GRAPH PROCESSING:
A KILLER-APP FOR PERFORMANCE MODELING

Ana Lucia Varbanescu1,3

Work with Merijn Verstraaten1,2, Dante Niewenhuis1, Ahmed Musaafir1
Graph processing ...

… is / can be / will be everywhere!1,2

- Social networks
- Bioinformatics
- Pandemic analysis3
- Fraud detection
- Neural networks
- …

1 Sherif Sakr et al.
2 Tim Hegeman, Alexandru Iosup
“Survey of Graph Analysis Applications” - arXiv:1807.00382
3 https://neo4j.com/graphs4good/covid-19/
Large Scale Graph Processing

- Graph processing is (very) data-intensive
 - 10x larger graph => 100x or 1000x slower processing
- Graph processing becomes (more) compute-intensive
 - More complex queries => ?x slower processing
- Graph processing is (very) dataset-dependent
 - Unfriendly graphs => ?x slower processing

We need parallel algorithms & architectures to enable more complex analytics on larger graphs.
Parallel graph processing

• Current *PUs
 • Massive (data) parallelism
 • Optimized for high throughput processing
 • Penalties for irregular execution
 • Penalties for load imbalance

• Graph processing 4
 • Data-driven computations
 • Irregular memory accesses
 • Poor data locality
 • Unstructured problems
 • Low computation-to-data access ratio

4 Andrew Lumsdaine et al.
“Challenges in Parallel Graph Processing” – Parallel Processing Letters 2007
Parallel graph processing

- Current *PUs
 - Massive (data) parallelism
 - Optimized for high throughput processing
 - Penalties for irregular execution
 - Penalties for load imbalance

- Graph processing

 - Unstructured problems
 - Low computation-to-data access ratio

\[\text{(mis)match?} \]

Parallelism <=> New algorithms, data-structures, and graph processing systems

\[\text{(mis)match?} \]

4 Andrew Lumsdaine et al.
“Challenges in Parallel Graph Processing” – Parallel Processing Letters 2007
Goal: Efficiency by design
Goal: Efficiency by design

Given HW platforms

Given a workload (app+data)

Find the best algorithm and/or HW for the workload
Today’s headlines

1. Motivation & Challenges
2. Performance analysis
 … or how bad can it be?!
3. Controlled experiments
 Graph generators
4. Performance prediction
 Analytical models
 Machine-learning
5. The best BFS algorithm
6. Improving SCC
 Machine learning, again
7. Take home message

“Larry, do you remember where we buried our hidden agenda?”
2. Performance analysis
Neighbour iteration

- Various implementations
Performance analysis

- NVIDIA TitanX + CUDA 10.0
- Results presented on 9 graphs (ID 1-9 in following fig’s)

<table>
<thead>
<tr>
<th>Id</th>
<th>Graph</th>
<th># Vertices</th>
<th># Edges</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>actor-collaboration</td>
<td>382,219</td>
<td>30,076,200</td>
<td>KONECT</td>
</tr>
<tr>
<td>2</td>
<td>amazon0601</td>
<td>403,394</td>
<td>3,387,390</td>
<td>KONECT</td>
</tr>
<tr>
<td>3</td>
<td>flixster</td>
<td>2,523,390</td>
<td>15,837,600</td>
<td>KONECT</td>
</tr>
<tr>
<td>4</td>
<td>jester1</td>
<td>73,512</td>
<td>8,272,720</td>
<td>KONECT</td>
</tr>
<tr>
<td>5</td>
<td>patentcite</td>
<td>3,774,770</td>
<td>16,518,900</td>
<td>KONECT</td>
</tr>
<tr>
<td>6</td>
<td>wikipedia_link_en</td>
<td>12,151,000</td>
<td>378,142,000</td>
<td>KONECT</td>
</tr>
<tr>
<td>7</td>
<td>wiki_talk_ru</td>
<td>457,017</td>
<td>919,790</td>
<td>KONECT</td>
</tr>
<tr>
<td>8</td>
<td>higgs-social_network</td>
<td>456,626</td>
<td>14,855,800</td>
<td>SNAP</td>
</tr>
<tr>
<td>9</td>
<td>sx-stackoverflow-c2q</td>
<td>1,655,350</td>
<td>11,226,800</td>
<td>SNAP</td>
</tr>
</tbody>
</table>
BFS traversal

• Traverses the graph layer by layer
 • Starting from a given node

• Sensitive to …
 • High diameter
 • Graph density
 • (dis)connected components
 • …

• Challenges
 • No computation
 • Load-balancing
 • Irregular memory accesses
BFS traversal

- Traverses the graph layer by layer
 - Starting from a given node
- Sensitive to ...
 - High diameter
 - Graph density
- Challenges
 - No computation
 - Load-balancing
 - Irregular memory accesses

We use 6 versions + 2 warp-parallelism parameterized ones
BFS: results

https://github.com/merijn/Belewitte
BFS: results

- Different algorithms behave best.
- Different algorithms behave worst.
- The gap in execution time can be up to 2 orders of magnitude.

Choosing the right / wrong algorithm can really make a difference!
PageRank calculation

- Calculates the PR value for all vertices
 - Assign value to each vertex
 - Repeat until convergence
 - Collect PR for all incoming edges
 - Update vertex PR
- Sensitive to …
 - Graph density
 - Degree distribution
 - ”sink” nodes
- Challenges
 - No computation
 - Load-balancing
 - Irregular memory accesses

Image courtesy of: https://en.wikipedia.org/wiki/PageRank
PageRank calculation

• Calculates the PR value for all vertices
 • Assign value to each vertex
 • Repeat until convergence
 • Collect PR for all incoming edges
 • Update vertex PR

• Challenges
 • No computation
 • Load-balancing
 • Irregular memory accesses

We use 7 versions + 2 warp-parallelism parameterized ones
PageRank: results

https://github.com/merijn/Belewitte
PageRank: results

- Different algorithms behave best.
- Different algorithms behave worst.
- The gap in execution time can be up to 2 orders of magnitude.

Choosing the right / wrong algorithm can really make a difference!
3. Controlled experiments
Graph “scaling”*

- Generate “similar” graphs of different scales
 - Control certain properties

* A. Musaafir et al. – “A Sampling-Based Tool for Scaling Graph Datasets” – SPEC ICPE’20
Scaling method

- Scale-down: sampling

- Scale-up: "stiching"
 - Interconnection
 - Select bridge vertices
 - Multi-edge interconnections
Results

[Bar charts showing results for Breadth-first Search and PageRank with different network configurations.]
Lessons learned

• Graph up-/down-scaling can lead to interesting graph families
• Successful controlled experiments
 • Some scalability trends are visible
 • … but not for all graphs
• Performance prediction still quite inaccurate
• Still “needle-in-the-haystack” analysis …
4. Performance prediction
Choose the best algorithm

- Model the algorithm
 - Basic analytical model (work & span)
- Calibrate to platform
 - GPU, CPU, …
- Model the dataset
 - Size, dimension, topology …
- Predict performance
 - Plug the platform and graph parameters into algorithm model
- Rank solutions and pick best.

\[T = f(P, A, D) \]
Analytical models
Example: PageRank

- Edge-centric

```java
Algorithm 1 Edge List Update & Reverse Edge List Update

function EDGELIST(edges, pageranks, new_pageranks, idx)
    origin ← edges[idx].origin
    dest ← edges[idx].destination
    outgoingRank ← 0
    if degree(origin) ≠ 0 then
        outgoingRank ← \frac{pageranks[origin]}{degree(origin)}
    new_pageranks[dest].atomicAdd(outgoingRank)
```

\[
T_{edge} = \sum_{e \in E} (4 \times T_{read} + T_{atom})
\]

\[
= 4 \times |E| \times T_{read} + |E| \times T_{atom}
\]
PageRank: Conceptual analytical models

- Different **algorithms** => different **models**

\[
T_{\text{edge}} = \sum_{e \in E} (4 \times T_{\text{read}} + T_{\text{atom}}) \\
= 4 \times |E| \times T_{\text{read}} + |E| \times T_{\text{atom}}
\]

\[
T_{\text{push}} = \sum_{v \in V} (2 \times T_{\text{read}} + d_v \times T_{\text{atom}}) \\
= 2 \times |V| \times T_{\text{read}} + |E| \times T_{\text{atom}}
\]

\[
T_{\text{pull}} = \sum_{v \in V} (2 \times d_v \times T_{\text{read}} + T_{\text{write}}) \\
= 2 \times |E| \times T_{\text{read}} + |V| \times T_{\text{write}}
\]

- Extracted from the algorithms’ pseudocode
- Not accurate enough, as there are more operations executed in practice …
PageRank: Conceptual analytical models

- Different **algorithms** => different models

\[
T_{\text{edge}} = \sum_{e \in E} (4 \times T_{\text{read}} + T_{\text{atom}}) \\
= 4 \times |E| \times T_{\text{read}} + |E| \times T_{\text{atom}}
\]

\[
T_{\text{push}} = \sum_{v \in V} (2 \times T_{\text{read}} + d_v \times T_{\text{atom}}) \\
= 2 \times |V| \times T_{\text{read}} + |E| \times T_{\text{atom}}
\]

\[
T_{\text{pull}} = \sum_{v \in V} (2 \times d_v \times T_{\text{read}} + T_{\text{write}}) \\
= 2 \times |E| \times T_{\text{read}} + |V| \times T_{\text{write}}
\]

Extracted from the algorithms’ **pseudocode**.
Not accurate enough, as there are more operations executed in practice …
PageRank: Code-based analytical models

- Different algorithms => different models

\[T_{\text{edge}} = (7 \times |E| \times T_{\text{read}} + |E| \times T_{\text{atom}}) \]
\[+ (2 \times |V| \times T_{\text{read}} + 2 \times |V| \times T_{\text{write}} + \frac{|V|}{32} \times T_{\text{atom}}) \]
\[= (7 \times |E| + 2 \times |V|) \times T_{\text{read}} + 2 \times |V| \times T_{\text{write}} + (|E| + \frac{|V|}{32}) \times T_{\text{atom}} \]

\[T_{\text{push}} = (6 \times |V| \times T_{\text{read}} + |E| \times T_{\text{read}} + |E| \times T_{\text{atom}}) \]
\[+ (2 \times |V| \times T_{\text{read}} + 2 \times |V| \times T_{\text{write}} + \frac{|V|}{32} \times T_{\text{atom}}) \]
\[= (8 \times |V| + |E|) \times T_{\text{read}} + 2 \times |V| \times T_{\text{write}} + (|E| + \frac{|V|}{32}) \times T_{\text{atom}} \]

\[T_{\text{pull}} = (5 \times |V| \times T_{\text{read}} + 3 \times |E| \times T_{\text{read}} + |V| \times T_{\text{write}}) \]
\[+ (2 \times |V| \times T_{\text{read}} + 2 \times |V| \times T_{\text{write}} + \frac{|V|}{32} \times T_{\text{atom}}) \]
\[= |V| \times T_{\text{write}} + \frac{|V|}{32} \times T_{\text{atom}} \]

Based on PTX (that is, NVIDIA GPUs’ assembly)
Calibrate for the platform: \(T_{\text{read}}, T_{\text{write}}, T_{\text{atom}} \) ...
Use dataset features: \(|E|\) and \(|V|\) from the graph specs
Validate models

• Work-models are correct
 • We capture correctly the number of operations

• Model calibration has failed
 • Workload imbalance between threads within a warp
 • Non-uniform memory access times due to coalescing, caching, and atomic contention.

• Can we do any better?
 • Model parallelism to better understand the variation in T’s
 • Use performance counters to capture different aspects of T’s
Machine learning to the rescue?
Choose the best algorithm

- Model the algorithm
 - Basic analytical model (work & span)
- Calibrate to platform
 - GPU, CPU, ...
- Model the dataset
 - Size, dimension, topology ...
- Predict performance
 - Plug the platform and graph parameters into algorithm model
- Rank solutions and pick best.

\[T = f(P, A, D) \]

Only 50% accuracy 😞
Data and models

- Build dataset from 200+ graphs and ~20 different roots
- Collect performance data from different platforms and algorithms

Devise models to...

- Predict execution time
 - Use random forest
 - Based on hardware counters (previous work)
 - Based on graph features

- Predict ranking
 - Use decision trees
 - Based on graph features

PageRank
Reasonable accuracy, High prediction cost

PageRank
High accuracy, Low prediction cost
Still not working for BFS!!!
BFS: best algorithm changes!

Results on the different BFS levels for the actor-collaborations graph (ID #1)
BFS: best algorithm changes!

- Best algorithm changes per level
- Gaps are even larger than for the full scale
- We have more data for every level

We must predict at every level, NOT at the full graph level!

Results on the different BFS levels for the actor-collaborations graph (ID #1)
5. The best BFS algorithm
BFS: *construct* the best algorithm!

- Optimal algorithm is the sum of the best per-level algorithms.
- Must switch implementations

If we predict best algorithm per level => we construct the best algorithm
BFS: *construct* the best algorithm!

- Predict ranking
 - Determine the **best algorithm per level**
 - *Still* depends on platform and dataset …

- **Construct** the best overall algorithm
 - Best algorithm per layer => best overall *by construction*
 - Switching between algorithms is a challenge
 - When?
 - How?

Mix-and-match: build the best algorithm at run-time by switching to the best implementation at every level*

*this is a generalization of the direction-switching BFS
Predicting ranking per level

- Based on decision trees
 - Small number of samples
 - Fairly easy to train
 - Model is fast to use at runtime

- Training parameters: **graph features** and **best algorithm**
 - Degree distribution (5 number summary and standard deviation)
 - Frontier size
 - Percentage discovered
 - Vertex count
 - Edge count
 - Ranking

Average prediction time: 144ns
Min BFS step: 20ms

Dataset: 248 graphs x ~11 root nodes
Accuracy: ~98%
Current workflow

Data from the SNAP and KONECT repositories

Collect data

Preprocess

Train

Test

Feature importance, which is promising for making sense of the results.

Use decision trees and graph properties

Remove outliers (WiP). Model-in-model?

Apply

Use at runtime.

Use at runtime.
Does it really work?

- Runtime switching is possible, (currently) with some memory overhead
- We are faster than the state-of-the-art, on average, by 3x

Mix-and-match uses performance variability to build the best BFS per graph!
6. Improving SCC
Detecting strongly connected components*

- **SCC**
 - Subgraph of a directed graph
 - Every vertex u can reach every other vertex v in the subgraph.

- Used in applications such as:
 - Community detection
 - Personalized recommendations
 - Program analysis

*Dante Niewenhuis, Ana-Lucia Varbanescu
Efficient Trimming for SCC Calculation, CF’22
FB-Trim

• FB = Forward-Backward algorithm
 • First parallel SCC algorithm, proposed in 2001
 • The base for most parallel SCC algorithms

• Problem: Trivial components
 • Trivial components consist of only a single vertex (e.g., F)

• Solution? Trimming
 • Iteratively remove floating vertices

• FB-Trim Combines FB and Trimming …
 • … but its performance is dependent on graph topology.

When should we trim for a good trade-off between effectiveness and overhead?
Static trimming models

Never Trim

Start → FB → Done

Always Trim

Start → Trim → FB → Done

Initial Trim

Start → Trim → FB → Done

No Initial Trim

Trim → FB → Done

Start
Experimental setup and method

• Data: 819 graphs
 • KONECT and Network Repository
 • Graph Size: 500 - 10,000 vertices
• Per graph: Measure execution time (6x) and report average
 • Execution time is capped at 5 minutes.
• Platform:
 • Lisa* node: Intel Xeon Silver 4110 Processor at 2.1GHz, 96 GB RAM
 • Software: Ubuntu 20.04, C++ 14 compiled with GCC 9.3.0, Python 3.7.6

*https://userinfo.surfsara.nl/systems/lisa:description
Aggregated results analysis

• Ranking-based
 • Best and Worst
 • Average Ranking

• Time-based
 • Average execution time over all the graphs
 • Relative Increase*:

\[
\text{RI}(G_i, M_k) = \left(\frac{T(G_i, M_k) - T_B(G_i)}{T_B(G_i)}\right) \times 100
\]

where \(G_i\) is graph \(i\), \(M_k\) is model \(k\), \(T(G_i, M_k)\) is the execution time of model \(k\) on graph \(i\), and \(T_B(G_i)\) is the best time on graph \(i\).
The static models’ performance [1/2]

- Each model performs best on at least 15% of the graphs
- Each model performs worst on at least 15% of the graphs
- None of the models significantly outperforms all other models in ranking
The static models’ performance [2/2]

Average execution time indicates **No-Initial** is the best.

Never Trimming performs horribly on the average RI.

Best performing model has an average RI of over 77%.

Problem: no static model outperforms all other models consistently.
Predict trimming efficiency using AI

- A NN-based model that determines when to trim based on graph topology
The AI model

- **Basic Neural Network**
 - Input layer length 8
 - Three hidden layers
 - Boolean output layer

- **Training**
 - Using Gradient Descent
 - For 5000 epochs
 - Reached an accuracy of 82%
The AI model’s performance [1/2]

AI-Trim **performs poorly** in single graph based metrics:
- lowest number of best-performing graphs.
- second highest number of worst-performing graphs, after Never Trim.
- Mid-of-the-pack average ranking.
The AI model’s performance [2/2]

AI-Trim **outperforms** all other models on execution time-based metrics:

- **lowest average execution** time of all models.
- $RI = 35\%$ is almost $3x$ better than the next best model.
7. Take home message
Graph processing performance depends non-trivially on platform, algorithm, and dataset.

- **Algorithm**: In progress. Algorithms for different data types and graphs.
- **Platform**: Overstudied. Performance is enabled.
- **Dataset**: Understudied. No systematic findings yet. Intuitive correlations must be correlated with the algorithm.
P-A-D triangle

Algorithm

In progress
Algorithms for different data types and graphs

Overstudied
Performance is enabled
Portability is disabled

Dataset

Understudied
No systematic findings yet
Intuitive correlations
Must be correlated with the algorithm

Platform
Take home message

• Graph scaler offers graph scaling for controlled experiments
 • Correlation between performance and graph features is still WiP

• Mix-and-match creates best BFS by enabling dynamic, runtime switching among different versions of BFS
 • A generalization of the direction-optimized BFS
 • Machine learning model used to guide the switching

• FB-Trim improves the efficiency of trimming using a simple NN model to determine when to trim
 • Decision made on the graph topology … we think

Ana: A.L.Varbanescu@utwente.nl
Merijn: merijn@inconsistent.nl
Dante: d.niewenhuis@hotmail.com
Graph scaling: https://github.com/amusaafir/graph-scaling
M&M: https://github.com/merijn/Belewitte
FB_Trим: https://github.com/DanteNiewenhuis/FB-Trim