High-Performance Implementations for High-Order Finite-Element Discretizations of PDEs

Martin Kronbichler

Institute of Mathematics, University of Augsburg, Germany

Collaboration with Momme Allalen, Niklas Fehn, Katharina Kormann, Karl Ljungkvist, Peter Munch, Dmytro Sashko

NHR PerfLab Seminar

Application areas

Application: Turbulent flows

- Incompressible Navier-Stokes
- Fast solution of Poisson equation
- Multigrid

- Simulation of flow in biomedical settings
- Navier-Stokes coupled to transport
- Poisson + multigrid

Application: Acoustics

- Acoustic wave equation
- Explicit time stepping for DG

Efficient discretizations

- Desire 1: Low number of degrees of freedom \rightarrow high accuracy per unknown
- Desire 2: Methods applicable to general geometries
- Challenge: High-Reynolds number incompressible flows develop fine-scale features
 - Need to track solution over long times
 - Need accurate "dispersive" behavior
- Solution: High-order finite element methods
 - Geometrically flexible by use unstructured meshes
 - Hexahedral meshes preferred
 - High-order methods add unknowns inside elements
 - Range of attractive degrees: p = 3, ..., 7
 - Discontinuous Galerkin especially attractive: upwind fluxes

- Stable schemes for fluid dynamics need problem-adapted discretizations
- Advanced mathematical ingredients to ensure stability
- As an example, for incompressible Navier–Stokes must fulfill
 - inf-sup condition (e.g. Taylor-Hood finite element)
 - point-wise divergence-free velocity field needed for energy stability and pressure robustness¹
- For H(div) velocity field, L₂ conforming discontinuous Galerkin discretization of pressure is the natural space

^I Fehn, Kronbichler, Lehrenfeld, Lube, Schroeder, High-order DG solvers for underresolved turbulent incompressible flows: A comparison of L² and H(div) methods, Int. J. Numer. Meth. Fluids 91, 2019

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

- Complex iterative solvers, block preconditioners, multigrid
- ► Usually 60–95 % of time spent in matrix-vector products
- Large structured/unstructured meshes and adaptivity: traditionally solved with sparse matrices at 0.16–0.25 Flop/Byte
- **Bottleneck:** memory-limited, only 1–5% of arithmetic peak
- **Goal**: change algorithm by reading less from memory and computing more on the fly

Matrix-based algorithm in finite elements

- Loop through cells and assemble from cell matrices into global sparse matrix
- Apply action of sparse matrix in iterative solver (CG, GMRES, ...)
- Build preconditioner from sparse matrix
- Traditionally considered necessary for unstructured, adaptively refined meshes

INN

Matrix-based algorithm in finite elements

- Loop through cells and assemble from cell matrices into global sparse matrix
- Apply action of sparse matrix in iterative solver (CG, GMRES, ...)
- Build preconditioner from sparse matrix
- Traditionally considered necessary for unstructured, adaptively refined meshes

Matrix-free algorithm

- Apply action of discretized operator within iterative solver on the fly
- Classical approach: Assume locally structured mesh, coefficients constant or slowly varying
 - Leads to set of a few **stencils**, similar optimization steps as for FDM
 - Research by U. Rüde and co-workers
- My choice: Compute integrals underlying FEM operator with fast integration, tailored to unstructured meshes & variable coefficients, but preconditioner selection limited
 - $\blacktriangleright \ \ Matrix \ \ diagonal \ \ feasible \rightarrow multigrid \ \ with \ \ special \ smoothers \ \ feasible$
 - ILU on original matrix not feasible because performance will not be any better

Matrix-free evaluation of FEM Laplacian

- loop over elements $e = 1, ..., N_{el}$
 - (i) Extract local vector values: $u_e = G_e u$
 - (ii) Apply operation locally by integration: $v_e = A_e u_e$, **do not form** A_e , compute its action by FEM integrals, $v_e = S_e^T D_e S_e u_u$ (iii) Sum results from (ii) into the global solution vector: $v = v + G_e^T v_e$

M. Kronbichler, K. Kormann, A generic interface for parallel finite element operator application. *Comput. Fluids* 63:135–147, 2012 M. Kronbichler, K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators. *ACM TOMS* 45(3), 29, 2019 Included in deal.II finite element library, www.dealii.org

Opportunities of matrix-free algorithms

Sparse matrix

- memory: 8 bytes entry + 4 bytes for index, i.e., 12 byte per nnz + 8 byte per row + vectors
- 1 multiply + 1 add / nnz
- High-order methods get increasingly expensive due to denser coupling

Matrix-free

- vectors + affine geometry (lower bound) versus separate Jacobian at each quadrature point (upper bound)
- ▶ sum factorization for $\mathcal{O}(p)$ complexity per DoF
- Work for matrix-free goes down from p = 1 to p = 3 due to fewer DoFs shared by several elements

Matrix-free vs. matrix-based methods

- Performance of matrix-vector product essential for iterative solvers
- Sparse matrices unsuitable for higher orders p ≥ 2 on modern hardware due to memory-bandwidth limit
- Matrix-free algorithm successful in trading computations for less memory transfer
 - Software: Specify operation at quadrature points
 - Combine with reference cell interpolation matrices
 - Indirect access into vector entries for continuous FEM

Throughput of matrix-vector product (unknowns processed per second) of 3D Laplacian

System: 1 node of 2×24 cores of Intel Xeon Platinum 8174 (Skylake) Memory bw: 205 GB/s, arithmetic peak 3.5 TFlop/s

Kronbichler, Kormann: A generic interface for parallel cell-based finite element operator application. *Comput Fluids* 63:135–147, 2012 Kronbichler, Wall: A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. *SISC* 40(5):A3423–48, 2018 Kronbichler, Kormann: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. *ACM TOMS* 45(3):29/1–40, 2019

Matrix-free vs. matrix-based methods

- Performance of matrix-vector product essential for iterative solvers
- Sparse matrices unsuitable for higher orders p ≥ 2 on modern hardware due to memory-bandwidth limit
- Matrix-free algorithm successful in trading computations for less memory transfer
 - Software: Specify operation at quadrature points
 - Combine with reference cell interpolation matrices
 - Indirect access into vector entries for continuous FEM

Throughput of matrix-vector product (unknowns processed per second) of 3D Laplacian

 $\label{eq:System: 1 node of 2 \times 24 cores of Intel Xeon Platinum 8174 (Skylake) \\ Memory bw: 205 GB/s, arithmetic peak 3.5 TFlop/s \\ \end{tabular}$

Kronbichler, Kormann: A generic interface for parallel cell-based finite element operator application. *Comput Fluids* 63:135–147, 2012 Kronbichler, Wall: A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. *SISC* 40(5):A3423–48, 2018 Kronbichler, Kormann: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. *ACM TOMS* 45(3):29/1–40, 2019

Matrix-based

- Ideal memory access matrix-based: A single load to sparse matrix (12 bytes per DP entry), a single load to source, a single store
- Balance: 0.16 FLOPs/Byte

Matrix-free

- Ideal memory access matrix-free: A single load to source, a single store (or load+store with read-for-ownership)
- Arithmetics: Around 120–250 operations per DoF
- Balance: 1.5–10 FLOPs/Byte
- Caches beneficial because they can hold neighboring data that is re-used

Matrix-based must only consider memory, matrix-free must consider both compute and memory access!

Typical DG discretization with matrix-free computations involves access akin to a block-finite difference stencil Data access spectral p = 5

- Choice 1 (spectral elements): Minimize arithmetic operations (diagonal mass matrix)
 - Access all $(p+1)^d$ unknowns on neighbors
 - Interpolation matrix from neighbor points to values on face
 - Around 170–200 Flop/DoF
- Choice 2: Basis with minimal non-zero values across faces φ_i(0) ≠ 0 and φ'_i(0) ≠ 0 (Hermite)
 - Less access into neighbor
 - More direct use of values on faces
 - More arithmetic operations, 190–250 Flop/DoF
- In figure, highlighted area (in black/green) is interleaved with computation of integrals

Choice 2 gives (much) better performance

ta	acc	ess	ss	pe	ctra	a p) =	5
		0 000	88 8 88 8	800	00 0 00 0 00 0	0 00	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$	0 00
		0 00	88 8	800		0 00		0 00
	88 8 80 8	888	:::	:::	888	800		0 00
	888	888			888	888		0 00
	0000	0 00	00 0 00 0	000	0000	0 00	000	0 00
	0000	0 00	80 S	000	0000	0 00	0000	0 00

Data access Hermite-like p = 5

0 00 00 0 0 00 00 0	0 00 00 0 0 00 00 0	0 00 00 0 0 00 00 0	0 000
8888 8888 8888	888		
0 00 00 0 0 00 00 0 0 00 00 0	000000000000000000000000000000000000000		0 00

only read
read + write

Node-level performance for DG Laplacian (including RFO transfer)

- ▶ Evaluate on 2 × 24 cores of Intel Skylake Platinum, 3D Laplacian, affine mesh
- Compact Hermite-like basis faster than spectral despite more work → data access more important than arithmetic work
- Compare: Simple copy from input to output (no RFO) gives 11 GDoF/s arithmetic OpenMP throughput OpenMP throughput MPI

M. Kronbichler

UN N

Roofline evaluation: Modeled data transfer

- Minimize arithmetic operations
 - Sum factorization
 - ► Avoid full derivative matrices S⊗D, D⊗S by transforming to collocation space with I⊗D_{co}, D_{co}⊗I
 - Symmetry: even-odd decomposition
 - Vectorization
- Data access optimizations
 - Use single loop to compute all data (DG cell + face integrals)
 - Grid traversal: neighbor data hits cache
 - On CPUs: re-compute metric terms on the fly from node positions
 - Use lower/intermediate order geometry

System: 1 node of 2 × 24 cores of Intel Xeon Platinum 8174 (Skylake)

Kronbichler, Kormann: A generic interface for parallel cell-based finite element operator application. *Comput Fluids* 63:135–147, 2012 Kronbichler, Kormann: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. *ACM TOMS* 45(3):29/1–40, 2019

- Ice Lake 72C: 2× 36 core Intel Xeon Platinum 8360Y, nominal power 250 W, released in 2021 (Fritz cluster)
- Skylake 48C: 2× 24 core Intel Xeon Platinum 8174, nominal power 205 W, released in 2017 (SuperMUC-NG)
- Broadwell 40C: 2× 20 core Intel Xeon E5-2698 v4, nominal power 135 W, released in 2016
- Haswell 28C: 2× 14 core Intel Xeon E5-2697 v3, nominal power 145 W, released in 2014 (SuperMUC Phase 2)
- ► Haswell 16C: 2× 8 core Intel Xeon E5-2630 v3, nominal power 85 W, released in 2014
- Sandy Bridge 16C: 2× 8 core Intel Xeon E5-2680, nominal power 130 W, released in 2012 (SuperMUC Phase 1)
- Opteron 16C: 2× 8 core AMD Opteron 6128, nominal power 80 W, released in 2010

INL

Architectural comparison: performance and energy efficiency

wir

Matrix-vector product of 3D Laplacian with DG-SIP, OpenMP parallelization

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

Beyond the matrix-vector product

- CEED benchmark problem BP4
 - 3D Poisson, deformed geometry, continuous elements
 - Conjugate gradient + diagonal preconditioner
 - Metric terms computed on the fly from tri-quadratic geometry
- 1 node of dual-socket AMD Epyc 7742
 - bandwidth from RAM: 400 GB/s theory, ~ 300 GB/s achievable
 - 4.6 TFlop/s
- Matrix-vector product no longer dominant operation for large sizes
- Vector operations take significant share of time when operated from RAM

Behavior dependent on hardware?

- ▶ BP4 problem, Poisson with p = 5, q = 7, time of one iteration with CG
- ▶ Intel Xeon Skylake, 48 cores, 205 GB/s, 3.5 TFlop/s at 2.3 GHz, 2 × 205W
- AMD Epyc Zen 2, 128 cores, 295 GB/s, 4.6 TFlop/s at 2.25 GHz, 2 × 225W
- Fugaku's Fujitsu A64FX, 48 cores, 830 GB/s, 2.8 TFlop/s at 1.8 GHz, ~ 130W

INN

Reduce impact of vector operations in CG

- Idea: Combine arithmetic intensive matrix-vector product with memory intensive vector operations
- Fuse loops with repeated vector access (e.g. AXPY and dot product)
- Classical conjugate gradient contains several barriers that prevent effective fusion
- Variant on the right: Redundant computation of some information, several application of preconditioner (diagonal = cheap, no long-range dependency)
- Run vector updates before Ap_k first touches vector entries, dot products after Ap_k last touches vector entries
 - Access 87% of vector entries only once per CG iteration

Improvement of combined CG algorithm

Analyze load and store behavior of CG variants

Kronbichler, Sashko, Munch: Enhancing data locality of the conjugate gradient method for high-order matrix-free finite-element implementations. IJHPCA, 2022

- Classical wavefront/diamond blocking difficult for high-order schemes due to wide stencil → especially with MPI, additional transfer ruins possible performance gains
 - ► Initial test: matrix power kernel with k = 3 steps runs with $\sim 20\%$ lower throughput than single matrix-vector product
 - Reason: data locality of evaluation of integrals destroys data locality
- Proposed method interleaves vector operations before or after a single matrix-vector into matrix-vector product
 - Utilize that operator evaluation not completely memory limited
 - Reduce memory access before and after loop

Comparison of throughput on 512 nodes

- BP4: vector-valued Poisson
- Reduction of memory transfer increases throughput by almost 2× on 512 nodes
- New combined CG method runs more quickly also near the scaling limit due to a single MPI_Allreduce
- Scaling limit on 512 nodes similar to pipelined CG and s-step CG (without preconditioner)

Behavior for different polynomial degrees

Run BP4 on 2×64 core AMD Epyc 7742 for degrees p = 1, 3, 5, 7, 9

Conclusion: New methods are $2-3 \times$ faster on CPUs with caches!

Cross-platform comparison for BP5

- ► 3D Poisson problem, GLL quadrature, p = 5, q = 6
- Intel CPU: Xeon Skylake 8174, 48 cores
- AMD CPU: Epyc 7742, 128 cores
- NVIDIA V100 GPU
 - Note: US CEED group reaches 15–20% higher throughput for BP5 with plain CG
 - Combined CG run globally on vectors, no overlap into mat-vec
- Fujitsu A74FX, 48 cores
 - Note: combined CG performs really badly (vectorization dot products, latency from context shift (mat-vec vs. vector blocks)?

Node-level performance of Chebyshev smoother on Skylake

wir

Chebyshev smoother in multigrid at iteration *j*:

$$t^{(j)} = \rho^{(j)} t^{(j-1)} + \theta^{(j)} P^{-1} \left(A u^{(j-1)} - b \right),$$

$$u^{(j)} = u^{(j-1)} - t^{(j)},$$

Inner preconditioner: P = diag(A)

- Default vector kernel: One vector update at a time, daxpy style
- Fused vector kernel: Separate mat-vec, all vector updates within single loop
- Fully fused: Apply vector updates within loop over cells in DG operator

fully fused

fused vector kernels

Power efficiency: default vs merged vector operations

wir

Architectural comparison of one Chebyshev smoother iteration on 3D Laplacian with DG-SIP, OpenMP parallelization

Default vector operations

Fully fused kernel

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

<u>Example</u>: 2 coarse cells; scalar, linear Lagrange elements (p = 1); non-conformal refinement

- Task: guarantee H^1 conformity
- ► Traditional algorithm in deal.II via general-purpose sparse matrix: $x_i = C_{ij}x_j + b_i$

... locally dense $\mathcal{O}(k^{2(d-1)})$

Shephard: Linear multipoint constraints applied via transformation as part of a direct stiffness assembly process. IJNME, 1984

UN N

Efficient algorithm for hanging node constraints

1) update DoF map 2) encode refinement config. 3) inplace interpolation

Idea: Use sum-factorization algorithms for interpolation from coarse DoFs to refined basis representation

Challenge: 137 refinement configurations, need to select appropriate algorithm

P.F. Fischer et al: Spectral element methods for transitional flows in complex geometries. J. Sci. Comput., 2002 K. Ljungkvist: Matrix-free finite-element computations on graphics processors with adaptively refined unstructured meshes. In SpringSim (HPC), 2017

M. Kronbichler

INN

Implementation on the CPU

- ▶ Step 1: split application of constraints into general-purpose constraints (e.g. Dirichlet, no-normal flux) and hanging nodes $\rightarrow \mathscr{C}_e^{\text{HN}} \circ \mathscr{C}_e^{\text{GP}} \circ \mathscr{G}_e$
- Step 2: Merge general-purpose constraints with gather of unknowns on cell, C_e^{GP} ∘ G_e, as proposed in ²
- Inplace interpolation on each object in sequence:

Requirements:

- 1. Determine which objects are constrained
- 2. Determine which 1D interpolation to use

• Costs: $\mathcal{O}((d-1)k^d)$

- Done on GPU with masking and appropriate access to array
- Downside on CPU: several if statements and control logic

²M. Kronbichler, K. Kormann: A generic interface for parallel cell-based finite element operator application. Computers & Fluids, 63, 135–147, 2012

Result: serial (shell)

- Implication for parallel simulations: less load imbalance
- Non-affine constraint application can be hidden behind loading the metric terms

³P. Munch, K. Ljungkvist, M. Kronbichler: Efficient Application of Hanging-Node Constraints for Matrix-Free High-Order FEM Computations on CPU and GPU, Proceedings ISC High Performance 2022 (LNCS 13289)

Result: serial (shell)

- Implication for parallel simulations: less load imbalance
- Non-affine constraint application can be hidden behind loading the metric terms

³P. Munch, K. Ljungkvist, M. Kronbichler: Efficient Application of Hanging-Node Constraints for Matrix-Free High-Order FEM Computations on CPU and GPU, Proceedings ISC High Performance 2022 (LNCS 13289)

Performance in parallel

- Even with optimized sum factorization, hanging-node constraints need more time
- To optimize performance, weight cells with hanging nodes with factor w > 0 as 1 + w

INN

Results and cross-platform validation (shell, parallel)

 GPU overhead looks higher, but is actually lower, because we execute the HN algorithm on all cells for the GPU

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

Scaling of multigrid for the Poisson equation

Geometric multigrid with deal.II and matrix-free implementations, reduce residual by 10⁻³

Continuous FEM, degree p = 3, Intel Xeon Sandy Bridge (SuperMUC) from 2013, up to 9,216 nodes

Discontinuous Galerkin, p = 4, Intel Xeon Skylake (SuperMUC-NG) from 2019, up to 6,336 nodes

 \sim 1.2× throughput per core (despite DG vs FEM), 2× lower scaling limit

Multigrid on complicated meshes

- Simulation of air flow in human respiratory system
- Much more complicated geometry
- All-hex mesh, deformed from STL file
- Adaptive mesh with hanging nodes
- Polynomial degree p = 3
- # CG iterations with hybrid MG: 7

Simulation of Poisson with tolerance 10^{-3} on SuperMUC-NG machine (Intel Xeon Platinum 8174, 48 cores / node)

- Scaling limit 3× higher vs simple geometry
- Largest computations on 6,400 nodes
 - subject to noise (dynamic load balancing)

HPC for High-Order FEM

UN A

Geometric multigrid with full multigrid cycle, Chebyshev (5,6) smoother, \mathcal{Q}_4 elements Single-node

Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SISC 40:A3423-48, 2018 Kronbichler, Ljungkvist, Multigrid for matrix-free high-order finite element computations on graphics processors, ACM TOPC, 6(1), 2019

wir

Geometric multigrid with full multigrid cycle, Chebyshev (5,6) smoother, \mathcal{Q}_4 elements Single-node

One matrix-vector product with SpMV for statically condensed finite elements with \mathcal{Q}_4 elements, 17m DoF, 79 million DoF/s on Broadwell

Matrix-free solves a linear system in less time than one SpMV!

Kronbichler, Wall, A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers, SISC 40:A3423–48, 2018 Kronbichler, Ljungkvist, Multigrid for matrix-free high-order finite element computations on graphics processors, ACM TOPC, 6(1), 2019

Impact of matrix-free algorithms on CFD application

3D Taylor–Green vortex at Re = 1600: iso-contours of q-criterion (value 0.1) colored by velocity magnitude

Fehn, Wall, Kronbichler, Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved turbulent incompressible flows, Int. J. Numer. Meth. Fluids 88, 2018

UN

Accelerating FEM with matrix-free methods

Enhancing data locality in conjugate gradient solver

Algorithms for adaptive meshes

Performance of multigrid solver

Summary

- Fast matrix-free methods for high-order elements
- Scalable multigrid infrastructure
- ▶ Reach 20–30% of arithmetic peak of Intel/AMD CPUs, > 85% of memory bandwidth
- ▶ Memory bandwidth bottlenecks → compute more, store (even) less
- Matrix-vector product no longer dominant
 - Fuse vector operations into matrix-vector product for conjugate gradient or multigrid smoothers
 - Fuse vector operations into operator evaluation for explicit time stepping