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Writing for Efficient Code is Hard
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Portable performance is more complex!

3

2000: SSE2 2007: SSSE3 2011: AVX

2018: AVX5122013: AVX2

1993

App
lica

tion
s

T
i
m
e

Architectures



Performance Portability is Necessary

§ Manual heroic optimization effort is 
not scalable

§ Repeated optimization with changes
- Computing platform 
- Different applications
- Different ML networks

§ Blackbox tools and libraries provide 
little insights into why an 
implementation is bad/good
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Key Questions
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How do we capture knowledge 
about performance?

How do we apply it to different 
applications and architectures?

Explainable Designs though Analytical Models
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§ SW optimizations target 
specific HW features

§ Analytical models map how 
SW is tuned based on 
available HW features

§ Models inform changes in 
SW as HW and application 
requirements change
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Capture HW-SW interactions with Models



§ HW must be fully utilized for good performance
§ Computational units characterized by 
- Number of Units, 
- Number of output computed
- Time to compute each output (Latency)

Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S. Quintana-Orti. 2016. Analytical Modeling Is Enough for High-Performance BLIS. 
ACM Trans. Math. Softw. 43, 2, Article 12

Hardware-driven constraints
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https://en.wikichip.org/wiki/intel/microarchitectures/haswell

mrnr � LFMANFMANvec

Hardware Constraints

https://devblogs.nvidia.com/maxwell-
most-advanced-cuda-gpu-ever-made/



Software implementation of MMM
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Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S. Quintana-Orti. 2016. Analytical Modeling Is Enough for High-Performance BLIS. 
ACM Trans. Math. Softw. 43, 2, Article 12



Portable to new hardware capabilities

§ Single model for different 
architectures and data types

§ Implementation specialized 
based on HW parameters
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New Accelerator - Matrix Engines

N. Tukanov, R. Srinivasaraghavan, J. E. Moreira, T.M. Low, “Modeling Matrix Engines for Portability and Performance”, 
IEEE International Parallel and Distributed Processing Symposium (IPDPS), May 2022. 



Data Orchestration is Key

10

§ Data orchestration is about 
keeping functional units busy
§ Performing data movement

§ Managing the caches



Using ``Double Buffering’’ Liberally

0%

25%

50%

75%

100%

80 480 880 1280 1680 2080 2480 2880 3280 3680

% of Peak

Problem Size (M=N=K=X)

Cascade Lake MMM Performance w/wo buffering

No Double Buffering
Double Buffer ing

11

0%

25%

50%

75%

100%

80 480 880 1280 1680

% of Peak

Problem Size (M=N=K=X)

P9 MMM Performance w/wo Buffering

No Double Buffering
Double Buffer ing

§ Bringing in data ahead of time
§ Amount of buffering depends on 
- Location of data
- Amount of data required
- Computation time

§ Need to ensure data in certain 
level of the cache



§ Hardware features: Set Associativity, Size of cache, Cache line size
§ Software parameters: Block/Tile size

Modeling Data Layouts in Caches
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Intermediate Layouts Is Necessary
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Further questions

How general is the approach?

How can models for one application 
be used for another?
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Rethinking FFT algorithms
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Doru Thom Popovici, Tze Meng Low and Franz Franchetti. “Large Bandwidth-efficient FFTs on Multicore and Multi-Socket Systems”, 2018, IPDPS
Doru Thom Popovici, Franz Franchetti and Tze Meng Low. “Mixed Data Layout Kernels for Vectorized Complex Arithmetic”, 2017, HPEC

§ FFTs usually considered memory-
bound

§ Caches are fast enough to sustain 
FFT computation
- Use different layouts at different 

stages of the computation



Sharing caches with SMT Threads
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§ SMT Threads share “private” caches
§ Controlled data movement across 

different layers of the cache
§ Use of temporal loads/stores
§ Need locks to ensure correctness
§ Split caches by assigning ways to caches

§ Sharing of functional units
§ NOPs introduced to allow both threads to 

proceed with their tasks



Many problems are “MMM”
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k-Nearest Neighbours

DNA Fingerprinting All-Pairs Shortest Path

Population Genomics

Elliott Binder, Tze Meng Low, and Doru Thom Popovici. "A Portable GPU Framework for SNP Comparisons.”
2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

Charalampos Theodoris, Nikolaos Alachiotis, Tze Meng Low and Pavlos Pavlidis, “qLD: High-performance Computation of Linkage Disequilibrium on CPU and GPU” 
2020 IEEE International Conference on BioInformatics And BioEngineering (BIBE)



High Performance Machine Learning
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Packing 
overheads 

High Performance Direct Convolution

Jiyuan Zhang, Franz Franchetti, Tze Meng Low, “High Performance Zero-Memory Overhead Direct Convolutions”, 2018, 
International Conference of Machine Learning (ICML)

Leverage model-based data layout



Modeling extends to large machines
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Larger Exascale Machines 

Doru Thom Popovici, Martin D. Schatz, Franz Franchetti, Tze Meng Low, “A Flexible Framework for Multidimensional DFTs”, 
SIAM Journal on Scientific Computing, 42(5), C245- C264, Sep 2020. 

Particle in Cell Simulations

3D parallelism + New Layout
Computes partial FFT on single node (More but cheaper comms)
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Elemental 3D-FFT
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Strong scaling to more nodes

Doru Thom Popovici, Martin D. Schatz, Franz Franchetti, Tze Meng Low, “A Flexible Framework for Multidimensional DFTs”, 
SIAM Journal on Scientific Computing, 42(5), C245- C264, Sep 2020. 



§ Graph algorithms in the language of linear algebra
§ New algorithms for 
- finding patterns/subgraphs 
- propagating information

§ Modeling to find out HW bottlenecks

Towards Graphs & Sparse Linear Algebra
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gbtl

IBM-GraphBLAS
redisgraph

redislabs

GraphBLAST (GPU)

Galois GB

Distributed gbtl

LAGraph
C algorithms 

repository

pygraphblas
Python Wrapper

Tze Meng Low, Daniele G. Spampinato, Anurag Kutuluru, Upasana Sridhar, Doru Thom Popovici, Franz Franchetti, Scott McMillan (CMU) , 
“Linear Algebraic Formulation of Edge-centric K-truss Algorithms with Adjacency Matrices “, IEEE HPEC 2018 Graph Challenge Finalist

Mark P. Blanco, Tze Meng Low, and Kyungjoo Kim, “Exploration of Fine-Grained Parallelism for Load Balancing Eager K-truss on GPU and CPU”, 
IEEE HPEC 2019 , Graph Challenge  Champion

Social Network

Protein Interactions



Summary

§ Analytical models capture key SW-HW interactions
- Flexibility and portability across architectures and applications
- Rethink of many current algorithms & implementations
- Tools integration (e.g. Polly-LLVM) è programmer 

productivity

Questions?
lowt@cmu.edu


