fast solution of Poisson
equation

▶ Multigrid

Application: Coupled flows

▶ Simulation of flow in biomedical
settings

▶ Navier-Stokes coupled to
transport

▶ Poisson + multigrid

Application:
Acoustics

▶ Acoustic wave equation

▶ Explicit time stepping for
DG

M. Kronbichler HPC for High-Order FEM 2



Efficient discretizations

▶ Desire 1: Low number of degrees of freedom → high accuracy per unknown
▶ Desire 2: Methods applicable to general geometries

▶ Challenge: High-Reynolds number incompressible flows develop fine-scale features
▶ Need to track solution over long times
▶ Need accurate “dispersive” behavior

▶ Solution: High-order finite element methods
▶ Geometrically flexible by use unstructured

meshes

▶ Hexahedral meshes preferred

▶ High-order methods add unknowns inside
elements

▶ Range of attractive degrees: p = 3, . . . ,7

▶ Discontinuous Galerkin especially attractive:
upwind fluxes

degree 1, 82 mesh degree 4, 22 mesh

M. Kronbichler HPC for High-Order FEM 3



Stability of discretization

▶ Stable schemes for fluid dynamics need problem-adapted discretizations
▶ Advanced mathematical ingredients to ensure stability
▶ As an example, for incompressible Navier–Stokes must fulfill

▶ inf–sup condition (e.g. Taylor–Hood finite element)
▶ point-wise divergence-free velocity field needed for energy stability and pressure

robustness1

▶ For H(div) velocity field, L2 conforming discontinuous Galerkin discretization of
pressure is the natural space

1Fehn, Kronbichler, Lehrenfeld, Lube, Schroeder, High-order DG solvers for underresolved turbulent incompressible flows: A comparison of L2 and H(div) methods,
Int. J. Numer. Meth. Fluids 91, 2019

M. Kronbichler HPC for High-Order FEM 4



Outline

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

M. Kronbichler HPC for High-Order FEM 5



Outline

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

M. Kronbichler HPC for High-Order FEM 6



Developing fast finite element solvers

▶ Complex iterative solvers, block preconditioners, multigrid
▶ Usually 60–95 % of time spent in matrix-vector products
▶ Large structured/unstructured meshes and adaptivity: traditionally solved with sparse

matrices at 0.16–0.25 Flop/Byte
▶ Bottleneck: memory-limited, only 1–5 % of arithmetic peak
▶ Goal: change algorithm by reading less from memory and computing more on the fly

M. Kronbichler HPC for High-Order FEM 7



Matrix-based vs matrix-free algorithms

Matrix-based algorithm in finite elements
▶ Loop through cells and assemble from cell matrices into global sparse matrix
▶ Apply action of sparse matrix in iterative solver (CG, GMRES, . . . )
▶ Build preconditioner from sparse matrix
▶ Traditionally considered necessary for unstructured, adaptively refined meshes

Matrix-free algorithm
▶ Apply action of discretized operator within iterative solver on the fly
▶ Classical approach: Assume locally structured mesh, coefficients constant or slowly

varying
▶ Leads to set of a few stencils, similar optimization steps as for FDM
▶ Research by U. Rüde and co-workers

▶ My choice: Compute integrals underlying FEM operator with fast integration, tailored to
unstructured meshes & variable coefficients, but preconditioner selection limited
▶ Matrix diagonal feasible → multigrid with special smoothers feasible
▶ ILU on original matrix not feasible because performance will not be any better

M. Kronbichler HPC for High-Order FEM 8



Matrix-based vs matrix-free algorithms

Matrix-based algorithm in finite elements
▶ Loop through cells and assemble from cell matrices into global sparse matrix
▶ Apply action of sparse matrix in iterative solver (CG, GMRES, . . . )
▶ Build preconditioner from sparse matrix
▶ Traditionally considered necessary for unstructured, adaptively refined meshes

Matrix-free algorithm
▶ Apply action of discretized operator within iterative solver on the fly
▶ Classical approach: Assume locally structured mesh, coefficients constant or slowly

varying
▶ Leads to set of a few stencils, similar optimization steps as for FDM
▶ Research by U. Rüde and co-workers

▶ My choice: Compute integrals underlying FEM operator with fast integration, tailored to
unstructured meshes & variable coefficients, but preconditioner selection limited
▶ Matrix diagonal feasible → multigrid with special smoothers feasible
▶ ILU on original matrix not feasible because performance will not be any better

M. Kronbichler HPC for High-Order FEM 8



Matrix-free operator evaluation by fast integration

matrix-based: A =
Nel

∑
e=1

GT
eAeGe (assembly)

v = Au (matrix-vector product
within iterative solver)

matrix-free:

v =
Nel

∑
e=1

GT
eAe (Geu)

implication: assembly facilities within
iterative solvers

Matrix-vector product
Matrix-free evaluation of FEM Laplacian
▶ v = 0
▶ loop over elements e = 1, . . . ,Nel

(i) Extract local vector values:
ue = Geu

(ii) Apply operation locally by
integration: ve = Aeue, do not
form Ae, compute its action by
FEM integrals, ve = ST

e DeSeuu
(iii) Sum results from (ii) into the

global solution vector:
v = v +GT

eve

M. Kronbichler, K. Kormann, A generic interface for parallel finite element operator application. Comput. Fluids 63:135–147, 2012
M. Kronbichler, K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM TOMS 45(3), 29, 2019
Included in deal.II finite element library, www.dealii.org

M. Kronbichler HPC for High-Order FEM 9



Opportunities of matrix-free algorithms

▶ Sparse matrix
▶ memory: 8 bytes entry + 4 bytes for index, i.e., 12

byte per nnz + 8 byte per row + vectors
▶ 1 multiply + 1 add / nnz

▶ High-order methods get increasingly expensive
due to denser coupling

▶ Matrix-free
▶ vectors + affine geometry (lower bound) versus

separate Jacobian at each quadrature point
(upper bound)

▶ sum factorization for O(p) complexity per DoF

▶ Work for matrix-free goes down from p = 1 to p = 3
due to fewer DoFs shared by several elements

1 2 3 4 5 6 7 8
0

500

1,000

1,500

2,000

Polynomial degree p

B
yt

es
/D

oF

1 2 3 4 5 6 7 8
0

100

300

500

700

Polynomial degree p

O
pe

ra
tio

ns
/D

oF

sparse matrix-vector matrix-free

M. Kronbichler HPC for High-Order FEM 10



Matrix-free vs. matrix-based methods

▶ Performance of matrix-vector product
essential for iterative solvers

▶ Sparse matrices unsuitable for higher
orders p ≥ 2 on modern hardware due to
memory-bandwidth limit

▶ Matrix-free algorithm successful in
trading computations for less memory
transfer
▶ Software: Specify operation at

quadrature points
▶ Combine with reference cell

interpolation matrices
▶ Indirect access into vector entries for

continuous FEM

Throughput of matrix-vector product (unknowns pro-
cessed per second) of 3D Laplacian

1 3 5 7 9
0

1

2

3

4

5

6

Polynomial degree

bi
lli

on
D

oF
s

/s
ec

DG, affine DG, curved FEM, curved FEM, SpMV

System: 1 node of 2×24 cores of Intel Xeon Platinum 8174 (Skylake)
Memory bw: 205 GB/s, arithmetic peak 3.5 TFlop/s

Kronbichler, Kormann: A generic interface for parallel cell-based finite element operator application. Comput Fluids 63:135–147, 2012
Kronbichler, Wall: A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. SISC 40(5):A3423–48, 2018
Kronbichler, Kormann: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM TOMS 45(3):29/1–40, 2019

M. Kronbichler HPC for High-Order FEM 11

https://doi.org/10.1016/j.compfluid.2012.04.012
https://doi.org/10.1137/16M110455X
https://doi.org/10.1145/3325864


Matrix-free vs. matrix-based methods

▶ Performance of matrix-vector product
essential for iterative solvers

▶ Sparse matrices unsuitable for higher
orders p ≥ 2 on modern hardware due to
memory-bandwidth limit

▶ Matrix-free algorithm successful in
trading computations for less memory
transfer
▶ Software: Specify operation at

quadrature points
▶ Combine with reference cell

interpolation matrices
▶ Indirect access into vector entries for

continuous FEM

Throughput of matrix-vector product (unknowns pro-
cessed per second) of 3D Laplacian

1 3 5 7 9
0

1

2

3

4

5

6

Polynomial degree

bi
lli

on
D

oF
s

/s
ec

10× improvement

> 3× improvement

DG, affine DG, curved FEM, curved FEM, SpMV

System: 1 node of 2×24 cores of Intel Xeon Platinum 8174 (Skylake)
Memory bw: 205 GB/s, arithmetic peak 3.5 TFlop/s

Kronbichler, Kormann: A generic interface for parallel cell-based finite element operator application. Comput Fluids 63:135–147, 2012
Kronbichler, Wall: A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. SISC 40(5):A3423–48, 2018
Kronbichler, Kormann: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM TOMS 45(3):29/1–40, 2019

M. Kronbichler HPC for High-Order FEM 11

https://doi.org/10.1016/j.compfluid.2012.04.012
https://doi.org/10.1137/16M110455X
https://doi.org/10.1145/3325864


Explanation of performance difference: Modeling

Matrix-based
▶ Ideal memory access matrix-based: A single load to sparse matrix (12 bytes per DP

entry), a single load to source, a single store
▶ Balance: 0.16 FLOPs/Byte

Matrix-free
▶ Ideal memory access matrix-free: A single load to source, a single store (or

load+store with read-for-ownership)
▶ Arithmetics: Around 120–250 operations per DoF
▶ Balance: 1.5–10 FLOPs/Byte
▶ Caches beneficial because they can hold neighboring data that is re-used

Matrix-based must only consider memory, matrix-free must consider both compute and
memory access!

M. Kronbichler HPC for High-Order FEM 12



Data access patterns in DG methods

Typical DG discretization with matrix-free computations involves access akin to a block-finite
difference stencil
▶ Choice 1 (spectral elements): Minimize arithmetic

operations (diagonal mass matrix)
▶ Access all (p+1)d unknowns on neighbors
▶ Interpolation matrix from neighbor points to values

on face
▶ Around 170–200 Flop/DoF

▶ Choice 2: Basis with minimal non-zero values
across faces φi(0) ̸= 0 and φ ′

i (0) ̸= 0 (Hermite)
▶ Less access into neighbor
▶ More direct use of values on faces
▶ More arithmetic operations, 190–250 Flop/DoF

▶ In figure, highlighted area (in black/green) is
interleaved with computation of integrals

Choice 2 gives (much) better performance

Data access spectral p = 5

Data access Hermite-like p = 5

only read
read + write

M. Kronbichler HPC for High-Order FEM 13



Node-level performance for DG Laplacian (including RFO transfer)

▶ Evaluate on 2×24 cores of Intel Skylake Platinum, 3D Laplacian, affine mesh

▶ Compact Hermite-like basis faster than spectral despite more work → data access more
important than arithmetic work

▶ Compare: Simple copy from input to output (no RFO) gives 11 GDoF/s

2 4 6 8 10 12
0

300

600

900

1,200

polynomial degree

G
FL

O
P

/s

arithmetic OpenMP

2 4 6 8 10 12
0

1

2

3

4

5

polynomial degree

G
D

oF
/s

throughput OpenMP

2 4 6 8 10 12
0

1

2

3

4

5

polynomial degree

G
D

oF
/s

throughput MPI

Hermite-like spectral

M. Kronbichler HPC for High-Order FEM 14



Roofline evaluation: Modeled data transfer

▶ Minimize arithmetic operations
▶ Sum factorization
▶ Avoid full derivative matrices

S⊗D,D⊗S by transforming to
collocation space with I ⊗Dco,Dco ⊗ I

▶ Symmetry: even-odd decomposition
▶ Vectorization

▶ Data access optimizations
▶ Use single loop to compute all data (DG

cell + face integrals)
▶ Grid traversal: neighbor data hits cache
▶ On CPUs: re-compute metric terms on

the fly from node positions
▶ Use lower/intermediate order geometry

1
8

1
4

1
2

1 2 4 8 16 32

32

64

128

256

512

1024

2048

4096

STREAM
tria

d memory
bw 205 GB/s

arithmetic peak

instr. mix

Flop/byte ratio

G
Fl

op
/s

DG 3D advection constant DG 3D advection variable

DG 3D SIP-Laplacian constant SpMV

System: 1 node of 2×24 cores of Intel Xeon Platinum 8174 (Skylake)

Kronbichler, Kormann: A generic interface for parallel cell-based finite element operator application. Comput Fluids 63:135–147, 2012
Kronbichler, Kormann: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM TOMS 45(3):29/1–40, 2019

M. Kronbichler HPC for High-Order FEM 15

https://doi.org/10.1016/j.compfluid.2012.04.012
https://doi.org/10.1145/3325864


Architectural comparison: hardware

▶ Ice Lake 72C: 2× 36 core Intel Xeon Platinum 8360Y, nominal power 250 W, released
in 2021 (Fritz cluster)

▶ Skylake 48C: 2× 24 core Intel Xeon Platinum 8174, nominal power 205 W, released in
2017 (SuperMUC-NG)

▶ Broadwell 40C: 2× 20 core Intel Xeon E5-2698 v4, nominal power 135 W, released in
2016

▶ Haswell 28C: 2× 14 core Intel Xeon E5-2697 v3, nominal power 145 W, released in
2014 (SuperMUC Phase 2)

▶ Haswell 16C: 2× 8 core Intel Xeon E5-2630 v3, nominal power 85 W, released in 2014
▶ Sandy Bridge 16C: 2× 8 core Intel Xeon E5-2680, nominal power 130 W, released in

2012 (SuperMUC Phase 1)
▶ Opteron 16C: 2× 8 core AMD Opteron 6128, nominal power 80 W, released in 2010

M. Kronbichler HPC for High-Order FEM 16



Architectural comparison: performance and energy efficiency

Matrix-vector product of 3D Laplacian with DG-SIP, OpenMP parallelization

3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

Polynomial degree

G
D

oF
s/

s
pe

rn
od

e

3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

Polynomial degree

M
D

oF
s/

s
pe

rW
at

t(
no

m
in

al
)

Ice Lake, 72C Skylake, 48C Broadwell, 40C Haswell, 28C
Haswell, 16C Sandy Bridge, 16C Opteron, 16C

M. Kronbichler HPC for High-Order FEM 17



Outline

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

M. Kronbichler HPC for High-Order FEM 18



Beyond the matrix-vector product

▶ CEED benchmark problem BP4
▶ 3D Poisson, deformed geometry,

continuous elements
▶ Conjugate gradient + diagonal

preconditioner
▶ Metric terms computed on the fly

from tri-quadratic geometry
▶ 1 node of dual-socket AMD Epyc 7742

▶ bandwidth from RAM: 400 GB/s
theory, ∼ 300 GB/s achievable

▶ 4.6 TFlop/s

▶ Matrix-vector product no longer
dominant operation for large sizes

▶ Vector operations take significant
share of time when operated from
RAM

104 105 106 107 108
0

0.2

0.4

0.6

0.8

DoFs per node

se
c

/[
bi

lli
on

D
oF

s
×

C
G

its
]

latency/load
imbalance

from
cache

from
RAM

matrix-vector AXPY-style vector updates
dot products diagonal preconditioner

M. Kronbichler HPC for High-Order FEM 19



Behavior dependent on hardware?

▶ BP4 problem, Poisson with p = 5,q = 7, time of one iteration with CG
▶ Intel Xeon Skylake, 48 cores, 205 GB/s, 3.5 TFlop/s at 2.3 GHz, 2×205W
▶ AMD Epyc Zen 2, 128 cores, 295 GB/s, 4.6 TFlop/s at 2.25 GHz, 2×225W
▶ Fugaku’s Fujitsu A64FX, 48 cores, 830 GB/s, 2.8 TFlop/s at 1.8 GHz, ∼ 130W

104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

1.2

DoFs per node

[s
ec

]/
[b

ill
io

n
D

oF
s
×

C
G

its
]

Intel Skylake 8174, 2×24C

104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

1.2

DoFs per node

AMD Epyc 7742, 2×64C

104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

1.2

DoFs per node

Fujitsu A64FX, 48C, 1.8 GHz

matrix-vector AXPY-style vector updates dot products diagonal preconditioner

M. Kronbichler HPC for High-Order FEM 20



Reduce impact of vector operations in CG

▶ Idea: Combine arithmetic intensive matrix-vector
product with memory intensive vector operations

▶ Fuse loops with repeated vector access (e.g.
AXPY and dot product)

▶ Classical conjugate gradient contains several
barriers that prevent effective fusion

▶ Variant on the right: Redundant computation of
some information, several application of
preconditioner (diagonal = cheap, no long-range
dependency)

▶ Run vector updates before Apk first
touches vector entries, dot products
after Apk last touches vector entries

▶ Access 87% of vector entries only
once per CG iteration

fused loop
3.3 read
0 write

fused loop
3.83 read
2.5 write

while not converged do
if k even then

xk = xk−1 +αk−1pk−1
+

αk−2
βk−2

(
pk−1 −M−1rk−1

)
end if
rk = rk−1 −αk−1vk−1
pk = M−1rk +βk−1pk−1
vk = Apk
γk = rT

k rk

ak = pT
k vk

bk = rT
k vk

ck = vT
k vk

dk = rT
k M−1rk

ek = rT
k M−1vk

fk = vT
k M−1vk

αk = dk
ak

if
√

γk −2αk bk +α2
k ck < ε then

xk+1 = xk +αk pk
end if

βk =
dk −2αk ek +α

2
k fk

dk
end while

M. Kronbichler HPC for High-Order FEM 21



Improvement of combined CG algorithm

▶ Analyze load and store behavior of CG variants

CG

pip
eli

ne
d CG

s-s
tep

CG

co
mbin

ed
CG

PCG

co
m

bin
ed

PCG

mat-
ve

c
0

5

10

15

12.0

10.0

8.6

4.5

16.0

4.8

2.0

12.1

10.2
9.4

5.1

16.5

5.7

3.0

do
ub

le
s

lo
ad

ed
/D

oF
/C

G
ite

ra
tio

n

CG

pip
eli

ne
d CG

s-s
tep

CG

co
mbin

ed
CG

PCG

co
m

bin
ed

PCG

mat-
ve

c
0

2

4

6

8

4.3

7.3

2.6

3.8

5.3

3.8

1.0

4.4

7.4

3.0

3.9

5.4

3.9

1.3

do
ub

le
s

st
or

ed
/D

oF
/C

G
ite

ra
tio

n

Measured Estimated

Kronbichler, Sashko, Munch: Enhancing data locality of the conjugate gradient method for high-order matrix-free finite-element implementations. IJHPCA, 2022

M. Kronbichler HPC for High-Order FEM 22



Summary key ideas

▶ Classical wavefront/diamond blocking difficult for high-order schemes due to wide stencil
→ especially with MPI, additional transfer ruins possible performance gains
▶ Initial test: matrix power kernel with k = 3 steps runs with ∼20% lower throughput than

single matrix-vector product
▶ Reason: data locality of evaluation of integrals destroys data locality

▶ Proposed method interleaves vector operations before or after a single matrix-vector
into matrix-vector product
▶ Utilize that operator evaluation not completely memory limited
▶ Reduce memory access before and after loop

M. Kronbichler HPC for High-Order FEM 23



Comparison of throughput on 512 nodes

▶ BP4: vector-valued Poisson
▶ Reduction of memory transfer

increases throughput by almost 2× on
512 nodes

▶ New combined CG method runs more
quickly also near the scaling limit due to
a single MPI Allreduce

▶ Scaling limit on 512 nodes similar to
pipelined CG and s-step CG (without
preconditioner)

10−4 10−3 10−2 10−1
0

0.5

1

1.5

2

sec / CG it

[b
ill

io
n

D
oF

s
×

C
G

its
]/

[n
od

es
×

se
c]

pipelined CG s-step CG, s=6
PCG combined PCG

M. Kronbichler HPC for High-Order FEM 24



Behavior for different polynomial degrees

Run BP4 on 2×64 core AMD Epyc 7742 for degrees p = 1,3,5,7,9

104 105 106 107 108
0

1

2

3

4

5

DoFs / node

[b
ill

io
n

D
oF

s
×

C
G

its
]/

[n
od

e
×

se
c]

p=1, PCG
p=1, combined PCG
p=3, PCG
p=3, combined PCG
p=5, PCG
p=5, combined PCG
p=7, PCG
p=7, combined PCG
p=9, PCG
p=9, combined PCG

Conclusion: New methods are 2−3× faster on CPUs with caches!
M. Kronbichler HPC for High-Order FEM 25



Cross-platform comparison for BP5

▶ 3D Poisson problem, GLL quadrature,
p = 5,q = 6

▶ Intel CPU: Xeon Skylake 8174, 48
cores

▶ AMD CPU: Epyc 7742, 128 cores
▶ NVIDIA V100 GPU

▶ Note: US CEED group reaches
15–20% higher throughput for BP5
with plain CG

▶ Combined CG run globally on
vectors, no overlap into mat-vec

▶ Fujitsu A74FX, 48 cores
▶ Note: combined CG performs really

badly (vectorization dot products,
latency from context shift (mat-vec
vs. vector blocks)?

104 105 106 107 108
0

1

2

3

4

5

6

DoFs

[b
ill

io
n

D
oF

s
×

C
G

its
]/

[s
ec

]

PCG, Intel CPU PCG comb., Intel CPU
PCG, AMD CPU PCG comb., AMD CPU
PCG, Nvidia GPU PCG comb., Nvidia GPU
PCG, A64FX PCG comb., A64FX

M. Kronbichler HPC for High-Order FEM 26



Node-level performance of Chebyshev smoother on Skylake

Chebyshev smoother in multigrid at iteration j :

t(j) = ρ
(j)t(j−1)+θ

(j)P−1
(

Au(j−1)−b
)
,

u(j) = u(j−1)− t(j),
Inner preconditioner: P = diag(A)

▶ Default vector kernel: One vector update
at a time, daxpy style

▶ Fused vector kernel: Separate mat-vec,
all vector updates within single loop

▶ Fully fused: Apply vector updates within
loop over cells in DG operator

3 6 9 12
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Degree p

s
/b

ill
io

n
D

oF
s

default vector kernels

3 6 9 12
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Degree p

fused vector kernels

3 6 9 12
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Degree p

fully fused

fused Chebyshev kernel matrix-vector product vector operations

M. Kronbichler HPC for High-Order FEM 27



Power efficiency: default vs merged vector operations

Architectural comparison of one Chebyshev smoother iteration on 3D Laplacian with DG-SIP,
OpenMP parallelization

3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

Polynomial degree

M
D

oF
s/

s
pe

rW
at

t(
no

m
in

al
)

Default vector operations

3 4 5 6 7 8 9 10 11 12
0

5

10

Polynomial degree

M
D

oF
s/

s
pe

rW
at

t(
no

m
in

al
)

Fully fused kernel

Ice Lake, 72C Skylake, 48C Broadwell, 40C Haswell, 28C
Haswell, 16C Sandy Bridge, 16C Opteron, 16C

M. Kronbichler HPC for High-Order FEM 28



Outline

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

M. Kronbichler HPC for High-Order FEM 29



Better algorithms for hanging nodes

Example: 2 coarse cells; scalar, linear Lagrange elements (p = 1); non-conformal refinement

x0

x1

x2

hanging nodes

▶ Task: guarantee H1 conformity
▶ Traditional algorithm in deal.II via general-purpose sparse matrix: xi = Cijxj +bi

... locally dense O(k2(d−1)) 
Shephard: Linear multipoint constraints applied via transformation as part of a direct stiffness assembly process. IJNME, 1984

M. Kronbichler HPC for High-Order FEM 30



Efficient algorithm for hanging node constraints

101 1 0 001 (8 bits)

+z

−y

1) update DoF map 2) encode refinement config. 3) inplace interpolation

▶ Idea: Use sum-factorization algorithms for interpolation from coarse DoFs to refined
basis representation

▶ Challenge: 137 refinement configurations, need to select appropriate algorithm

P.F. Fischer et al: Spectral element methods for transitional flows in complex geometries. J. Sci. Comput., 2002
K. Ljungkvist: Matrix-free finite-element computations on graphics processors with adaptively refined unstructured meshes. In SpringSim (HPC), 2017

M. Kronbichler HPC for High-Order FEM 31



Implementation on the CPU

▶ Step 1: split application of constraints into general-purpose constraints (e.g. Dirichlet,
no-normal flux) and hanging nodes → C HN

e ◦C GP
e ◦Ge

▶ Step 2: Merge general-purpose constraints with gather of unknowns on cell, C GP
e ◦Ge,

as proposed in 2

▶ Inplace interpolation on each object in sequence:

▶ Requirements:
1. Determine which objects are constrained
2. Determine which 1D interpolation to use

▶ Costs: O((d −1)kd)
▶ Done on GPU with masking and appropriate access to array
▶ Downside on CPU: several if statements and control logic
2M. Kronbichler, K. Kormann: A generic interface for parallel cell-based finite element operator application. Computers & Fluids, 63, 135–147, 2012

M. Kronbichler HPC for High-Order FEM 32



Result: serial (shell)

Cost definition: η1 ∼ THN−TNO
THN

−13

no constraints old general-purpose HN algorithm new HN algorithm

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

·108

degree p

th
ro

ug
hp

ut
[D

oF
s/

s]

1 2 3 4 5 6
0

1

2

degree p

co
st

η

▶ Implication for parallel simulations: less load imbalance
▶ Non-affine constraint application can be hidden behind loading the metric terms
3P. Munch, K. Ljungkvist, M. Kronbichler: Efficient Application of Hanging-Node Constraints for Matrix-Free High-Order FEM Computations on CPU and GPU,

Proceedings ISC High Performance 2022 (LNCS 13289)
M. Kronbichler HPC for High-Order FEM 33



Result: serial (shell)

Cost definition: η1 ∼ THN−TNO
THN

−13

no constraints old general-purpose HN algorithm new HN algorithm affine non-affine

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

·108

affine

non-affine

degree p

th
ro

ug
hp

ut
[D

oF
s/

s]

1 2 3 4 5 6
0

1

2

degree p

co
st

η

▶ Implication for parallel simulations: less load imbalance
▶ Non-affine constraint application can be hidden behind loading the metric terms
3P. Munch, K. Ljungkvist, M. Kronbichler: Efficient Application of Hanging-Node Constraints for Matrix-Free High-Order FEM Computations on CPU and GPU,

Proceedings ISC High Performance 2022 (LNCS 13289)
M. Kronbichler HPC for High-Order FEM 33



Performance in parallel

▶ Even with optimized sum factorization, hanging-node constraints need more time
▶ To optimize performance, weight cells with hanging nodes with factor w > 0 as 1+w

general-purpose new HN algorithm w. comm wo. comm

0 1 2 3 4 5 6 7 8 9
2

3

4

5
·109

weight w

th
ro

ug
hp

ut
[D

oF
s/

s]

1 node (48 cores)

0 1 2 3 4 5 6 7 8 9
3

4

5

6

7
·1010

weight w

th
ro

ug
hp

ut
[D

oF
s/

s]
16 nodes (768 cores)

M. Kronbichler HPC for High-Order FEM 34



Results and cross-platform validation (shell, parallel)

Intel (2×24 cores) Nvidia (Tesla V100, Summit, 1 device) AMD (Epyc 7742 CPU, 2×64 cores)

1 2 3 4 5 6
0

2

4

6

·109

degree p

th
ro

ug
hp

ut
[D

oF
s/

s]

new HN algorithm
no constraints

1 2 3 4 5 6
0

0.5

1

1.5

degree p

co
st

η

▶ GPU overhead looks higher, but is actually lower, because we execute the HN algorithm
on all cells for the GPU

M. Kronbichler HPC for High-Order FEM 35



Outline

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

M. Kronbichler HPC for High-Order FEM 36



Scaling of multigrid for the Poisson equation

Geometric multigrid with deal.II and matrix-free implementations, reduce residual by 10−3

Continuous FEM, degree p = 3, Intel Xeon Sandy Bridge (Su-
perMUC) from 2013, up to 9,216 nodes

32 128 512 2048 8192 32k 147k

10−2

10−1

100

232B
DoFs

29B
DoFs

3.6B
DoFs

455M
DoFs

57M
DoFs

Number of cores

S
ol

ve
rt

im
e

[s
]

Discontinuous Galerkin, p = 4, Intel Xeon Skylake
(SuperMUC-NG) from 2019, up to 6,336 nodes

96 384 1536 6.1k 25k 98k 304k

10−2

10−1

100

2.1T
268B

DoFs
34B

DoFs

4B
DoFs

524M
DoFs

66M
DoFs

8M
DoFs

Number of cores

∼ 1.2× throughput per core (despite DG vs FEM), 2× lower scaling limit
M. Kronbichler HPC for High-Order FEM 37



Multigrid on complicated meshes

▶ Simulation of air flow in human
respiratory system

▶ Much more complicated geometry
▶ All-hex mesh, deformed from STL file
▶ Adaptive mesh with hanging nodes
▶ Polynomial degree p = 3
▶ # CG iterations with hybrid MG: 7

Exemplary mesh Computed geometry

Simulation of Poisson with tolerance 10−3 on
SuperMUC-NG machine (Intel Xeon Platinum
8174, 48 cores / node)

1 4 16 64 256 1024 6400

10−2

10−1

100

Number of nodes

S
ol

ve
rt

im
e

[s
]

22m DoF 180m DoF

1.4b DoF 12b DoF

▶ Scaling limit 3× higher vs simple geometry
▶ Largest computations on 6,400 nodes

subject to noise (dynamic load balancing)
M. Kronbichler HPC for High-Order FEM 38



Matrix-free algorithms are fast on all HPC architectures

Geometric multigrid with full multigrid cycle, Chebyshev (5,6) smoother, Q4 elements

10−3 10−2 10−1 100
0

40

80

120

160

time FMG cycle [s]

m
ill

io
n

D
oF

/s
/n

od
e

Single-node

Intel 2×14C Intel 64C KNL NVIDIA P100

10−3 10−2 10−1 100
0

40

80

120

160

time FMG cycle [s]

m
ill

io
n

D
oF

/s
/n

od
e

256 nodes, 7168 cores

Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SISC 40:A3423–48, 2018
Kronbichler, Ljungkvist, Multigrid for matrix-free high-order finite element computations on graphics processors, ACM TOPC, 6(1), 2019

M. Kronbichler HPC for High-Order FEM 39



Matrix-free algorithms are fast on all HPC architectures

Geometric multigrid with full multigrid cycle, Chebyshev (5,6) smoother, Q4 elements

10−3 10−2 10−1 100
0

40

80

120

160

time FMG cycle [s]

m
ill

io
n

D
oF

/s
/n

od
e

Single-node

Intel 2×14C Intel 64C KNL NVIDIA P100

Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SISC 40:A3423–48, 2018
Kronbichler, Ljungkvist, Multigrid for matrix-free high-order finite element computations on graphics processors, ACM TOPC, 6(1), 2019

One matrix-vector product
with SpMV for statically con-
densed finite elements with
Q4 elements, 17m DoF, 79
million DoF/s on Broadwell

Matrix-free solves a linear
system in less time than
one SpMV!

M. Kronbichler HPC for High-Order FEM 39



Impact of matrix-free algorithms on CFD application

3D Taylor–Green vortex at Re=
1600: iso-contours of q-criterion
(value 0.1) colored by velocity
magnitude

t=0

t=10

t=20

Result of my research group around 10x faster than all results of Wang et
al. (2013), normalized run time

10−2 10−1 100 101 102 103 104 105 106 107 108

10−3

10−2

10−1

100

normalized run time (normalization: taubench)

re
la

tiv
e

er
ro

rk
in

et
ic

en
er

gy
dE

k
dt

ExaDG, k = 7, 2018

ExaDG, k = 7, 2021

Daten Wang et al (2013)

FLEXI (2018), k = 7

OpenFOAM (2019)

Huismann (2019), k = 8,16

Wang, Fidkowski et al., High-order CFD methods: current status and perspective, Int. J. Numer. Meth. Fluids 72(8), 2013

Fehn, Wall, Kronbichler, Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved
turbulent incompressible flows, Int. J. Numer. Meth. Fluids 88, 2018

M. Kronbichler HPC for High-Order FEM 40



Outline

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

M. Kronbichler HPC for High-Order FEM 41



Summary

▶ Fast matrix-free methods for high-order elements
▶ Scalable multigrid infrastructure
▶ Reach 20–30% of arithmetic peak of Intel/AMD CPUs, > 85% of memory bandwidth
▶ Memory bandwidth bottlenecks → compute more, store (even) less
▶ Matrix-vector product no longer dominant

▶ Fuse vector operations into matrix-vector product for conjugate gradient or multigrid
smoothers

▶ Fuse vector operations into operator evaluation for explicit time stepping

M. Kronbichler HPC for High-Order FEM 42


	Accelerating FEM with matrix-free methods
	Enhancing data locality in conjugate gradient solver
	Algorithms for adaptive meshes
	Performance of multigrid solver
	Summary

