
GRAPH PROCESSING:
A KILLER-APP FOR PERFORMANCE
MODELING

Ana Lucia Varbanescu1,3
Work with Merijn Verstraaten1,2, Dante Niewenhuis1, Ahmed Musaafir1

1 2 3

Graph processing ...
… is / can be / will be everywhere!1,2

- Social networks
- Bioinformatics
- Pandemic analysis3

- Fraud detection
- Neural networks
- …

1 Sherif Sakr et al.
“The Future Is Big Graphs: A Community View on Graph Processing Systems” – CACM Sept. 2021
2 Tim Hegeman, Alexandru Iosup
“Survey of Graph Analysis Applications” - arXiv:1807.00382
3 https://neo4j.com/graphs4good/covid-19/

¯_(ツ)_/¯
What about

performance?

https://neo4j.com/graphs4good/covid-19/

Large Scale Graph Processing
• Graph processing is (very) data-intensive
• 10x larger graph => 100x or 1000x slower processing

• Graph processing becomes (more) compute-intensive
• More complex queries => ?x slower processing

• Graph processing is (very) dataset-dependent
• Unfriendly graphs => ?x slower processing

We need parallel algorithms & architectures to enable
more complex analytics on larger graphs.

• Current *PUs
• Massive (data) parallelism
• Optimized for high throughput processing
• Penalties for irregular execution
• Penalties for load imbalance

• Graph processing 4
• Data-driven computations
• Irregular memory accesses

• Poor data locality
• Unstructured problems
• Low computation-to-data access ratio

(mis)match?

4 Andrew Lumsdaine et al.
“Challenges in Parallel Graph Processing” – Parallel Processing Letters 2007

Parallel graph processing

• Current *PUs
• Massive (data) parallelism
• Optimized for high throughput processing
• Penalties for irregular execution
• Penalties for load imbalance

• Graph processing 4
• Data-driven computations
• Irregular memory accesses

• Poor data locality
• Unstructured problems
• Low computation-to-data access ratio

(mis)match?

4 Andrew Lumsdaine et al.
“Challenges in Parallel Graph Processing” – Parallel Processing Letters 2007

Parallelism <=> New algorithms, data-structures, and
graph processing systems

Parallel graph processing

Goal: Efficiency by design

Goal: Efficiency by design

Given HW platforms

Given a workload (app+data)

Find the best algorithm and/or HW for the workload

Today’s headlines
1. Motivation & Challenges
2. Performance analysis

… or how bad can it be?!
3. Controlled experiments

Graph generators
4. Performance prediction

Analytical models
Machine-learning

5. The best BFS algorithm
6. Improving SCC

Machine learning, again
7. Take home message

2. Performance analysis

Neighbour iteration
• Various implementations

Edge-centric Vertex-centric, pull-based Vertex-centric, push-based

Performance analysis
• NVIDIA TitanX + CUDA 10.0
• Results presented on 9 graphs (ID 1-9 in following fig’s)

BFS traversal
• Traverses the graph layer by layer
• Starting from a given node

• Sensitive to …
• High diameter
• Graph density
• (dis)connected components
• …

• Challenges
• No computation
• Load-balancing
• Irregular memory accesses

BFS traversal
• Traverses the graph layer by layer
• Starting from a given node

• Sensitive to …
• High diameter
• Graph density
• (dis)connected components
• …

• Challenges
• No computation
• Load-balancing
• Irregular memory accesses

We use 6 versions + 2 warp-parallelism
parameterized ones

https://github.com/merijn/Belewitte

BFS: results

https://github.com/merijn/Belewitte

https://github.com/merijn/Belewitte

BFS: results

• Different algorithms behave best.
• Different algorithms behave worst.
• The gap in execution time can be up to 2 orders of magnitude.

Choosing the right / wrong algorithm can really make a difference!

https://github.com/merijn/Belewitte

PageRank calculation
• Calculates the PR value for all vertices
• Assign value to each vertex
• Repeat until convergence

• Collect PR for all incoming edges
• Update vertex PR

• Sensitive to …
• Graph density
• Degree distribution
• ”sink” nodes

• Challenges
• No computation
• Load-balancing
• Irregular memory accesses

Image courtesy of: https://en.wikipedia.org/wiki/PageRank

PageRank calculation
• Calculates the PR value for all vertices
• Assign value to each vertex
• Repeat until convergence

• Collect PR for all incoming edges
• Update vertex PR

• Sensitive to …
• Graph density
• Degree distribution
• ”sink” nodes

• Challenges
• No computation
• Load-balancing
• Irregular memory accesses

Image courtesy of: https://en.wikipedia.org/wiki/PageRank

We use 7 versions + 2 warp-parallelism
parameterized ones

PageRank: results

https://github.com/merijn/Belewitte

https://github.com/merijn/Belewitte

PageRank: results

https://github.com/merijn/Belewitte

• Different algorithms behave best.
• Different algorithms behave worst.
• The gap in execution time can be up to 2 orders of magnitude.

Choosing the right / wrong algorithm can really make a difference!

https://github.com/merijn/Belewitte

3. Controlled experiments

Graph “scaling”*
• Generate “similar” graphs of different scales
• Control certain properties

Graph scaling tool
Graph
Scaling factor s
Additional parameters

Scaled graph G’
(s times)

input output

*A. Musaafir et.al – “A Sampling-Based Tool for
Scaling Graph Datasets” – SPEC ICPE’20

https://dl.acm.org/doi/abs/10.1145/3358960.3379144

Scaling method
• Scale-down: sampling

• Scale-up: ”stiching”
• Interconnection
• Select bridge vertices
• Multi-edge interconnections

Results

Lessons learned
• Graph up-/down-scaling can lead to interesting graph

families
• Successful controlled experiments
• Some scalability trends are visible
• … but not for all graphs

• Performance prediction still quite inaccurate
• Still “needle-in-the-haystack” analysis …

4. Performance prediction

Choose the best algorithm
• Model the algorithm
• Basic analytical model (work & span)

• Calibrate to platform
• GPU, CPU, …

• Model the dataset
• Size, dimension, topology …

• Predict performance
• Plug the platform and graph parameters into algorithm model

• Rank solutions and pick best.

T = f(P, A, D)

Analytical models

Example: PageRank
• Edge-centric

PageRank: Conceptual analytical models
• Different algorithms => different models

• Extracted from the algorithms’ pseudocode
• Not accurate enough, as there are more operations executed in

practice …

PageRank: Conceptual analytical models
• Different algorithms => different models

Extracted from the algorithms’ pseudocode.
Not accurate enough, as there are more
operations executed in practice …

PageRank: Code-based analytical models
• Different algorithms => different models

Based on PTX (that is, NVIDIA GPUs’ assembly)
Calibrate for the platform : Tread, Twrite, Tatom …
Use dataset features: |E| and |V| from the graph specs

Validate models
• Work-models are correct
• We capture correctly the number of operations

• Model calibration has failed
• Workload imbalance between threads within a warp
• Non-uniform memory access times due to coalescing, caching, and

atomic contention.

• Can we do any better?
• Model parallelism to better understand the variation in T’s
• Use performance counters to capture different aspects of T’s

Machine learning to the rescue?

Choose the best algorithm
• Model the algorithm
• Basic analytical model (work & span)

• Calibrate to platform
• GPU, CPU, …

• Model the dataset
• Size, dimension, topology …

• Predict performance
• Plug the platform and graph parameters into algorithm model

• Rank solutions and pick best.

T = f(P, A, D)

✔

✖

✖

✖

✖
Only 50% accuracy L

Data and models
• Build dataset from 200+ graphs and ~20 different roots
• Collect performance data from different platforms and

algorithms

• Devise models to…
• Predict execution time

• Use random forest
• Based on hardware counters (previous work)
• Based on graph features

• Predict ranking
• Use decision trees

• Based on graph features

PageRank
Reasonable accuracy,
High prediction cost

PageRank
High accuracy,
Low prediction cost

Still not working for BFS!!!

BFS: best algorithm changes!

Results on the different BFS levels for the actor-collaborations graph (ID #1)

BFS: best algorithm changes!

• Best algorithm changes per level
• Gaps are even larger than for the full scale
• We have more data for every level

We must predict at every level, NOT at the full graph level !

Results on the different BFS levels for the actor-collaborations graph (ID #1)

5. The best BFS algorihm

BFS: construct the best algorithm!

• Optimal algorithm is the sum of the best per-level algorithms.
• Must switch implementations

If we predict best algorithm per level => we construct the best algorithm

BFS: construct the best algorithm!
• Predict ranking
• Determine the best algorithm per level
• Still depends on platform and dataset …

• Construct the best overall algorithm
• Best algorithm per layer => best overall by construction
• Switching between algorithms is a challenge

• When?
• How?

Mix-and-match: build the best algorithm at run-time by
switching to the best implementation at every level*

*this is a generalization of the direction-switching BFS

Predicting ranking per level
• Based on decision trees
• Small number of samples
• Fairly easy to train
• Model is fast to use at runtime

• Training parameters: graph features and best algorithm
• Degree distribution (5 number summary and standard deviation)
• Frontier size
• Percentage discovered
• Vertex count
• Edge count
• Ranking

Average prediction time: 144ns
Min BFS step: 20ms

Dataset: 248 graphs x ~11 root nodes
Accuracy: ~98%

Current workflow

Collect
data Preprocess Train Test

Apply

Data from the SNAP
and KONECT repositories

Remove outliers (WiP).
Model-in-model?

Use decision trees and
graph properties

Use at runtime.

Feature importance, which
is promising for making
sense of the results.

Does it really work?

Mix-and-match uses performance variability to build the best BFS per graph!

• Runtime switching is possible, (currently) with some memory overhead
• We are faster than the state-of-the art, on average, by 3x

Mix-and-match

6. Improving SCC

Detecting strongly connected components*
• SCC
• Subgraph of a directed graph
• Every vertex u can reach every other vertex v in the subgraph.

• Used in applications such as:
• Community detection
• Personalized recommendations
• Program analysis

*Dante Niewenhuis, Ana-Lucia Varbanescu
Efficient Trimming for SCC Calculation, CF’22

FB-Trim
• FB = Forward-Backward algorithm
• First parallel SCC algorithm, proposed in 2001

• The base for most parallel SCC algorithms

• Problem: Trivial components
• Trivial components consist of only a single vertex (e.g., F)

• Solution? Trimming
• Iteratively remove floating vertices

• FB-Trim Combines FB and Trimming …
• … but its performance is dependent on graph topology.

When should we trim for a good trade-off between effectiveness and
overhead?

Static trimming models

Never Trim Always Trim

Initial Trim No Initial Trim

Experimental setup and method
• Data : 819 graphs
• KONECT and Network Repository
• Graph Size: 500 - 10.000 vertices

• Per graph: Measure execution time (6x) and report average
• Execution time is capped at 5 minutes.

• Platform:
• Lisa* node: Intel Xeon Silver 4110 Processor at 2.1GHz, 96 GB RAM
• Software: Ubuntu 20.04, C++ 14 compiled with GCC 9.3.0, Python 3.7.6

*https://userinfo.surfsara.nl/systems/lisa/description

Aggregated results analysis
• Ranking-based
• Best and Worst
• Average Ranking

• Time-based
• Average execution time over all the graphs
• Relative Increase*:

*where Gi is graph i, Mk is model k, T(Gi, Mk) is the execution time of model k on graph i,
and TB(Gi) is the best time on graph i

The static models’ performance [1/2]
Best and Worst placement Average Ranking

● Each model performs best on at least 15% of the graphs
● Each model performs worst on at least 15% of the graphs
● None of the models significantly outperforms all other models in ranking

The static models’ performance [2/2]

Problem: no static model outperforms all other models consistently.

Average Execution time Relative increase

● Average execution time indicates No-Initial is the best.
● Never Trimming performs horribly on the average RI.
● Best performing model has an average RI of over 77%.

Predict trimming efficiency using AI
• A NN-based model that determines when to trim based on

graph topology

The AI model
• Basic Neural Network
• Input layer length 8
• Three hidden layers
• Boolean output layer

• Training
• Using Gradient Descent
• For 5000 epochs
• Reached an accuracy of 82%

The AI model’s performance [1/2]

Best and Worst placement Average Ranking

AI-Trim performs poorly in single graph based metrics:
• lowest number of best-performing graphs.
• second highest number of worst-performing graphs, after Never Trim.
• Mid-of-the-pack average ranking.

The AI model’s performance [2/2]

Average Execution Time Average Relative Increase

AI-Trim outperforms all other models on execution time-based metrics:

● lowest average execution time of all models.

● RI = 35% is almost 3x better than the next best model.

7. Take home message

P-A-D triangle
Algorithm

Dataset Platform

Overstudied
Performance is enabled
Portability is disabled

In progress
Algorithms for different
data types and graphs

Understudied
No systematic findings yet
Intuitive correlations
Must be correlated with the algorithm

Graph processing performance depends non-trivially on platform, algorithm,

and dataset.

P-A-D triangle
Algorithm

Dataset Platform

Overstudied
Performance is enabled
Portability is disabled

In progress
Algorithms for different
data types and graphs

Understudied
No systematic findings yet
Intuitive correlations
Must be correlated with the algorithm

Take home message
• Graph scaler offers graph scaling for controlled experiments

• Correlation between performance and graph features is still WiP

• Mix-and-match creates best BFS by enabling dynamic, runtime
switching among different versions of BFS
• A generalization of the direction-optimized BFS
• Machine learning model used to guide the switching

• FB-Trim improves the efficiency of trimming using a simple NN
model to determine when to trim
• Decision made on the graph topology … we think

Ana: A.L.Varbanescu@utwente.nl
Merijn: merijn@inconsistent.nl
Dante: d.niewenhuis@hotmail.com
Graph scaling: https://github.com/amusaafir/graph-scaling
M&M: https://github.com/merijn/Belewitte
FB_Trim: https://github.com/DanteNiewenhuis/FB-Trim

mailto:merijn@inconsistent.nl
mailto:d.niewenhuis@hotmail.com
https://github.com/amusaafir/graph-scaling
https://github.com/merijn/Belewitte
https://github.com/DanteNiewenhuis/FB-Trim

