
LARC: A Case Study in

Enhancing CPUs with

Copious 3D-Stacked Cache

NHR PerfLab Seminar 06. Sept. 2022

• Founded 1917, Japan's first comprehensive research institute
on natural sciences and engineering

>Founding fathers: Dr. Jokichi Takamine, the samurai chemist,
and Mr. Eiichi Shibusawa

• Strategic research and development of the state-of the-art
research infrastructure, in line with government’s STI policy

• Top research quality and most internationalized among Japanese
universities and National R&D Agencies

• Strong collaboration across laboratories and
research centers, emphasis on interdisciplinarity

• Workforce: 3,000 research staff and
500 administrators

• Campus: 10 in Japan

• Annual budget: 900 M USD

• Subsidiary: RIKEN Innovation
(founded in 2019, fully owned by RIKEN)

An introduction to RIKEN

RIKEN Overview

President
Dr. Hiroshi Matsumoto

Dr. Jokichi Takamine and Mr. Eiichi Shibusawa

About RIKEN

RIKEN National Science Institute is Japan’s most

comprehensive research institute for the natural

sciences, conducting cutting-edge research in a

wide range of scientific fields.

1917 - RIKEN is founded.

1948 - RIKEN becomes KAKEN

Scientific Research Institute Ltd.

1958 - RIKEN becomes a

public corporation.

2003 - RIKEN becomes an

Independent Administrative

Institution.

2016 - RIKEN is designated as one

of three National Research and

Development Institutes in Japan.

2017 - RIKEN celebrates its

100th anniversary.

Health
medicine

Developmental
Biology

Sustainable
Resources

Brain Science

Engineering

Genetics

Plant Science

Chemistry

Artificial
Intelligence

Energy

Space Science

Physics

Nanoscience

Computational
Science

Nuclear
Physics

8

9

A research center out of 13
centers in RIKEN. The tier first
national HPC center.

Advanced Processor
Architectures
K. Sano

Programming
Environment
M. Sato

Next Gen
High
Performance
Architecture
M. Kondo

High Performance
Big Data Systems
K. Sato

High Performance
AI Systems
Mohamed WAHIB

C
o

m
p

u
te

r S
c

ie
n

c
e

C

o
m

p
u

ta
tio

n
a

l
S

c
ie

n
c

e

O
p

e
ra

tio
n

s
 a

n
d

C
o

m
p

u
te

r T
e

c
h

n
o

lo
g

ie
s

Data
Assimilation
T. Miyoshi

Climate
Science
H. Tomita

HPC
Engineering
Applications
M. Tsubokura

Biophysics
Y. Sugita

Molecular
Science
T. Nakajima

Discrete Event
Simulation
N. Ito

Quantum
Physics
S. Yunoki

Disaster
Mitigation &
Reduction
S. Oishi

Structural
Biology
F. Tama

Field Theory
Y. Aoki

Advanced
Operation
Technologies
K. Yamamoto

Parallel
Numerical
Technology
T. Imamura

Facility
Operations &
Development
T.
Tsukamoto

System
Operations &
Development
A. Uno

Software
Development
Technology Unit
H. Murai

HPC Usability
Development
F. Shoji

HPC-and AI-driven Drug

Development Platform Division

Biomedical
Computational
IntelligencebUnit
Yasushi Okuno

Medicinal
Chemistry
Applied AI Unit
Teruki Honma

Molecular Design
Computational
Intelligence Unit
Mitsunori
Ikeguchi

AI-driven Drug
Discovery
Collaborative
Unit
Yasushi Okuno

Office of the

Fugaku

Society 5.0

initiative

Director
S. Matsuok
a

10

From April 2022

New Teams JFY2022 (plan)

（New Team）
S5・Digital twin

Deputy
Director
M. Sato

Deputy
Director
K. Nakajima

Deputy
Director
M. Shinano

（From July）
Supercomputing
Performance Research

Director
S. Matsuok
a

Achieved world's first five titles
(4 consecutive terms + new ML Perf HPC 1st place)

In four HPC performance rankings (Top500, HPCG, HPL-AI,
Graph500), Fugaku won four titles consecutively from
June 2020. In November 2021, also awarded first place in
ML Perf HPC, a new overall performance evaluation of AI
processing.

Data Assimilation Research
(Prediction of Sudden downpours, COVID-19 infection)

“GENESIS” new version released
Molecular dynamics (MD) simulations

A new version of GENESIS, optimized for 'Fugaku' by
co-design, more than 125 times faster and with
many new features, has been released as free
software in 2020. Work on the dynamic

R-CCS Research Previous Highlights（JFY2021）

Successfully developed a detailed and quantitative COVID-
19 droplet and aerosol dispersion model using "Fugaku"
for the first time in the digital transformation of infectious
disease epidemiology. Visualizing arised awareness of the
importance of understanding droplet and aerosol
infection changing behaviour not only in Japan, but also
around the world.
ITU-AJ Special
Achievement Award

Gordon Bell Special Prize
Fight against COVID-19

Using big data from weather radar, a real-time of
ultra-fast precipitation forecasting, was conducted in
the Tokyo area using Fugaku during the Tokyo
Olympic and Paralympic Games.

11

Data assimilation methods
developed in numerical weather
forecasting were applied to the
forecasting of COVID-19 infections

structure of spike proteins on
the surface of COVID-19 has
analized successfully. RIKEN
EIHO Award (RIKEN Significant
Achievement Award)

Fugaku's high overall
performance in a wide range of
fields, as well as its ability to
make a significant contribution
to the realization of Society
5.0/SDGs.

Jens Domke

Outline

12

 Motivation – CPUs Empowered with High-capacity Cache

 From A64FX to a hypothetical LARC processor

 Evaluation Strategies and Results

 Relevant HPC (Proxy-)Apps and Benchmarks

 Simulating Unrestricted Locality with MCA

 Cycle-level Accuracy: CPUs Simulated in gem5

 Discussions and Outlook towards 2028++

 Summary

Jens Domke

M. Shulaker et al. "Monolithic 3D

Integration: A Path from Concept to Reality“ in DATE’15

CPUs Empowered with High-capacity Cache

13

 Towards the future of post-Moore era: quantum-, neuromorphic-, or

reconfigurable computing might be viable, but…

 3D integrated circuit (IC) stacking can help

classic von-Neumann CPUs now?

 Multiple discrete dies (comp/mem/IO) stacked

 Connected using coarse through-silicon vias (TSV), or

 Growing the 3D integrated circuit monolithically on the wafer

T. Morgan ""Milan-X" 3D Vertical Cache Yields Epyc

HPC Bang For The Buck Boost“ (The Next Platform)

Feasible?

Jens Domke

1
5

0
1

5
0

CPUs Empowered with High-capacity Cache

14

 Performance gain over 3003

 3x by confining to enlarged L3

 8x by core parallelism w/ scaling

=> total 24x speedup

(proxy for FugakuNEXT CPU)

 Caveat: assuming algorithmic

strong scaling and

process/packaging scaling

Peak ‘sweet spot’ around

150x150x150 w/ ~3x performance

gain; Workload confinement to L3

Jens Domke

CPUs Empowered with High-capacity Cache

15

From our previous research, we know:

 Majority of HPC is FP64-based and bandwidth-bound

 Matrix engines will not yield much performance in HPC

 Can we allocate silicon to other areas for performance gain?

Research question for this work:

 Q1: How many SRAM layers (how large L2) by 2028?

 Q2: Will HPC apps gain any speedup from it?

 Q3: Can we drive rapid “What-if” exploration with

current simulation approaches?

 Q4: What is the right CPU arch. for future systems?

 Q5: Will apps / software stack need to adapt to large LLC?

J. Domke et al. "Double-precision FPUs in High-

Performance Computing: an Embarrassment of

Riches?” in IPDPS’19

J. Domke et al. "Matrix Engines for High Performance

Computing: A Paragon of Performance or Grasping at

Straws?” in IPDPS’21

HPC co-design

Jens Domke

From A64FX to hypothetical LARC Processor

16

R. Okazaki et al.

"Supercomputer

Fugaku CPU A64FX

Realizing High

Performance, High-

Density Packaging,

and Low Power

Consumption"

Y. Kodama et al. "Evaluation of the RIKEN

Post-K Processor Simulator"

 A64FX – the brain of Fugaku

 Leading HPCG and Graph500

 Cores: 7 nm tech; Arm core with SVE

for 512bit vectors; 64KiB L1i and L1d;

70.4Gflop/s FP64, support for FP16

 CMG: 8MiB L2; 16-way set asso.;

256B cache line; L1-L2 bus at 128B

(read) & 64B (write); 1x 8GiB HBM2;

≈48mm2 floorplan excl. I/O, etc.

 CPU: 4 CMG; 52 Arm cores (12+1

per CMG for user/OS); 4x HBM2

for ~1TB/s stream BW; ~120W incl.

TOFU-D NIC; 32MiB LLC w/ L2 slices

connected by a crossbar switch; 3.4Tflop/s FP64;

≈400mm2 floorplan

Jens Domke

From A64FX to hypothetical LARC Processor

17

Projection towards 2028 with guesstimate and public roadmaps

 1.5nm in IEEE IRDS roadmap  reduce silicon footprint ≈8x (≈2x per gen.)

 A64FX CMG at ≈6mm2 of silicon area  replace L2 cache + controller

with 3 cores  double core count  32-core LARC CMG at ≈12mm2

 Stack L2 cache on top/below CMG (derived from Shiba et al. "A 96-MB 3D-Stacked SRAM Using

Inductive Coupling With 0.4-V Transmitter, Termination Scheme and 12:1 SerDes in 40-Nm CMOS" in IEEE TCAS-I)

 8x SRAM dies connected with ThruChip Interface (TCI); capacity/bandwidth

as function of #channels (𝑁ch), per-channel capacity (𝑁cap in KiB) and width

(𝑊 in bytes), #stacked dies (𝑁dies =8), and operating freq. (𝑓clk in GHz)

 Scaling Shiba’s 10nm work results to 1.5nm at ≈12mm2: 𝑁ch ≈=384,

𝑁cap =128KiB, 𝑁dies =8  𝑁dies · 𝑁ch · 𝑁cap = capacity of 384 MiB

and 𝑓clk =1GHz, 𝑊 =4B  𝑁ch · 𝑓clk · 𝑊 = bandwidth of 1536 GB/s

and read/write-latency of this SRAM cache is 3 cycles

Jens Domke

From A64FX to hypothetical LARC Processor

18

 New LARC CMG in 2028 timeframe

 32 A64FX-like cores w/ 64KiB L1i

and 64KiB L1d, total of ≈2.3 Tflop/s

 384MiB L2 with eight SRAM layers

 (keep HBM2 to isolate perf. gains)

 New/hypothetical LARC CPU

 die size similar to A64FX

 512 processing cores and 6 GiB

of stacked L2 cache with peak

L2 bandwidth of 24.6TB/s

 peak HBM2 bandwidth of 4.1TB/s

 total ≈36 Tflop/s in IEEE-754 FP64

Jens Domke

Projecting LARC’s Performance Improvement

19

 Can we look at a broad spectrum of HPC applications?

 Focus on real apps (w/ appropriate inputs), not benchmarks

 Which simulators can/should we use, and how long will it take?

 need a first-order approximation of a very large/fast cache

 gauge upper bound on perf. when all the memory-bottlenecks disappear

 Novel MCA-base ‘infinite-L1’ simulation

 Move to highly-detailed/slow simulators only if 1st projection exciting!

 gem5-base LARC simulation

Jens Domke

127 Relevant HPC Proxy-Apps and Benchmarks

20

 S1ECP Workload Post-K Workload

AMG Algebraic multigrid solver for unstructured grids FFB Unsteady incompressible Navier-Stokes solver by finite element method

for thermal flow simulations

CoMD Generate atomic transition pathways bet. any 2 structures of protein FFVC Solves the 3D unsteady thermal flow of the incompressible fluid

Laghos Solves the Euler equation of compressible gas dynamics MODYLAS Molecular dynamics framework adopting the fast multipole method (FMM)

for electrostatic interactions

MACSio Scalable I/O Proxy Application mVMC Variational Monte Carlo method applicable for a wide range of

Hamiltonians for interacting fermion systems

miniAMR Proxy app for structured adaptive mesh refinement (3D stencil) kernels

used by many scientific codes
NICAM Benchmark of atmospheric general circulation model reproducing the

unsteady baroclinic oscillation

miniFE Proxy for unstructured implicit finite element or finite volume applications NTChem Kernel for molecular electronic structure calculation of standard quantum

chemistry approaches

miniTRI Proxy for dense subgraph detection, characterizing graphs, and improving

community detection
CCS QCD Linear equation solver (sparse matrix) for lattice quantum

chromodynamics (QCD) problem

Nekbone High order, incompressible Navier-Stokes solver based on spectral

element method
RIKEN TAPP scaled-down version of important kernels of above problems

for quick gem5-based co-design

SW4lite Kernels for 3D seismic modeling in 4th order accuracy Bench Workload

SWFFT Fast Fourier transforms (FFT) used in by Hardware Accelerated

Cosmology Code (HACC)
HPL Solves dense system of linear equations Ax = b

XSBench Kernel of the Monte Carlo neutronics app: OpenMC HPCG Conjugate gradient method on sparse matrix

Bench Workload Stream Throughput measurements of memory subsystem

SPEC CPU CPU[speed]/train / 20 test problems (10 int/single + 10 float/OMP) DLproxy single-precision GEMM ops to approximate 2D deep CNN (224×224 ImageNet)

SPEC OMP train input / 14 OpenMP-parallelized HPC-focused benchmarks NPB OMP class B / 10 proxy-apps of computational fluid dynamics (CFD) problems

PolyBench/C EXTRALARGE / 30 single-threaded, scientific kernels (mem ∈ [16 KiB, 120 MiB]) NPB MPI class B / 9 proxy-apps of computational fluid dynamics (CFD) problems

Jens Domke

Simulating Unrestricted Locality with MCA

21

 Machine/Architecture Code Analyzer

 Recall “Basic Blocks” (BB):

 straight-line code sequence

 no branches; 1 entry; 1 exit

 Extracting BB is easy [for x64]

 Run application with Intel SDE

 Output contains: assembly, #executions,

program counter,

meta-data

 but, not 100%

LLVM compatible

"Compiler Design - Code Optimization“
https://www.tutorialspoint.com/compiler_design/compiler_design_code_optimization.htm

Jens Domke

Simulating Unrestricted Locality with MCA

22

 Terminating applications have:

START & END special blocks

 In-between BB deps. can

be represented as graph

eg. int main(){return 0;}

 Works for subsections

or “kernels” of the app

as well (thanks to SDE)

 “Longest” (w.r.t time) path

or Critical Path (CP) could be calculated

Jens Domke

Simulating Unrestricted Locality with MCA

23

 How do we know the “runtime” for each BB in the graph?

 LLVM-MCA [for supported arch]

 IPC, port pressure, CP length, and

more statistics for “any” ASM sequ.

 WRN: first order estimate and does

not provide absolute perf. numbers

 “optimistic” load-to-use latency (L1 hit)

 Similar tools (use all 4 for acc.):

 Intel IACA (limited to x64; deprecated)

 OSACA (RRZE-HPC)

 uiCA (Saarland Univ)

Feed our

framework

J. Laukemann et al. "Automatic Throughput and Critical Path Analysis

of x86 and ARM Assembly Kernels“ in PMBS19

Jens Domke

Simulating Unrestricted Locality with MCA

24

 Estimate “easy” for fork-join model execution (1 thread/core)

 Theory: App. Runtime

 Other execution models (async; many threads; e.g. JVM) more tricky 

MPI+OMP app
rank 1 rank 2 rank n

…

<end>

Jens Domke

Simulating Unrestricted Locality with MCA

25

Validation experiment 1

 Against PolyBench/C
w/ MINI input (≅16KiB)

 should fit in L1D

 MCA and real HW

“should” match in theory…

 For 73% of BMs, MCA sim. reasonably accurate: 2x slower-to-2x faster range

(cf. other, much slower, simulators such as SST, gem5, etc.)

Validation experiment 2

 GEMM should be accurate, but is handwritten  new test with MKL

 For input sizes MINI, …, EXTRALARGE: 6.4x, 75%, 11%, 1.9%, and 1.5%

and 2Gflop/s, …, 32Gflop/s (i.e., close to per-core-peak)

 not compute-bound for small inputs  discrepancy betw. real HW and MCA

Jens Domke

Simulating Unrestricted Locality with MCA

26

 48-core, 2.2Ghz dual-socket Broadwell E5-2650v4  baseline & get SDE data

 Initial sweep of MPI/OpenMP config. (strong-scale) for fastest time-to-solution

 Focus only on solver/kernel times (not init/post-processing), except for SPEC

Jens Domke

Simulating Unrestricted Locality with MCA

27

 PolyBench: 8.4x for ludcomp; compute-bound (2mm, etc)  no benefit; GM=2.9x

 TAPP: 20x speedup (kernel of FFB); overall GM=2.9x speedup; odd: slowdown for K5/9

 NPB: >13x for conjugate gradient benchmark; total GM=4x (OMP) and GM=2.3x (MPI)

 TOP500: HPL no gain from “infinite” L1, but DLproxy (>4x) due to tall/skinny matmul

Jens Domke

Simulating Unrestricted Locality with MCA

28

 ECP: 7.3x for XSBench and 7.4x for miniAMR; GM=2.5x; odd: slowdown for Laghos

 Fiber: 3.7x for NICAM and 3.6x for QCD; GM=1.4x

 SPEC CPU[speed]: GM=1.0x (Int) and GM=1.9x (Float) and SPEC OMP: GM=2.9x

 Note: no strong correlation betw. position on roofline and speedup from large L1D

J. Domke et al. "Double-precision

FPUs …“ in IPDPS’19

Jens Domke

Cycle-level Accuracy: CPUs Simulated in gem5

29

 Employ open-source system architecture simulator gem5

 Supports Arm, x86, and RISC-V CPUs, and GPUs

 Extendable with memory models and plugins for higher fidelity (e.g. RUBY)

 Use “syscall emulation” to execute applications without booting Linux (“FS” mode)

 RIKEN forked gem5 for A64FX co-design (github.com/RIKEN-RCCS/riken_simulator)

 Lacked of support for dynamically linked binaries

 Lacked adequate memory management (ignores free() calls)

 No support for more than 16 cores (issue in coherence protocol)

 No multi-rank MPI-based programs   MPI stub library and 1-rank sims

 Cannot simulate more than one A64FX CMG   if we assume weak-scaling

HPC codes across NUMA/compute node domains  1 CMG is reasonable proxy

FIXED

Jens Domke

Cycle-level Accuracy: CPUs Simulated in gem5

30

LARC’ CMG not easily replicated

 Gem5 requires pow2 for L2 size

 2 Configs.: LARCc< LARC < LARCa

 Conservative LARC: 256MiB at 800GiB/s

 Aggressive LARC: 512MiB at 1.6TiB/s

 Cycle-level accurate simulation w/ gem5

(patches to fix bugs and scale cores)

 Base: 1x 2.2Ghz CMG of Fugaku’s A64FX

 Additional: A64FX32 to separate effect

of core increase from cache increase

 Use number of L2 banks to control BW

 Employ CRIU for Checkpoint/Restore

Jens Domke

Cycle-level Accuracy: CPUs Simulated in gem5

31

Validation experiment 1

 Employ STREAM Triad benchmark

 Vector sizes of 128KiB per core; scale cores

 Matches 1x A64FX CMG and close to

target BW with 792GB/s and 1450GB/s

Validation experiment 2

 Fix number cores at 32 (and 12 for A64FXs)

 Scale vector size from 2KiB to 1/3GiB

 2.7x higher core count  2.6x higher

aggregated L1 bandwidth

 Vector sizes fit L2 cache  similar to Exp.1

 Sizes beyond L2  expected HBM2 speed

Jens Domke

Cycle-level Accuracy: CPUs Simulated in gem5

32

 Baseline is A64FXs and speedup plotted for A64FX32, LARCc, LARCa

 Results collected: 16-node cluster for >6 month for 52 benchmarks

 Excluding some crashes and some much longer running BMs ; excluding MODYLAS, NICAM,

and NTChem which need >1 ranks ; excluding MPI-only NPB ; excluding PolyBench (showing

no noticeable benefit from cores or cache increase (only GM=4%)

 Estimated avg. 10k-30k times slowdown per simulated core 

 Blue dots for MCA-based estimates for same BM (caveat: multi-rank & x86)

 Focus on time-to-solution for solver/kernel only (except SPEC)

Jens Domke

Cycle-level Accuracy: CPUs Simulated in gem5

33

 LARCc: avg. speedup of ≈1.9x and peak of ≈4.4x (see XSBench)

 LARCa: avg. speedup of ≈2.1x and peak of ≈4.6x (see MG-OMP)

 MG-OMP: ≈1.3x from extra cores, ≈2x from 256MiB L2, ≈4.6x from 512 MiB

 SPEC CPU Int: matches zero-speedup estimates from MCA

 Kernel 8, 9, 12–15, FT-OMP: slowdown from cache contention in A64FX32

 EP-OMP, CoMD, other compute-bound: expected benefit from more cores only

Jens Domke

Cycle-level Accuracy: CPUs Simulated in gem5

34

Reasons for speedup w/ A64FX32

 App is compute-bound  valid result

 Compute- and memory-bound in different

sections  valid

 Highly latency-bound  speedup from larger

aggregate L1 cache  valid

 Poor baseline (e.g. BabelStream)  misleading

 Reduction in cache-miss rate consistent with the performance gains

Jens Domke

Discussions and Outlook towards 2028++

35

 31 of 52 apps show ≥2x speedup on LARCa compared to baseline

 For > 2/3 (24 of 31) the perf. gains come from 3D-stacked cache (>10% gain)

 Our study explores a

radical shift in on-chip

LLC capacity

 Assuming ideal scaling

of apps and same area

(i.e. 16x CMG LARC vs.

4x CMG A64FX)  we

gain betw. 4.91x (xz; SPEC) and 18.57x (MG-OMP) performance by 2028

 Ideal scaling and same area: we gain GM ≈10x speedup from LARC

 Application-specific restructuring to utilize large caches increases benefit

H. Ltaief et al. "Meeting the Real-Time Challenges of Ground-Based Telescopes Using Low-Rank Matrix Computations"

in SC ’21

Jens Domke

Discussions and Outlook towards 2028++

36

LARC power estimated at around 547W (but likely less for BW-bound apps)

 A64FX’s peak power ≈122W ( 1.98W /core and 3.75W /memory-interface)

 LARC CMG in 7nm ≈67.1W  power projection (IRDS): 27.4W in 1.5nm

 for 16x CMGs a total power of 438W (excl. L2 cache)

 4MiB SRAM L2 in 7nm at 64mW of static power (~90-98% static, rest dyn.)

 at 384MiB in 1.5nm and (pessimistic) no power improvement: 6.14W

 for 16x CMGs additional 98.3W static power + 10.07W dynamic (9:1)

LARC thermal considerations

 ~550W no issue (see Nvidia), but: power density (W/mm2) and SRAM layers

 Our power estimates are pessimistic  room for improvement

 Stack L2 layers below cores (or alternatives: we are working on it )

 Direct-die cooling, high-𝜅 thermal compound, microfluid cooling, thermal-aware

floorplanning, task-scheduling and data-placement, etc.  more research opportunities

Jens Domke

Summary

37

 Exploring the benefit of large 3D-stacked SRAM for HPC codes

 Envisioned hypothetical, 512-core, 36 Tflop/s LARge Cache (LARC)

processor with 6GiB of SRAM (L2 cache) at 24.6TB/s for 2028 timeframe

 Developed MCA-based performance prediction framework  assumes

“infinite” L1D; orders of magnitude faster than gem5; reasonable accurate

 Utilized gem5 to simulate A64FX in two variants and LARC in two variants

 Predicted LARC’s and 3D-stacked SRAM peak power consumption

 Explored performance gain for >120 HPC proxy apps and benchmarks

 Assuming ideal scaling and same area we gain GM ≈10x speedup from

LARC for our bandwidth-bound HPC applications

 Open-sourced framework (https://gitlab.com/domke/LARC) and our results

(https://zenodo.org/record/6420659; which contain more valuable data)

https://gitlab.com/domke/LARC
https://zenodo.org/record/6420659

Jens Domke 38

Join RIKEN R-CCS or other RIKEN centers

Jens Domke 39

Jens Domke

 Position: TL

 Country: Germany

 2021 Researcher @R-CCS

 2017 Postdoc @Tokyo Tech

& 2019 Postdoc @R-CCS

 2017 PhD in CS (TU Dresden)

2010 Master in Mathematics

 Research: HPC networks,

HPC performance analysis &

modelling, co-design

Current SPR Team Members

Ivan R. Ivanov

 Master student

@Tokyo Tech

 Position: Part-timer / Trainee

 Country: Bulgaria

 Research: HPC networks,

GPUCPU transpilation

Team Assistant:

Maekawa, Chikako

Jens Domke

Job & Collaboration Opportunities

40

 Collaborations and job opportunities:

 We are hiring! Check out our research teams and open positions:

https://www.riken.jp/en/research/labs/r-ccs/ and

https://bit.ly/3faax8v

https://bit.ly/3tLVwBZ  Currently hiring for SPR Team!

 Internship/fellowship for students (BachelorPhD):

 Fellowship: https://www.riken.jp/en/careers/programs/index.html

 Internship: https://www.r-ccs.riken.jp/en/about/careers/internship/

 Supercomputer Fugaku:

 Apply for node-hours: https://www.r-ccs.riken.jp/en/fugaku/user-guide/

 Interactive, virtual tour: https://www.r-ccs.riken.jp/en/fugaku/3d-models/ and

https://www.youtube.com/watch?v=f3cx4PGDGmg

https://www.riken.jp/en/research/labs/r-ccs/
https://bit.ly/3faax8v
https://bit.ly/3tLVwBZ
https://www.riken.jp/en/careers/programs/index.html
https://www.r-ccs.riken.jp/en/about/careers/internship/
https://www.r-ccs.riken.jp/en/fugaku/user-guide/
https://www.r-ccs.riken.jp/en/fugaku/3d-models/
https://www.youtube.com/watch?v=f3cx4PGDGmg

Jens Domke

Supplementary material

Things you hear…

41

“Wanna do HPC? Then you need dense nodes (SuperPODs)

and full-bisection bandwidth fat-trees.”

--NVIDIA/Mellanox

Jens Domke

Challenges – Future Scale-out & Diversification

42

 No more gains from Moore’s law

 Bigger HPC systems w/ more nodes (maybe island design for specialization)

 Need for memory bandwidth

 Larger interconn. networks

E.g.: Supercomputer Fugaku

 >158k compute nodes

 3 networks / topologies

 CN: 24x23x24 TofuD

(w/ 2x3x2 subgr.) as 6D torus

 Storage: EDR InfiniBand

for every 16th CN (with fat-tree? topology)

 Management + outside world: Ethernet

Y. Tsujita “Status of Lustre-Based Filesystem

at the Supercomputer Fugaku”

Jens Domke

Opportunity for new topologies – HyperX

Theoretical Advantages (over Fat-Tree)

 Reduced HW cost (less AOC / SW)

 Only needs 50% bisection BW

Full marathon worth of IB and

ethernet cables re-deployed

Multiple tons of

equipment moved around

1st rail (Fat-Tree) maintenance

Full 12x8 HyperX constructed

And much more …
- PXE / diskless env ready
- Spare AOC under the floor
- BIOS batteries exchanged

 First large-scale 2.7 Pflop/s (DP)

HyperX installation in the world!

Fig.1: HyperX with n-dim. integer

lattice (d1,…,dn) base structure

fully connected in each dim.

TokyTech’s 2D HyperX:

 24 racks (of 42 T2 racks)

 96 QDR switches (+ 1st rail)
without adaptive routing

 1536 IB cables (720 AOC)

 672 compute nodes

 57% bisection bandwidth

Fig.2: Indirect 2-level Fat-Tree

 Lower latency (less hops)

 Fits rack-based packaging

J. Domke "HyperX Topology:

First at-scale Implementation

and Comparison to the Fat-Tree"

19

Jens Domke

Opportunity for new topologies – HyperX

 TSUBAME2’s older gen. of QDR IB hardware

has no adaptive routing 

 HyperX with static/minimum routing suffers

from limited path diversity per dimension

 results in high congestion and

low (effective) bisection BW

 Option 1: Alternative Job Allocation

 Option 2: Non-minimal,

Pattern-aware Routing (PARX)

 combine 

Measured BW in mpiGraph for 28 NodesHyperX
intra-rack
cabling

Mitigation

Strategies???

Forced
detours

Minimum
paths

20

Jens Domke

1:1 comparison (as fair as possible) of
672-node 3-level Fat-Tree and 12x8 2D HyperX
 NICs of 1st and 2nd rail even on same CPU socket

 Given our HW limitations (few “bad” links disabled)

Wide variety of benchmarks and configurations
 3x Pure MPI benchmarks

 9x HPC proxy-apps

 3x Top500 benchmarks

 4x routing algorithms (incl. PARX)

 3x rank-2-node mappings

 2x execution modes

Primary research questions

Q1: Will reduced bisection BW
(57% for HX vs. ≥100% for FT)
impede performance?

Q2: Two mitigation strategies
against lack of AR? ( e.g.
placement vs. “smart” routing)

Opportunity for new topologies – HyperX

Fig.4: Baidu’s (DeepBench) Allreduce (4-byte float) scaled 7 672 cn (vs. “Fat-tree / ftree / linear” baseline)

1. Placement mitigation can alleviate bottleneck
2. HyperX w/ PARX routing outperforms FT in HPL
3. Linear good for small node counts/msg. size
4. Random good for DL-relevant msg. size (Τ+ − 1%)
5. “Smart” routing suffered SW stack issues
6. FT + ftree had bad 448-node corner case

3.

4.

5.

6.

Conclusion
HyperX topology is
promising and
cheaper alternative
to Fat-Trees (even
w/o adaptive R) !

Fig.3: HPL (1GB pp, and 1ppn); scaled 7 672 cn

1.

2.

21

Jens Domke

Things you hear…

46

“Wanna do HPC? Then you need fast FP64 matmul.”

--every HPC beginner class

Jens Domke

More Flop/s  more science?!

47

 Thanks to the (curse of) the TOP500 list, the HPC community (and vendors) are chasing higher

FP64 performance, thru frequency, SIMD, more FP units, …

 Motivation:

 Less FP64 units

 Investigating many proxy-applications:



 %FP32 vs. %FP64 vs. %Integer

 Integer (+DP) heavy (>50%; 16 of 22)

 Only 4 w/ FP32

 Only 1 mixed precision

 Saves power

 Free chip area (ex: FP16)

 Less divergence of “HPC-capable”

CPUs from mainstream processors

J. Domke "Double-precision FPUs in High-Performance Computing: an Embarrassment of Riches?"

Jens Domke

Compare Time-to-Solution in Solver

48

 Only 3 apps seem to suffer from missing FP64 unit

(MiniTri: no FP; FFVC: only int+FP32)

 Options for memory-bound applications (almost all):

 Invest in memory-/data-centric architectures

 Move to FP32/mixed precision  less memory pressure

 Options for compute-bound applications:

 Brace for less FP64 units (driven by market forces)

and less “free” performance (10nm, 7nm, 3nm, …then?)

Not much

improvement

Jens Domke

BLAS / GEMM utilization in HPC Applications

49

 Analyzed various data sources:

 Historical data from K computer: only 53,4% of node-hours (in FY18) were consumed by

applications which had GEMM functions in the symbol table

 Library dependencies: only 9% of Spack packages have direct BLAS lib

dependency (51.5% have indirect dependency)

 TensorCore benefit for DL: up to 7.6x speedup for MLperf kernels

 GEMM utilization in HPC: sampled across 77 HPC benchmarks (ECP proxy,

RIKEN fiber, TOP500, SPEC CPU/OMP/MPI) and measured/profiled via

Score-P and Vtune

J. Domke "Matrix Engines for High Performance Computing:

A Paragon of Performance or Grasping at Straws?"

Jens Domke

Estimated Benefit by MEs for HPC Centers

50

 Thought experiment: Assume we

have/had GEMM units in past or

future systems.

 Known: node-hour by domain

 Sample application with

highest BLAS utilization

 Estimate the node-hour

reduction assuming different

speedup by ME (2x–8x is

realistic dep. on precision)

 Future system includes 20%

DL workloads, other science

domains ~10% each

 Results w/ ideal conditions + 4x ME speedup: 5.3% less on K, 10.8% @ANL, 23.8% future system

 HPC can utilize MEs when they come for free, but it’s no magic bullet as for DL workloads

 Explore more/other alternatives for Fugaku-next!

Jens Domke

Things you hear…

51

“Porting an application to A64FX? Just use fcc and –Kfast.”

--Fujitsu

Jens Domke

“Silver bullet” compiler choice for A64FX?

52

 Performance portability (x86A64FX) not easy to achieve

 Testing >100 Kernels and HPC Workloads on Fugaku

 Three compilers and

five variations

(2x Fujitsu,

2x LLVM12,

& GNU10)

 Across all 108 BMs: median

runtime improvement of 16% is

possible (by selecting right compiler)J. Domke "A64FX – Your Compiler You Must Decide!"

Jens Domke

“Silver bullet” compiler choice for A64FX?

53

Conclusions:

 C1: recomm. usage model of 4 ranks and 12 threads often suboptimal

 C2: no “silver bullet” compiler for A64FX (yet)

 Dep. on situation, but some hint: Fujitsu for Fortran codes, and GNU for integer-

intensive apps, and any clang-based compilers for C/C++

 C3: Twitter summary: “if Xeon is 70x faster than A64fx, suspect the compiler”

 Test all available compilers, and explore other rank/thread mappings!

Announcement:

 LLVM 13 incl. “classic” flang (source /home/apps/oss/llvm-v13.0.0/init.sh)

 SVE support still alpha  expect even more performance with v14

 Potential roadblocks: Fujitsu’s MPI and SSL2

Jens Domke

Things you hear…

54

“Wanna do AI? Then you need NVIDIA’s GPUs.”

-- anonymous

“DL doesn’t run on CPU ‘cause of the sophisticated math.”

-- anonymous

“A64FX is more like a GPU than a CPU.”

--S. Matsuoka

Jens Domke

DL4Fugaku – Replace CUDA RT & cuDNN?

55

Intercept CUDA
calls & exec on

CPU
Any gain from it?

Pytorch (other
frameworks)

Selects backend

native

Slow, only for debug

NNPACK /
oneDNN / etc

Medium fast, only
“normal” CPUs

CUDA / TPU/
etc

Fast; not avail. on
CPU or A64FX

 Disadvantages of oneDNN approach:

 Tedious to port to A64FX (months of

engineering by Fujitsu)

 Tuned for “normal” CPUs with

assumption: Memory is slow

 MocCUDA approach

 Fake availability of GPU

attached to Fugaku nodes

 Intercept CUDA calls

 Execute CPU equivalent on A64FX

 MocCUDA architecture (func. only implemented if called by troch):

 Wrapper library for CUDA runtime  Easy

 Wrapper libs for cuDNN (& cuBLAS)  Medium hard (& trivial), no reference code available

 Wrapper libs for native CUDA kernels (<<<…>>> in torch’s .cu files)  Hard problem

Jens Domke

MocCUDA & Resnet50 Results

56

 Native implementation slow

 Native not scaling with batch size

(OOM issues)

 oneDNNL has problem with

#OMP > #cores

 MocCUDA almost competitive

(usually only 5%-20% slower)

 MocCUDA outperforms oneDNN

(over 5x when #OMP > #core)

 Support for other DL kernels and

cuDNN functions can be added (only

few missing to support MLPerf)

 MocCUDA is still work-in-progress

 Open issues: native CUDA kernels; SSL2 integration

 Node-parallel training with Pytorch/Horovod on Fugaku

Jens Domke

Let’s clean up this mess …

57

“Octopodes to the rescue.”

--RIKEN & DOE

Jens Domke 58

Fugaku Enhancement & Co-Design for Future

Source: www.pinterest.fr/pin/145170787976811341/

 Superseding current proxy-apps: Octopodes

 Downsides w/ Fiber/proxy-apps (s. Fugaku R&D)

 On-going collaboration / brainstorming phase

with DOE labs (position paper release in Apr.’22)

 Set of highly-parameterizable, easily-amendable,

MOTIF-like problem representations

 Common “language” between HPC users,

system operators, co-designers, and vendors

to describe the to-be-solved scientific problems:

What needs to be computed, and how it can be computed?

 Apply ML to identify, parameterize, and categorize compute phases
S. Matsuoka, J. Domke, M. Wahib, A. Drozd, A. Chien, R. Bair, J. S. Vetter, J. Shalf

"Preparing for the Future –Rethinking Proxy Applications“

to appear in Computing in Science & Engineering

Jens Domke 59

Usage of Octopodes for Co-Design
 “What needs & how can it be computed” not “Here is how you have to do it”

 For performance modeling of real workloads: identify compute phases which

can be mapped to one or more Octopodes combine perf. model of the ‘easier

to understand’ Octopodes  approx. perf. model of full workloads

 For vendors:

 Allowed tuning freedom for the Octopodes, i.e., changes of algo., implementation,

integer/float. precision, data layout, etc., as long as intended result is the same

 Accurately model consumer workloads  Less over/under-selling of hardware

 Porting of user codes to new system:

 Act as demonstrator for users to show how to port

 ML/AI to identify phases can be used as helper for porting of real codes

 Better suited for co-design tools, e.g. compiler tests, regression testing,

simulators (gem5/SST/CODES/…), quick ”What-If” tools, etc.

