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Writing for Efficient Code is Hard

MMM Performance vs. Problem Size

Theoretical Peak

Expert Implementation

More than 2x

Sophisticated Implementation
More than 30x
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Portable performance is more complex!
[]
T

AB0286-8 i486™¢

319409047
lao1982.1985

1993

inte])

Corep
£x,
Yactey /Z eme

Sandy Bridge

2007: SSSE3

2018: AVX512




ectrical & Computer
) ENGINEERING

Performance Portability is Necessary

Manual heroic optimization effort is
not scalable

Repeated optimization with changes
—  Computing platform

— Different applications

— Different ML networks

Blackbox tools and libraries provide
little insights into why an
implementation is bad/good




Key Questions

How do we capture knowledge
about performance?

How do we apply it to different
applications and architectures?

Explainable Designs though Analytical Models
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Capture HW-SW interactions with Models

= SW optimizations target
specific HW features

= Analytical models map how
SW is tuned based on
available HW features

= Models inform changes in
SW as HW and application |
requirements change \ v

,
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Hardware-driven constraints
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* HW must be fully utilized for good performance

= Computational units characterized by
—  Number of Units,
— Number of output computed
— Time to compute each output (Latency)
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Hardware Constraints

Tze Meng Low, Francisco D. lgual, Tyler M. Smith, and Enrique S. Quintana-Orti. 2016. Analytical Modeling Is Enough for High-Performance BLIS.
ACM Trans. Math. Softw. 43, 2, Article 12
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Software implementation of MMM
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Tze Meng Low, Francisco D. lgual, Tyler M. Smith, and Enrique S. Quintana-Orti. 2016. Analytical Modeling Is Enough for High-Performance BLIS.
ACM Trans. Math. Softw. 43, 2, Article 12
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Portable to new hardware capabilities
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* Implementation specialized LI o,
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Data Orchestration is Key
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Data orchestration is about
keeping functional units busy

= Performing data movement

= Managing the caches
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Using "Double Buffering’’ Liberally

= Bringing in data ahead of time

= Amount of buffering depends on
— Location of data
- Amount of data required
— Computation time

= Need to ensure data in certain
level of the cache

P9 MMM Performance w/wo Buffering
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Modeling Data Layouts in Caches .

my

= Hardware features: Set Associativity, Size of cache, Cache line size
= Software parameters: Block/Tile size

Current Architecture New Architecture
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Tze Meng Low, Francisco D. Igual, Tyler M. Smith, and Enrique S. Quintana-Orti. 2016. Analytical Modeling Is Enough for High-Performance BLIS.
ACM Trans. Math. Softw. 43, 2, Article 12
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Intermediate Layouts Is Necessary

Matrix Matrlx Multlpllcatlon
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Proposed Layout
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Further questions

How general is the approach?

How can models for one application
be used for another?
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Rethinking FFT algorithms

Kabylake DFT Kernels

Haswell DFT Kernels
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* FFTs usually considered memory-
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Sharing caches with SMT Threads

= SMT Threads share “private” caches

= Controlled data movement across
different layers of the cache
= Use of temporal loads/stores
" Need locks to ensure correctness
= Split caches by assigning ways to caches

= Sharing of functional units

= NOPs introduced to allow both threads to
proceed with their tasks

I

]

Rotated <°\\} Original
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Many problems are “MMM”

Population Genomics k-Nearest Neighbours
~Length of DNA Sequence >| ‘
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Charalampos Theodoris, Nikolaos Alachiotis, Tze Meng Low and Pavlos Pavlidis, “qLD: High-performance Computation of Linkage Disequilibrium on CPU and GPU”
2020 IEEE International Conference on Biolnformatics And BioEngineering (BIBE)

Elliott Binder, Tze Meng Low, and Doru Thom Popovici. "A Portable GPU Framework for SNP Comparisons.” 17
2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
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High Performance Machine Learning

Performance normalized to OpenBLAS GEMM on AMD PileDriver
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Jiyuan Zhang, Franz Franchetti, Tze Meng Low, “High Performance Zero-Memory Overhead Direct Convolutl*(')”ﬁ?” 2018, SR

International Conference of Machine Learning (ICML)
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Modeling extends to large machines

Larger Exascale Machines 3D parallelism + New Layout
Computes partial FFT on single node (More but cheaper comms)
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Doru Thom Popovici, Martin D. Schatz, Franz Franchetti, Tze Meng Low, “A Flexible Framework for Multidimensional DFTs”, 19

SIAM Journal on Scientific Computing, 42(5), C245- C264, Sep 2020.
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Elemental 3D-FFT

Strong scaling to more nodes

3D DFT Results on the K-Computer 3D DFT Results on Summit
Strong Scaling Results for a 256x256x256 Problem Size Strong Scaling Results for a 256x256x256 Problem Size
1
—-+Slab-Pencil 1 -+Slab-Pencil
Pencil-Pencil Pencil-Pencil

T —-+-Volumetric Ty —-+-Volumetric
i} 0.1 © 0.1
@ @
-7} "]
3 3
Q Q
E om E o0 \
- [= \
S 5
5 5
8 0.001 g
3 ° i e 3

oo v\\‘\’\__‘

0.0001 ‘ ‘ ‘ ‘ " . ; . . . ‘ 0.0001 | . . . . . . . . : ; ‘
2 4 8 16 32 64 128 256 512 1024 2048 4096 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Compute Nodes Number of Compute Nodes
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Towards Graphs & Sparse Linear Algebra

= Graph algorithms in the language of linear algebra
=SditeSparse Pl

= New algorithms for
- finding patterns/subgraphs Wi
- propagating information Galois GB  ocial Netwrk
"= Modeling to find out HW bottlenecks YTEXAS

IBM-GraphBLAS  GraphBLAST (GPU) LAGraph

redisgraph C algorithms
redislabs UNIVERSITY OF CALIFORNIA repOSItOW
, - . Protein Interacti
Carnesic i NT:/: pygraphb|as Dlstrlbuted gbtl rotein interactions
9 btl University e Python Wrapper LLg Lawrence Livermore
o National Laboratory

Mark P. Blanco, Tze Meng Low, and Kyungjoo Kim, “Exploration of Fine-Grained Parallelism for Load Balancing Eager K-truss on GPU and CPU”,

IEEE HPEC 2019, Graph Challenge Champion

Tze Meng Low, Daniele G. Spampinato, Anurag Kutuluru, Upasana Sridhar, Doru Thom Popovici, Franz Franchetti, Scott McMillan (CMU), 21
“Linear Algebraic Formulation of Edge-centric K-truss Algorithms with Adjacency Matrices “, IEEE HPEC 2018 Graph Challenge Finalist




Summary

= Analytical models capture key SW-HW interactions
— Flexibility and portability across architectures and applications

— Rethink of many current algorithms & implementations

— Tools integration (e.g. Polly-LLVM) =» programmer

productivity

Questions?

lowt@cmu.edu
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