
OMI4papps	

4.	TESTING	AND	VALIDATION:	
DSL	CODE	EXAMPLE

1.	INTRODUCTION	AND	MOTIVATION 2.	RELATED	WORK	AND	FRAMEWORK	FLOW

5.	TESTING	AND	VALIDATION:	
DSL	MODES	AND	SIMULATED	PERFORMANCE	

8.	SUMMARY	OF	SIGNIFICANCE	7.	FUTURE	WORK	AND	REFERENCES6.	EVALUATION	AND	IMPLICATIONS

3.	SIMULATOR	DESIGN

DISCOSTIC:	A	DSL-BASED	PARALLEL	SIMULATION	FRAMEWORK
USING	FIRST-PRINCIPLES	ANALYTIC	PERFORMANCE	MODELS	
Ayesha	Afzal <ayesha.afzal@fau.de>,	Georg	Hager	(advisor),	Gerhard	Wellein (advisor)

Erlangen	National	High	Performance	Computing	Center	|	Department	of Computer	Science	|	Friedrich-Alexander-Universität Erlangen-Nürnberg,	Germany

Supported	by	

1.	No	intermediate	
tracing	0iles

unlike	any	of0line,	trace-
driven	tools

2.	Low	memory	
requirement

no	need	of	target	
architectures	for	
code	execution

Low	entry	cost	tool	
since

1.	Optional dependency	
on	other	tools	(LIKWID,	
KERNCRAFT,	OSACA),	
only	as	an	add-on	

feature
2.	No	tool	dependency	
for	trace	analysis	and	

visualization

Convenient,	compact	
and	practically	usable	

application	
programming	interface	

(API)

Enables	in-depth	
architectural	
exploration

via	analytic	modelling	
of	node-level	

bottlenecks	without	
executing	the	code,	in	
contrast	to	existing	
trace-based	parallel	

simulators

RESOURCE	EFFICIENT STANDALONE

USER-FRIENDLINESS	 UNIQUE	SELLING	POINT

Simulation	of	large-scale	
applications	by	taking	

the	socket-level	
performance	properties	

of	the	hardware-
software	interaction	

into	account

Reproducibility	and	
exploration	of	the	
dynamics	of	parallel	
programs	on	current	

and	future	
supercomputers	in	a	
well-controlled	

environment,	thereby	
saving	resources	and	

time

Domain-speci0ic	
language	(DSL)-based	
simulator;	traces	in	
existing	trace-based	
simulators	do	not	

comprise	reliable	inter-
process	dependency	
information	and	are	

superimposed	by	many	
effects	coming	from	real	
systems,	MPI	library,	etc.	

Using	analytical,	0irst-
principle	models	for	

execution	and	
communication	time	
predictions,	taking	

socket-level	bandwidth	
contention	into	account	
and	no	dependencies	on	

external	libraries

Lightweight	message	passing	simulation	toolkit	

GOAL USE-CASES

CHALLENGESCOMPARISON

Afzal	et	al.

[1]	DOI:
10.1109/CL
USTER.2019
.8890995

[3]	DOI:
10.13140/R
G.2.2.28259
.50726

[2]	DOI:	
10.1007/97
8-3-030-

78713-4_19

[4]	DOI:	
10.1007/97
8-3-030-

50743-5_20

[5]	DOI:	
10.1002/
cpe.6816

Including	multi-
core	energy	models,	

more	MPI	
functionality	

including	MPI	3.0	
features,	automatic	
generation	of	DSL	

code

Extending	the		
simulation	
framework	to	

hybrid	applications	
(MPI+X),	

incorporating	
X=OpenMP,	CUDA,	
etc.	including	X-
speci0ic	overheads

Support	network	
topologies

and	network-level	
contention	

End-user	
exploration	tool	for	
large	space	of	proxy	

and	real	
applications

ADVANCED	MODELS HYBRID	MODE

CONTENTION ADVANCED	CASE	STUDIES

Beyond	the	exploration	of	future	supercomputers,	DisCostiC can	reproduce	
the	case-studies	performed	on	current	system	in	following	references:

[1]	Ayesha	Afzal,	Georg	Hager,	and	Gerhard	Wellein.	2019.	Propagation	and	Decay	of	Injected	One-Off	Delays	on	Clusters:	A	Case	
Study.	In	Proceedings	- IEEE	International	Conference	on	Cluster	Computing,	ICCC.	
[2]	Ayesha	Afzal,	Georg	Hager,	and	Gerhard	Wellein.	2021.	Analytic	Modeling of	Idle	Waves	in	Parallel	Programs:	Communication,	
Cluster	Topology,	and	Noise	Impact.	In	Lecture	Notes	in	Computer	Science,	vol	12728.	Springer	International	Publishing,	Cham.	
[3]	Ayesha	Afzal,	Georg	Hager,	and	Gerhard	Wellein.	2019.	Delay	Flow	Mechanisms	on	Clusters.	Poster	at	EuroMPI 2019.	
[4]	Ayesha	Afzal,	Georg	Hager,	and	Gerhard	Wellein.	2020.	Desynchronization	and	Wave	Pattern	Formation	in	MPI-Parallel	and	
Hybrid	Memory-Bound	Programs.	In	Lecture	Notes	in	Computer	Science,	vol	12151.	Springer	International	Publishing, Cham.	
[5]	Ayesha	Afzal,	Georg	Hager,	and	Gerhard	Wellein.	2022.	Analytic	Performance	Model	for	Parallel	Overlapping	Memory-Bound	
Kernels.	Concurrency	and	Computation:	Practice	and	Experience.	34(10),	e6816.

Existing	parallel	simulators	
concentrate	on	communication	
aspects	and	ignore	the	analytical	
modelling	of	hierarchical	structure	
below	the	node	level	with	its	
component-level	bottlenecks

RE
LA
TE
D
	

W
O
RK

xSim
HeSSE

LogGOPSim

SimGrid

BigSim

MARS	
SST

SILAS

COTSon

MPI-SIM	

DIMEMAS

PSiNS

Existing	
simulators

a.		User
input

b.		Analytic	modelling

e.			Parameter	study
with	validation

d.		Testing	and	
validation

c.		Simulated	
results

Identification	of	governing	principles	
concerning	the	interplay	of	parallel	
programs	and	components	of	

supercomputers	to	target	modelling	and	
optimization	challenges	

Validation	of	models	using	
measurement	of	derived	

hardware	metrics

Simulation	log	Dile	and	
visualization	of	trace	Dile	
(JSON	object	data	format)	
via	Chromium	browser	
(chrome://tracing
or	ui.perfetto.dev)

Cluster	conDiguration	and	
DSL-based	parallel	program

Analytical	performance	
models	at	computation	and	
communication	levels

D
IS
CO
ST
IC

W
O
RK

FL
O
W

Parallel	program	
running	on	cluster	

Likwid-perfctr of	
LIKWID	suite

In-core
OSACA	tool

layer	condition	
analysis	and	cache	
simulator	fallback

Multi-core	
KERNCRAFT	

tool
KERNCRAFT

LIKWID

Layer	
Conditioner

Pycachesim

OSACA

DisCostiC

Test	case:	MPI-parallel	2D	0ive	point	Jacobi	with	1D	decomposition

Comparison	of	simulated	runtime	prediction	with	experiments	on	the	
Meggie	cluster	(Intel	Xeon	Broadwell	EP-E5-2630	v4,	2.2	GHz,	two	10	
cores	NUMA	domains	per	node,	Omni-Path	interconnect	of	fat-tree	
topology	and	100	Gbits!" raw	bandwidth	per	link	and	direction)

DisCostiC::Indextype left, right;
DisCostiC::Datatype phi[1002][1002];
DisCostiC::Event irecv, send, wait1, wait2 comp, comp2;
// all events initialize to DisCostiC::InvalidID
for (auto rank : DisCostiC::getRange(100))
{

DisCostiC->Rank_Init(rank);
left = rank - 1;
right = rank + 1;
if (left < 0)

left = Discotic::NULLtype;
if (left > 999)

right = DisCostiC::NULLtype;
for (auto timestep : DisCostiC::getRange(10000))
{

comp = DisCostiC->Comp(”LBL: JACOBI2D", comp2);       
if (rank > 0)
{
irecv = DisCostiC->Irecv(&phi[0][1], 1000, left, comp, 

&req_left);
send = DisCostiC->Send(&phi[1][1], 1000, left, comp);
wait1 = DisCostiC->Wait(&req_left,&status_left); 
}
else if  (rank < 99)
{
irecv = DisCostiC->Irecv(&phi[999][1], 1000, right, comp, 

&req_right);
send = DisCostiC->Send(&phi[998][1], 1000, right, comp);
wait2 = DisCostiC->Wait(&req_right, &status_right); 
}
comp2 = DisCostiC->Comp(”LBL: COPY", wait1, wait2);

}
DisCostiC->Rank_Finalize();

}

Accurate	simulation	of	the	execution	of	a	massively	parallel	
Jacobi	code;	any	computation	mode	of Jacobi	kernel	in	the	DSL	

result	in	the	same	runtime	prediction,	with	or	without	
integration	of	external	tools,	like	KERNCRAFT	

LBL	mode

EXEC	mode

FILE	mode

SRC	mode

Different	ways	of	specifying	a	kernel	in	DSL

Script	for	KERNCRAFT	
interface

Input:	
string	with

node	and	kernel	
information	(e.g.,	

source	code,	machine	
Dile,	number	of	cores,	
kernel	parameters,	

etc.)

Output:
Overwrite	data
of	computation	
models	in	the	
conDig	Dile	of	
DisCostiC

Kernel	perf.	by	
conDig	parser

DisCostiC->Comp("LBL:JACIBI2D", 
DisCostiC::Event DEPN_OP);

Scaling	from	
single-core	
execution	
properties

DisCostiC->Comp(”EXEC: 
TOL=2.0||TnOL=1.0 

|TL1L2=3.0|TL2L3=6.0|TL3Mem=14.2", 
DisCostiC::Event DEPN_OP);

Run	
KERNCRAFT	
on	kernel	
source	Dile

DisCostiC->Comp("FILE:
jacobi2D.c//BREAK:JACIBI2D//

./broadwell.yml//20//-D N 1000",
DisCostiC::Event DEPN_OP);

Run	
KERNCRAFT	
on	inline	
source	

DisCostiC->Comp("SRC: 
DisCostiC::Datatype

a[M][N],b[M][N],c[M][N],s;\n\n 
for(DisCostiC::Indextype j=0;j<N-
1;j++)\n\tfor(DisCostiC::Indextype
i=0;i<M-1;i++)\n\tb[j][i]=(a[j][i-

1]+a[j][i+1]+a[j-1][i]+
a[j+1][i])*s;\n//BREAK:JACIBI2D//
./broadwell.yml//20//-D M 1000 N 
1000", DisCostiC::Event DEPN_OP);

Computation	modes

DisCostiC->  (DisCostiC::Datatype 
Msg_in_bytes, DisCostiC::Indextype Dest_rank,

DisCostiC::Event DEPN_OP);

Communication	modes

X

SendIsendRecvIrecv

Sending	or	
receiving

Blocking/non-blocking	modes	of		pair-wise	communication	in	DSL

POSTER	
ARTIFACT

EMBEDDED	
CONTENT	

http://tiny.cc/PASC22-ADhttp://tiny.cc/PASC22_Talk

Try	it	
yourself

Use-case:	idleness	propagating	across	processes	(idle	wave	speed)

Visualization:	massively	parallel	Jacobi	code	simulating	for	10,000	iterations

Initial	chrome://tracing	browser
(responsive	trace	navigation)

Latest	ui.perfetto.dev browser
(support	for	larger	trace	sizes)

Zoom-in	
view

𝑃# send	to	𝑃#$"
𝑃# receive	from	𝑃#!"

𝑃# send	to	𝑃#$%
𝑃# receive	from	𝑃#!%
(double	speed
of	idle	wave	[1])

Ra
nk

Ra
nk

Time

User-friendliness	

Simulation	accuracy,	scalability,	efficiency,	
features,	modularity	and	portability

Modeling complexity	

Management	of	input	
conDiguration,	modelled	

predictions	and	MPI	message	
semantics	via	generating	an	

abstract	syntax	tree

Analytic	runtime	
computation	models	
(serial	core	and	
parallel	chip	level)	

RooDline
Execution
-Cache-
Memory	
(ECM)

Analytic	runtime	
communication	

models
(network	level)	

LogGOPSHockney

Node	attributes
(chip-level	
saturation,	
overlap,	etc.)

Cluster	topology,	
network-level	
bottlenecks	and	
structure	and	

domain	knowledge	
of	application	
(communication		
matrix,	etc)	

Network	
attributes	(eager	
limit,	latency,	
bandwidth,	etc.)

Prediction	of	
computation	time	for	
arithmetic	instructions	
and	the	amount	of	

data	loaded	and	stored	
in	each	memory	level

Prediction	of	
communication	

time	for	the	latency	
and	bandwidth	of	
all	P2P	messages

Increase	
prediction	
accuracy

Increase	
prediction	
accuracy

Simple	two-bottleneck	
Roofline	model	for	

bottleneck	identification	
and	“light	speed”	estimates

Simple	two	parameter	
Hockney	model,	

comparing	the	latency	
and	bandwidth	to	
decide	latency	or	

bandwidth	bound	code

ReDined	multi-
parameter	

LoGOPS model

ReDined	multi-bottleneck	
multi-core	ECM	model	in	the	
core	and	cache	hierarchy,	


