
October 2022 | R. Bader (LRZ) 1

"Modern Fortran"

A contradiction in itself
or

A future-proof language?

HPC Café
NHR@FAU – October 11, 2022

ISO-IEC 1539-1: Horses vs. Dinosaurs

• this Dinosaur is in Use
(... on both ends of the keyboard)

• Communities:
Fortran is used for
• data-intensive numerical calculations

(need for optimization!)
• nuclear weapons simulations
• weather and climate modeling
• quantum chemistry, biology
• engineering (CFD, structural mechanics)
• embedded components (R, python, ...)

• Learnability
• good usefulness/effort ratio

• this Dinosaur has adapted

• Language evolution driven by
... 2 ... committees

• feature definitions by
ISO Fortran Language Committee
(„WG5“) https://wg5-fortran.org/

• technical implementation by
US National Body INCITS PL22.3
(„J3“) https://j3-fortran.org/

2October 2022 | R. Bader (LRZ)

https://wg5-fortran.org/
https://j3-fortran.org/

The Technical Literature does its best to keep up ...

3October 2022 | R. Bader (LRZ)

What is "modern" about Fortran?

• Focus of FORTRAN 77

• Portability
• Performance

(... for numerical algorithms)

• Focus today

• Portability
• Performance

(... on scalable HPC systems)
• Interoperability
• Software Design and Engineering
• Resiliency

(... optional)

4October 2022 | R. Bader (LRZ)

apart from cosmetic innovations ...

A la mode du jour ...

Fortran 90/95
• Module

static Inheritance
encapsulation

• Dynamic data
Pointers
allocatable Objects

• Type concept
POD components
dynamic components

• Array processing
• Parallelism ?

FORALL
OpenMP
MPI (on crutches)

5

Fortran 2018
• C-Interoperability

Fortran semantics in C
Asynchronous extension

• Parallelism !!
Coarray Teams
collective intrinsics
atomic intrinsics
events

DO CONCURRENT
erweitert
OpenMP

MPI
(nearly) without crutches!

• Resiliency
optional

Fortran 2003
• Object orientation

single dynamic inheritance
type- and object-bound
procedures
abstract types and
interfaces

• IEEE-754
• C-Interoperability

C semantics in Fortran

• I/O extensions
Asynchronous,
Streams, UDDTIO

• Parallelism ??
parameterized Data types
(SoA vs AoS)
OpenMP tasks

Fortran 2008
• Submodules

Dependency inversion now
for real !

• Parallelism !
SPMD-PGAS:
Coarrays

DO CONCURRENT

OpenMP simd
OpenMP target

MPI
(still on crutches)

October 2022 | R. Bader (LRZ)

New Concepts in (and outside) Standard Generations
Fortran Standard

unimplementable

Software Design and Engineering
Dependency Inversion (1) – Submodules

• important modules are used by many other program units
 "structural" Dependency Inversion

• deep submodule hierarchies are permitted, but likely of only limited usefulness
6October 2022 | R. Bader (LRZ)

MODULE mymod

my_proc()

MODULE mymod

my_proc()

SUBMODULE (mymod) smod_1

my_proc()

h

Access by host association
(i.e.also to private entities)

Implementation

Interface
only

programu

Access by use association
(Recompiling needed if module is modified)

Anything that does not have
an interface in the module is private

program

Software Design and Engineering
Dependency Inversion (2) – Interface class

• Abstract type and abstract interface • Usage:

 Observation: compile time access is
only to abstract API

 „semantic“ Dependency Inversion

7October 2022 | R. Bader (LRZ)

handle

%open()

file_handle

%open()

unit

TYPE, ABSTRACT :: handle
CONTAINS
PROCEDURE(open_handle), DEFERRED :: open

END TYPE HANDLE

ABSTRACT INTERFACE
SUBROUTINE open_handle(this)
IMPORT :: handle
CLASS(handle) :: this

END SUBROUTINE
END INTERFACE

TYPE, EXTENDS(handle) :: file_handle
PRIVATE
INTEGER :: unit

CONTAINS
PROCEDURE :: open => open_file_handle

END TYPE file_handle

refers to an existing procedure

CLASS(handle), ALLOCATABLE :: my_handle

my_handle = ...

call my_handle%open()

auto-allocation

run time dispatch
through a „virtual method"

polymorphic (obligatory)

etc etc

single
inheritance

Organisation of program units

MODULE mod_file_handle

• It would be nice if life were that easy ... but ...

8October 2022 | R. Bader (LRZ)

MODULE mod_handle

my_proc()

program

u

handle

%open() file_handle

%open()
unit

What comes first – Hen or Egg?

• Creation of the polymorphic object ...

• How?
 not possible through a method
 ... since the latter needs the dynamic type of

the object
which is in turn determined by the creation

process.

• Where?
 in the module that defines the abstract API
 ... in order to preserve the structural

Dependency Inversion

• Interface

• Possible implementation

USE access to definition of file_handle is
needed circular USE

9October 2022 | R. Bader (LRZ)

FUNCTION create_handle(htype) result(h)
USE mod_file_handle, ONLY : file_handle
CHARACTER(len=*), INTENT(in) :: htype
CLASS(handle), ALLOCATABLE :: h
...

...
SELECT CASE(htype)
CASE ′file_handle′
ALLOCATE(file_handle :: h)
...

CASE default
STOP ′Unsupported extension of handle′

END SELECT

Solution: combine structural and semantic Dependency Inversion

MODULE mod_file_handle

• Beware:
• USE association overrides host

association
• Use e.g., ONLY to avoid side effects

10October 2022 | R. Bader (LRZ)

MODULE mod_handle

my_proc()

create_handle()

program

u

handle

%open() file_handle

%open()
unit

SUBMODULE (mod_handle) smod_handle

create_handle()

h

Parallelism

• Within the Standard

Compiler-driven

− additional clauses (locality, reductions)
− hardware independent

Coarrays
− Replication of serial program image (SPMD)
− Scalable model

• Outwith the Standard

OpenMP - portable directives
− Threaded execution in coherent shared

memory
− Vector units (simd)
− Accelerators (offload)

Message Passing (MPI)
− Replication of serial program image
− Under control of communication library
− Scalable model
− Standard conforming?

11October 2022 | R. Bader (LRZ)

DO CONCURRENT
...

END DO

independent
iterations

Asynchronous processing

• overlap computation with independent data transfers

• Assumption:
 additional system resources are available for processing the extra activity or even multiple

activities (without incurring significant overhead)

12October 2022 | R. Bader (LRZ)

compute a

compute b,
maybe using a

dump a

update a

wait

saved time

Completion:
prevent race of dumping

affector (a) against
its subsequent update

Initiation:
start a second,
independent

instruction sequence

Data sink:
remote memory
storage device

...

CALL mpi_isend(buf, count, MPI_REAL, &
dest=1, tag, &
MPI_COMM_WORLD, req, ierr)

:

CALL mpi_wait(req, status, ierr)

Realization – non-blocking writes in MPI

• Specifications

• MPI rank 0

• Beware:
 Implementation is not obliged to overlap

communication and computation!

• MPI rank 1

13October 2022 | R. Bader (LRZ)

Code that does not modify buf

USE mpi

REAL :: buf(NDIM)
INTEGER :: count, ierr, tag, req
INTEGER :: status(MPI_STATUS_SIZE)

CALL mpi_recv(buf, count, MPI_REAL, &
source=0, tag, &
MPI_COMM_WORLD, status, ierr)

: Do anything with buf

Unfortunately, lots of bad things can happen ...

• Race conditions appear mysteriously
(with a new and improved compiler and/or MPI
library)

• Transmission of array section fails

• And, while we're at it,

 none of the MPI calls with buffers are type-
safe

 reason: MPI buffers can be of any type and
rank, but Fortran (up to 2008) lacks a
concept for this

• So, apart from not really working, the MPI
interface is not standard-conforming.

 crutches: VOLATILE, MPI_F_SYNC_REG,
directives for suppressing signature check

14October 2022 | R. Bader (LRZ)

:

CALL mpi_wait(req, status, ierr)
buf = ...

optimizer's code motion

CALL mpi_isend(buf(::stride), ...)

dummy argument is assumed size
DIMENSION (*), causing copy-in

Resolution – use Fortran 2018 and the new MPI interface (> 3.1)

• Specifications

• MPI rank 0

• buf dummy argument for mpi_isend

• Array sections:

15October 2022 | R. Bader (LRZ)

BLOCK
ASYNCHRONOUS :: buf
CALL mpi_isend(buf, count, MPI_REAL, &

dest=1, tag, &
MPI_COMM_WORLD, req)

:

CALL mpi_wait(req, status, ierr)
END BLOCK

Code that does not modify buf

USE mpi_f08
REAL :: buf(NDIM)
INTEGER :: count, tag
TYPE(mpi_request) :: req
TYPE(mpi_status) :: status

TYPE(*), ASYNCHRONOUS, INTENT(in) :: buf(..)

assumed-type
(really the same as *void)

assumed-rank

inhibits code motion

IF (MPI_SUBARRAYS_SUPPORTED) THEN
CALL mpi_isend(buf(::stride), ...)

ELSE
...

END IF

just to make sure

The machinery behind assumed-rank ...

• Assume mpi_isend() has a BIND(C)
interface:

• C descriptor for Fortran object

• Actual argument is a complete array (0:1,3)

• Actual argument is
an array section (0::2,1::3) of (0:2,9)

16October 2022 | R. Bader (LRZ)

#include <ISO_Fortran_binding.h>

void mpi_isend(CFI_cdesc_t *buf, ...);

C
FI

_c
de

sc
_t

void *base_addr

size_t elem_len

int version

CFI_rank_t rank

CFI_type_t type

CFI_attribute_t
attribute

CFI_dim_t dim[]

CFI_index_t lower_bound

CFI_index_t extent

CFI_index_t sm

not meant for tampering
 must use API

1

2

3

4

5

6

0 1 2 dim[1]

indicates array
element sequence

of dummy argument

sm=8B

*base_addr

CFI_is_contiguous(buf) returns 1

1

2

3

4

5

6

0 1 2 dim[1]

all „orange“ storage units
are not part of the object,

but are exposed by
descriptor

 do not touch!

sm=24B
CFI_is_contiguous(buf) returns 0

*base_addr

Implement Fortran mpi_isend() in terms of C MPI_Isend()

17October 2022 | R. Bader (LRZ)

void mpi_isend(CFI_cdesc_t *buf, int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm, MPI_Request *request, int *ierror) {

int ierror_local;
MPI_Datatype disc_type;
if (CFI_is_contiguous(buf)) {
ierror_local = MPI_Isend(buf->base_addr, count, datatype,

dest, tag, request, comm);
} else {
... /* use descriptor information to construct disc_type

from datatype (e.g. via MPI_Type_create_subarray) */

ierror_local = MPI_Isend(buf->base_addr, count, disc_type,
dest, tag, request, comm);

... /* clean up disc_type */
}
if (ierror != NULL) *ierror = ierror_local;

}

Notional - I'm not saying it is done exactly this way ...

Using this was what you needed to do in
"old" Fortran anyway 

C API always uses contiguous buffer

PGAS Programming with coarrays (Fortran 2008)

• Asynchronous execution (SPMD)
• Images 1, 2, …, num_images()
• each image has its own data

• Coarrays
• Declaration with CODIMENSION attribute

marks data as communicable

• such data are symmetric:
same type, rank and shape on all images

• image-local accesses:
as for non-communicable data

• Data transfer and synchronisation

• Segment ordering:
• q1 before p2, p1 before q2
• qj vs. pj unordered

18October 2022 | R. Bader (LRZ)

a = …
SYNC ALL
IF (this_image() == p) &

b = a(:)[q]

global barrier

Aq

p

execution sequence

B

A
ddress

space

q1 q2

p1 p2

global barrier
REAL :: a(ndim)[*]
REAL :: b(ndim)

coindexed get
(put also exists)

(implicit)
CODIMENSION attribute

Coarray teams (Fortran 2018)

• Compose parallel programs • Data exchange across team boundaries
• is possible only for coarrays (bd[*]) that already

exist prior to change team execution
• the current team context must be preserved (no

deallocation of dfl[*]) !
• new syntax is therefore needed for coindexing, e.g.

• cross-team synchronisation done with
sync team (not shown here)

19October 2022 | R. Bader (LRZ)

1 2 3 4 5

form team

change team

1 2 3 1 2

end team

this_image()
in initial team

execution
sequence this_image() in

team structure

fluid und structure
are sibling teams

structure structure

fluidfluidfluid

dfl[*]

bd[*]

… = bd(:,:)[4, TEAM=parent_team]

Usage scenarios for teams

• MPMD-style parallelism

• hybrid parallelism
• team images within shared memory

as potential optimization
• recursive team decomposition

(e.g. for „divide and conquer“ algorithms)

• Resiliency

• optional feature: continue execution in the
face of partial hardware failure (non-
impacted images)

• Defining a spare image set in a team
decomposition allow the programmer to
implement resilient applications

• Requires significant programming effort to do
properly, including reworking of parallel
library components.

20October 2022 | R. Bader (LRZ)

Combining parallel programming models?

• Yes, but ...
• a multitude of design options

(you need to decide on one early on)
• high implementation dependency

(portability suffers)
• MPI

• MPI standard does not deal with coarrays
and potential interactions

• OpenMP
• currently no coarray support
• separating to procedures should work
• NAG does not permit this combination,

however permits MPI „outside“ and coarrays
„inside“

• MPI-coarrays one-to-one

• Hierarchical setups

21October 2022 | R. Bader (LRZ)

0 1 2 3
1 2 3 4

this_image()

execution
sequence

MPI_Comm_rank()

1 2 3 4
this_image()

execution
sequence

MPI
OpenMP

Implementations
As of 2022

Compiler Platform Implementation distributed
memory?

Resiliency?

Intel Fortran („classic“) x86 MPI based yes yes
GCC gfortran multiple MPI based (Opencoarrays) yes partial
GCC gfortran multiple shared memory, not all features no no
NAG Fortran x86 shared memory (exclusive alternative

to OpenMP)
no yes

(semantics)
Cray Fortran Cray / HPE low-level communication library yes yes

22October 2022 | R. Bader (LRZ)

Especially MPI based implementations:
leave headroom for scalability and performance

Parameterized data types
a yet-hidden treasure of object based programming

• „Array of structures“ • „Structure of arrays“ (Fortran 2003)

23October 2022 | R. Bader (LRZ)

type :: body_p(k, ntraj)
integer, kind :: k = kind(1.0)
integer, len :: ntraj = 1

character(len=4) :: units
real(kind=k) :: mass(ntraj)
real(kind=k) :: pos(ntraj,3), vel(ntraj,3)

end type body_p

default values

array dimension folded
into component

produces desired
representation

type(body_p (ntraj=:)), allocatable :: dyn_traj
:
allocate(body_p (ntraj=3) :: dyn_traj)

type :: body
character(len=4) :: units
real :: mass
real :: pos(3), vel(3)

end type body

type(body), allocatable :: traj(:)
:
allocate(traj(3))

parameter
belongs to type

Memory Layout

• AoS with 3 field elements

• SoA with LEN parameter value 3

• AoS

Memory accesses are typically non-
contiguous

 loss of „spatial locality“,
independent of field size

• SoA

supports contiguous access for
all components

 vectorizable
 accelerators: efficient offload

24October 2022 | R. Bader (LRZ)

velocity in 2nd element

mass in 2nd element

all masses all velocities

actual memory layout
may differ in details

Performance comparison for momentum transfer
(Intel Skylake 2.3 GHz)

25October 2022 | R. Bader (LRZ)

Alternative: user allocatable components?

• Pro
• Vectorization works
• Implementations are mature

• Contra
• Use as coarray is rather limited

(avoid remote allocation)
• Performance impact for data transfers through

coarrays (additional latency for accessing
unsymmetric memory)

26October 2022 | R. Bader (LRZ)

Examle: scalar coarray of parameterized type
• symmetric memory!

type(body_p (ntraj=:)), allocatable :: dyn_traj[:]
:
allocate(body_p (ntraj=256) :: dyn_traj[*])
:
dyn_traj[p]%vel(:,:) = ...
sync all update velocity data

on remote image

Implementations
are still immature

Fortran futures (1) – Fortran 2023

• Coarray extensions:
 notify/wait mechanism for data transfer
 arrays of a type with coarray components

• DO CONCURRENT:
 REDUCE clause

• Declare object based on another object‘s type
 TYPEOF / CLASSOF

• SIMPLE procedures
 more restricted than PURE
 PURE intrinsics are all SIMPLE

• Additional intrinsics (esp. for strings) and
ISO_FORTRAN_ENV constants

• Extensions to array syntax
 multi-subscripts, rank-agnostic DIMENSIONing

• Conditional expressions
 both RHS expressions and actual arguments in

procedure calls
• Enumeration types
 both Fortran and C-compatible (more restricted),

with slightly different syntax
• Additional edit descriptors
• Auto-allocation of error strings and internal

records

27October 2022 | R. Bader (LRZ)

Currently in DIS stage

list is not complete

Fortran futures (2) – Fortran 202Y

Already decided

• Templates (most likely) for generic
programming
 can be nested
 parameters can be types, procedures ...
 restrictions on parameters can be specified
 no metaprogramming!
 https://github.com/j3-

fortran/generics/tree/main/examples

Potential further features

• Still under consideration!
 extensions to collective intrinsics
 extend data access to assumed-rank
 ... many other small features

Current collection of requests (!) is at
https://j3-fortran.org/doc/year/22/22-
176r5.docx

28October 2022 | R. Bader (LRZ)

Feature is under active development

https://github.com/j3-fortran/generics/tree/main/examples
https://j3-fortran.org/doc/year/22/22-176r5.docx

Trying to answer the question from the cover page

• modern ... a contradiction in itself?

No

 the language has been (and will be)
re-honed to keep up with scientist‘s needs

 relevant software and engineering concepts
have been added

use best practices in new codes to avoid
(problematic) legacy features

• ... future proof?

Maybe

performance portability is becoming more
difficult to achieve

 insufficient support for accelerator hardware

„future“ is also a technical term:

29October 2022 | R. Bader (LRZ)

future(id, device) : a = process(b, c)
: ! do other stuff
wait(id) fantasy syntax

	Foliennummer 1
	ISO-IEC 1539-1: Horses vs. Dinosaurs
	The Technical Literature does its best to keep up ...
	What is "modern" about Fortran?
	New Concepts in (and outside) Standard Generations
	Software Design and Engineering�	Dependency Inversion (1) – Submodules
	Software Design and Engineering�	Dependency Inversion (2) – Interface class
	Organisation of program units
	What comes first – Hen or Egg?
	Solution: combine structural and semantic Dependency Inversion
	Parallelism
	Asynchronous processing
	Realization – non-blocking writes in MPI
	Unfortunately, lots of bad things can happen ...
	Resolution – use Fortran 2018 and the new MPI interface (> 3.1)
	The machinery behind assumed-rank ...
	Implement Fortran mpi_isend() in terms of C MPI_Isend()
	PGAS Programming with coarrays (Fortran 2008)
	Coarray teams (Fortran 2018)
	Usage scenarios for teams
	Combining parallel programming models?
	Implementations�As of 2022
	Parameterized data types �a yet-hidden treasure of object based programming
	Memory Layout
	Performance comparison for momentum transfer�(Intel Skylake 2.3 GHz)
	Alternative: user allocatable components?
	Fortran futures (1) – Fortran 2023
	Fortran futures (2) – Fortran 202Y
	Trying to answer the question from the cover page

