
AYESHA AFZAL1,2, GEORG HAGER1, GERHARD WELLEIN1,2

NHR PerfLab Seminar
April 26, 2022

1 Erlangen National High Performance Computing Center
2 Department of Computer Science,
University of Erlangen-Nürnberg Germany

The	Role	of	Idle	Waves	in	Modeling and
Optimization	of	Parallel	Programs

April 26, 2022 1Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

LogGOPS

BW
 [B

/s
]

Msg [B]

L BW

L [
s] HockneyRoofline

ECM

P
[F

/s
]

Compute-
bound

Memory-

bound

I [F/B]

L1 L2 L3

Fastest Fast Less Fast Slow

C P U

M
EM

𝑻𝒅𝒊𝒔𝒕 = 𝒔𝒖𝒎 𝑻𝒆𝒙𝒆𝒄, 𝑻𝒏𝒐𝒏*𝒆𝒙𝒆𝒄 ± 𝑻𝜹
Distributed performance model

𝑻𝜹
(Out of) lock-step

SlowdownAccelerator

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄
Communication perf model

𝑻𝒆𝒙𝒆𝒄
Execution perf model

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄
Communication perf model

𝑻𝒆𝒙𝒆𝒄
Execution perf model

Process 0

Process N

…

…

…

Challenges of white-box performance modelling in HPC

Vision: white-box first-principle performance modelling

max 𝑇!" , 𝑇#$%&' 𝜆 +
𝑉
𝐵

𝑻𝒄𝒐𝒎𝒑 = 𝒔𝒖𝒎 𝑻𝒆𝒙𝒆𝒄, 𝑻𝒏𝒐𝒏*𝒆𝒙𝒆𝒄
Composite analytic performance model

Why it’s not a
realistic model?

Why it can go in
either direction?

April 26, 2022 2Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Challenges of white-box performance modelling in HPC

…

GPU 1

GPU N

…
GPU 1

GPU N

…

… … … …

…

MPI

X (OpenMP etc.,)

Node 1
Socket 1

MI

Cache

P
C

P
C

P
C

P
C

Socket 2

Memory

MI

Cache

P
C

P
C

P
C

P
C

N
et

w
or

k
In

te
rfa

ce

Memory

Node N
Socket 1

MI

Cache

P
C

P
C

P
C

P
C

Socket 2

Memory

MI

Cache

P
C

P
C

P
C

P
C

N
et

w
or

k
In

te
rfa

ce

Memory

N
et

w
or

k
C

om
m

un
ic

at
io

n
…

..

…… …

It’s intricated (bottlenecks interact, systems are noisy, etc.)

April 26, 2022 3Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Motivation

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

…

…

Memory-bound
MPI-parallel

programs:
timeline view

Process 0

Process 1

“Lock-step” behavior at start

No network contention or load imbalance

April 26, 2022 4Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Motivation

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

…

…

“Snap-in” desynchronization with
communication overlap after some evolution

2 socket single-core

"Prescott” node

Process 1

Process 0

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

…

…

Memory-bound
MPI-parallel

programs:
timeline view

Process 0

Process 1

“Lock-step” behavior at start

No network contention or load imbalance

April 26, 2022 5Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Motivating example (1)

Time	step 1 20 60 100 500 1000 5000 10000

0
.1

0
.2

0
.3

0
.4

0

20

40

60

80

100

R
a
n
k

Actual
Model t = 1

2
.2

2
.3

2
.4

2
.5

t = 20

6
.7

6
.8

6
.9 7

t = 60

1
1
.2

1
1
.3

1
1
.4

1
1
.5

t = 100

5
6
.3

5
6
.4

5
6
.5

5
6
.6

Time [s]

t = 500

5
7
.7

1
1
2
.8

1
1
2
.9

1
1
3

1
1
3
.1

t = 1000

1
1
5
.5

5
6
3
.6

5
6
3
.7

5
6
3
.8

5
6
3
.9

t = 5000

5
7
7
.5

1
1
2
6
.8

1
1
2
6
.9

1
1
2
7

1
1
2
7
.1

t = 10000

1
1
5
5

Fig. 2: Measured LBM irregular structure in comparison with expected model regularity. The plot shows that the time steps
with more irregularity (iterations in between and at the end of the results) manifest maximum percentage variation towards
better performance (2.25% at time step t = 500 and 2.42% at time step t = 10000).

LBM time steps t, from t = 1 to t = 10,000, where the location
of the time step along the wall-clock time axis is marked on
each process (red markers). For reference, we also show the
expected positions according to the simple nonoverlapping
execution-communication model (1). While the deviation from
the model and the variation across processes is still small
after 20 time steps (< 0.1s), a global structure has emerged
at t = 500 with a fundamental “wavelength” equal to the size
of the system (100 processes) and an amplitude of 0.3 wall-
clock seconds. This pattern is not static but shifts and changes
shape, as can be seen at t = 5,000 and t = 10,000. Moreover,
the actual runtime at t = 10,000 is about 28 s smaller than
expected. While this is only a deviation of about 2.5%, the
pattern is interesting and may show up more prominently with
applications that have different communication overheads and
patterns.

The examples above have demonstrated that some scenarios
allow noise to act as an application accelerator as well as a
slowdown factor. There is, however, a very complex interplay
between application code execution, the message passing
library, and the network, which leads to a rich spectrum of
local and collective phenomena in parallel code, especially
when noise is present. The accelerating effect is certainly not
guaranteed. In this work we want to study a particular aspect
of this theme: the wave-like propagation of execution delays
(“idle waves”) [11] through the network under the influence
of system noise and variable injected noise.

C. Contributions

The major contribution of this paper is the investigation of
idle waves, which are phases of inactivity in a parallel program
that propagate across processes. They emanate from strong
delays occurring on individual processes of an MPI-parallel
program.

• We investigate and categorize the mechanisms of the
propagation of “idle waves” emanating from execution
delays across communicating processes under some simpli-
fying assumptions, notably a bulk-synchronous application
structure.

• We show how such idle waves interact and (partially)
cancel each other, proving that a linear wave equation is
inappropriate to describe the phenomenon.

• We give an analytic expression for the speed of an idle
wave in a noise-free homogeneous system under core-
bound computational load, i.e., code whose performance
is purely limited by in-core resources. The formula
takes into account execution time, communication time,
communication topology, and communication mode (eager
vs. rendezvous).

• We investigate the impact of injected, fine-grain exponen-
tial noise on the propagation speed and lifetime of idle
waves and show how the decay of the wave depends on
the strength of the noise.

• We demonstrate that the application slowdown caused
by strong idle waves may be unobservable due to the
presence of noise.

Note that we deliberately restrict ourselves to simple point-
to-point communication patterns here. In our opinion, those
must be studied first in order to understand more complex
situations like multi-dimensional communication topologies
and collectives. This paper is organized as follows: In Section II
we introduce some important terms and categorize the execution
and communication scenarios under investigation. Section III
gives details about our hardware and software setup and the
inherent node-level noise structure of the cluster system we
use for the benchmarks. The mechanisms of delay propagation
under various conditions are covered in Section IV, while
Section V deals with the analysis of idle waves decaying under
noise. Related work is covered in Section VI, and SectionVII
concludes the paper and gives an outlook to future work.

II. CATEGORIZATION OF PARAMETERS

A multitude of system and application parameters and
properties influence the phenomenology of delay propagation
and desynchronization. This section tries to categorize the most
relevant factors.

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on February 21,2021 at 11:42:35 UTC from IEEE Xplore. Restrictions apply.

Wall-clock time	[s]

Ra
nk

99

80

60

40

20

0

MPI parallel Lattice Boltzmann fluid solver

302! lattice cell, 8 GB data set, non-blocking, 1D domain decomposition, distance-
1 communication, 10 Emmy@RRZE sockets @2.2 GHz

Computational wavefront

April 26, 2022 6Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Motivating example (2)

Ra
nk

MPI parallel STREAM TRIAD

speeders

laggers

4 Emmy@RRZE sockets @2.2 GHz,
non-temporal stores, bi-dir, open
chain, distance-1 communication

Wall-clock	time	
normalized	to	slowest	process	

Socket	1
Node	1

Socket	0
Node	1

Socket	1
Node	0

Socket	0
Node	0

Spontaneous
symmetry breaking,

communication
overlap, why?

Under what
conditions?

5

2 30 60 90 119

0

20

40

60

80

100

119

Receiver rank

Se
nd

er
ra

nk

(a) Pi

�

(Pi±1 . . .Pi±2)

6 30 60 90 119

Receiver rank

(b) Pi

�

(Pi±1 . . .Pi±6)

12 30 60 90 119

Receiver rank

(c) Pi

�

(Pi±1 . . .Pi±12)

6 30 60 90 119

Receiver rank

(d) Pi

�

(Pi±1,Pi±6)

12 30 60 90 119

Receiver rank

(e) Pi

�

(Pi±1,Pi±12)

Fig. 1: Compact and non-compact communication topologies with bidirectional open
chain characteristics. Pi sends (receives) data to (from) Pi±1 (a) to Pi±2 (b) to Pi±6 (c) to
Pi±12, (d) and Pi±6 (e) and Pi±12.

3.1 Execution characteristics

HPC workloads have a wide spectrum of requirements regarding code execution towards
resources of the parallel computing platform. The most straightforward categorization
is whether the workload is sensitive to certain resource bottlenecks, such as memory
bandwidth. Since we restrict ourselves to scalable code here, we run the traditionally
memory-bound algorithms such as stencil updates or SpMV with one MPI process
per contention domain (typically a ccNUMA node). This is not a problem for the
microbenchmarks since we deliberately choose an in-core workload there.

3.2 Categorization of communication characteristics

Here we briefly describe the different communication characteristics under investigation.
We start by assuming a “P2P-homogeneous” situation where all processes (except
boundary processes in case of open boundary conditions) have the same communication
partners and characteristics. We will later lift this restriction and cover more general
patterns.

Communication topology Communication topology is a consequence of the physical
problem underlying the numerical method and of the algorithm (discretization, geometry).
It boils down to the question “which other processes does rank i communicate with?”
and is characterized by a topology matrix (see Figure 1 for examples of compact and
noncompact topologies).

In a compact topology, each process communicates with a dense, continuous array
of neighbors with distances d = ±1,±2,...,±j. The topology matrix comprises a dense
band around the main diagonal. In a noncompact topology, each process communicates
with processes that are not arranged as a continuous block, e.g., d = ±1,±j. In both
variants, the topology matrix can be symmetric or asymmetric.

𝑷𝒊$𝟏

𝑷𝒊

𝑷𝒊-𝟏

April 26, 2022 7Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Lessons learned (1): Impact of idle wave on overlap

Propagation
speed of
idle wave

Overlap
amplified /
damped?

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

…

…

April 26, 2022 8Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Idle wave: delay propagation across processes in each iteration

Ra
nk

Wall-clock time

0
1
2
3
4
5
6
7
8
9

Ra
nk

𝒗𝒎𝒊𝒏 = 𝜿×𝝈×𝟏
𝒓𝒂𝒏𝒌
𝒊𝒕𝒆𝒓 ×

𝟏
𝑻𝒄𝒐𝒎𝒑 +𝑻𝒄𝒐𝒎𝒎

𝒊𝒕𝒆𝒓
𝒔

𝜿 =
𝒋(𝒋 + 𝟏)

𝟐 𝐨𝐫 𝒋 + 𝒊 𝒐𝒓 𝒋
j /i: longest /shorter-distance partner

resource-scalable
MPI programs

DOI: 10.1103/PhysRevE.91.013306

https://doi.org/10.1103/PhysRevE.91.013306

June 30, 2021 9Ayesha Afzal <ayesha.afzal@fau.de> | ISC High Performance 2021 Digital

Communication pattern and concurrency: compact
5

2 30 60 90 119

0

20

40

60

80

100

119

Receiver rank

Se
nd

er
ra

nk

(a) Pi

�

(Pi±1 . . .Pi±2)

6 30 60 90 119

Receiver rank

(b) Pi

�

(Pi±1 . . .Pi±6)

12 30 60 90 119

Receiver rank

(c) Pi

�

(Pi±1 . . .Pi±12)

6 30 60 90 119

Receiver rank

(d) Pi

�

(Pi±1,Pi±6)

12 30 60 90 119

Receiver rank

(e) Pi

�

(Pi±1,Pi±12)

Fig. 1: Compact and non-compact communication topologies with bidirectional open
chain characteristics. Pi sends (receives) data to (from) Pi±1 (a) to Pi±2 (b) to Pi±6 (c) to
Pi±12, (d) and Pi±6 (e) and Pi±12.

3.1 Execution characteristics

HPC workloads have a wide spectrum of requirements regarding code execution towards
resources of the parallel computing platform. The most straightforward categorization
is whether the workload is sensitive to certain resource bottlenecks, such as memory
bandwidth. Since we restrict ourselves to scalable code here, we run the traditionally
memory-bound algorithms such as stencil updates or SpMV with one MPI process
per contention domain (typically a ccNUMA node). This is not a problem for the
microbenchmarks since we deliberately choose an in-core workload there.

3.2 Categorization of communication characteristics

Here we briefly describe the different communication characteristics under investigation.
We start by assuming a “P2P-homogeneous” situation where all processes (except
boundary processes in case of open boundary conditions) have the same communication
partners and characteristics. We will later lift this restriction and cover more general
patterns.

Communication topology Communication topology is a consequence of the physical
problem underlying the numerical method and of the algorithm (discretization, geometry).
It boils down to the question “which other processes does rank i communicate with?”
and is characterized by a topology matrix (see Figure 1 for examples of compact and
noncompact topologies).

In a compact topology, each process communicates with a dense, continuous array
of neighbors with distances d = ±1,±2,...,±j. The topology matrix comprises a dense
band around the main diagonal. In a noncompact topology, each process communicates
with processes that are not arranged as a continuous block, e.g., d = ±1,±j. In both
variants, the topology matrix can be symmetric or asymmetric.

5

2 30 60 90 119

0

20

40

60

80

100

119

Receiver rank

Se
nd

er
ra

nk

(a) Pi

�

(Pi±1 . . .Pi±2)

6 30 60 90 119

Receiver rank

(b) Pi

�

(Pi±1 . . .Pi±6)

12 30 60 90 119

Receiver rank

(c) Pi

�

(Pi±1 . . .Pi±12)

6 30 60 90 119

Receiver rank

(d) Pi

�

(Pi±1,Pi±6)

12 30 60 90 119

Receiver rank

(e) Pi

�

(Pi±1,Pi±12)

Fig. 1: Compact and non-compact communication topologies with bidirectional open
chain characteristics. Pi sends (receives) data to (from) Pi±1 (a) to Pi±2 (b) to Pi±6 (c) to
Pi±12, (d) and Pi±6 (e) and Pi±12.

3.1 Execution characteristics

HPC workloads have a wide spectrum of requirements regarding code execution towards
resources of the parallel computing platform. The most straightforward categorization
is whether the workload is sensitive to certain resource bottlenecks, such as memory
bandwidth. Since we restrict ourselves to scalable code here, we run the traditionally
memory-bound algorithms such as stencil updates or SpMV with one MPI process
per contention domain (typically a ccNUMA node). This is not a problem for the
microbenchmarks since we deliberately choose an in-core workload there.

3.2 Categorization of communication characteristics

Here we briefly describe the different communication characteristics under investigation.
We start by assuming a “P2P-homogeneous” situation where all processes (except
boundary processes in case of open boundary conditions) have the same communication
partners and characteristics. We will later lift this restriction and cover more general
patterns.

Communication topology Communication topology is a consequence of the physical
problem underlying the numerical method and of the algorithm (discretization, geometry).
It boils down to the question “which other processes does rank i communicate with?”
and is characterized by a topology matrix (see Figure 1 for examples of compact and
noncompact topologies).

In a compact topology, each process communicates with a dense, continuous array
of neighbors with distances d = ±1,±2,...,±j. The topology matrix comprises a dense
band around the main diagonal. In a noncompact topology, each process communicates
with processes that are not arranged as a continuous block, e.g., d = ±1,±j. In both
variants, the topology matrix can be symmetric or asymmetric.

1 KiB Msg

Dimensionless 𝜅

distance in processes
travelled in one time
step by the idle wave

9

1

0
5

10
20
30
40
50
60
70
80
90

100
110
119

R
an

k

50
52
54
56
58
60 k = 3k = 3k = 3

50
52
54
56
58
60

k = 2k = 2k = 2

47
50

55

60

65
69

k = 21k = 21k = 21

47
50

55

60

65
69

k = 6k = 6k = 6

53

60

66 k = 78k = 78k = 78

53

60

66
k = 12k = 12k = 12

1.4 1.6 1.8 2 2.2 2.4
0

60

119

Time [s]

N
AM

AS
S

(a1) MWSDim

(a) Pi � (Pi±1 . . .Pi±2)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(a2) MWMDim/SWMDim

(a) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b1) MWSDim

(b) Pi � (Pi±1 . . .Pi±6)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b2) MWMDim/SWMDim

(b) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c1) MWSDim

(c) Pi � (Pi±1 . . .Pi±12)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c2) MWMDim/SWMDim

(c) Pi � (Pi±1)

Fig. 2: Top row: Idle wave propagation for 60 iterations in a core-bound microbenchmark
for an injected delay at rank 5 (see text for details) and compact communication patterns
with different numbers of communication partners: (a) two, (b) six, and (c) twelve
partners per direction. The quantitative NAMASS timelines in the second row of panels
show the fraction of MPI processes executing MPI library code (orange) versus the
number of processes in user code (blue).

k = Â6
k=1 k = 21, and in (b2) k = j = 6. In (c1), we getk = Â12

k=1 k = 78, confirming
intuitively our prediction that survival time in the high-speed limit is equal to Texec +
Tcomm. Finally, in (c2) we get k = j = 12.

The second row in Figure 2 shows that slower wave propagation causes a more even
spread of waiting times and thus resource utilization across processes. A rising/con-
stant/falling slope indicates an oncoming/traveling/leaving wave. Although our particular
scenarios have been designed to show no resource bottlenecks, these utilization shapes
will be significant in case of memory-bound execution or bandwidth-contended commu-
nication [3]. An exploration of these mechanisms is left for future work.

Noncompact communication Topology matrices with noncompact characteristics (Fig-
ures 1(d)–(e)) entail a more complex phenomenology of idle wave propagation. The
presence of “gaps” leads to multiple waves propagating at different speeds, with the
added complication that each “hop” of a faster wave sparks local idle waves wherever it
hits (see Figure 3). These secondary waves propagate and annihilate each other even-
tually (more specifically, after j/2 hops), and what remains is the fast wave emerging
from the longest-distance communication. The speed of this residual wave is faster with
(i) a larger number of split-waits, (ii) a smaller number of communication dimensions
spanned by each MPI_Waitall, and evidently (iii) a larger longest communication
distance j. The interpretation of timelines provides a visual aid for verification, e.g., the
idle wave ends sooner on the x-axis for the same number of split-waits in (a1) and (a2)
compared to the larger numbers of split-waits in (a3).

With respect to communication concurrency, there is a fundamental difference
between multiple split-waits and one wait-for-all in non-compact communication. The

9

1

0
5

10
20
30
40
50
60
70
80
90

100
110
119

R
an

k

50
52
54
56
58
60 k = 3k = 3k = 3

50
52
54
56
58
60

k = 2k = 2k = 2

47
50

55

60

65
69

k = 21k = 21k = 21

47
50

55

60

65
69

k = 6k = 6k = 6

53

60

66 k = 78k = 78k = 78

53

60

66
k = 12k = 12k = 12

1.4 1.6 1.8 2 2.2 2.4
0

60

119

Time [s]

N
AM

AS
S

(a1) MWSDim

(a) Pi � (Pi±1 . . .Pi±2)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(a2) MWMDim/SWMDim

(a) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b1) MWSDim

(b) Pi � (Pi±1 . . .Pi±6)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b2) MWMDim/SWMDim

(b) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c1) MWSDim

(c) Pi � (Pi±1 . . .Pi±12)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c2) MWMDim/SWMDim

(c) Pi � (Pi±1)

Fig. 2: Top row: Idle wave propagation for 60 iterations in a core-bound microbenchmark
for an injected delay at rank 5 (see text for details) and compact communication patterns
with different numbers of communication partners: (a) two, (b) six, and (c) twelve
partners per direction. The quantitative NAMASS timelines in the second row of panels
show the fraction of MPI processes executing MPI library code (orange) versus the
number of processes in user code (blue).

k = Â6
k=1 k = 21, and in (b2) k = j = 6. In (c1), we getk = Â12

k=1 k = 78, confirming
intuitively our prediction that survival time in the high-speed limit is equal to Texec +
Tcomm. Finally, in (c2) we get k = j = 12.

The second row in Figure 2 shows that slower wave propagation causes a more even
spread of waiting times and thus resource utilization across processes. A rising/con-
stant/falling slope indicates an oncoming/traveling/leaving wave. Although our particular
scenarios have been designed to show no resource bottlenecks, these utilization shapes
will be significant in case of memory-bound execution or bandwidth-contended commu-
nication [3]. An exploration of these mechanisms is left for future work.

Noncompact communication Topology matrices with noncompact characteristics (Fig-
ures 1(d)–(e)) entail a more complex phenomenology of idle wave propagation. The
presence of “gaps” leads to multiple waves propagating at different speeds, with the
added complication that each “hop” of a faster wave sparks local idle waves wherever it
hits (see Figure 3). These secondary waves propagate and annihilate each other even-
tually (more specifically, after j/2 hops), and what remains is the fast wave emerging
from the longest-distance communication. The speed of this residual wave is faster with
(i) a larger number of split-waits, (ii) a smaller number of communication dimensions
spanned by each MPI_Waitall, and evidently (iii) a larger longest communication
distance j. The interpretation of timelines provides a visual aid for verification, e.g., the
idle wave ends sooner on the x-axis for the same number of split-waits in (a1) and (a2)
compared to the larger numbers of split-waits in (a3).

With respect to communication concurrency, there is a fundamental difference
between multiple split-waits and one wait-for-all in non-compact communication. The

9

1

0
5

10
20
30
40
50
60
70
80
90

100
110
119

R
an

k

50
52
54
56
58
60 k = 3k = 3k = 3

50
52
54
56
58
60

k = 2k = 2k = 2

47
50

55

60

65
69

k = 21k = 21k = 21

47
50

55

60

65
69

k = 6k = 6k = 6

53

60

66 k = 78k = 78k = 78

53

60

66
k = 12k = 12k = 12

1.4 1.6 1.8 2 2.2 2.4
0

60

119

Time [s]

N
AM

AS
S

(a1) MWSDim

(a) Pi � (Pi±1 . . .Pi±2)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(a2) MWMDim/SWMDim

(a) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b1) MWSDim

(b) Pi � (Pi±1 . . .Pi±6)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b2) MWMDim/SWMDim

(b) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c1) MWSDim

(c) Pi � (Pi±1 . . .Pi±12)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c2) MWMDim/SWMDim

(c) Pi � (Pi±1)

Fig. 2: Top row: Idle wave propagation for 60 iterations in a core-bound microbenchmark
for an injected delay at rank 5 (see text for details) and compact communication patterns
with different numbers of communication partners: (a) two, (b) six, and (c) twelve
partners per direction. The quantitative NAMASS timelines in the second row of panels
show the fraction of MPI processes executing MPI library code (orange) versus the
number of processes in user code (blue).

k = Â6
k=1 k = 21, and in (b2) k = j = 6. In (c1), we getk = Â12

k=1 k = 78, confirming
intuitively our prediction that survival time in the high-speed limit is equal to Texec +
Tcomm. Finally, in (c2) we get k = j = 12.

The second row in Figure 2 shows that slower wave propagation causes a more even
spread of waiting times and thus resource utilization across processes. A rising/con-
stant/falling slope indicates an oncoming/traveling/leaving wave. Although our particular
scenarios have been designed to show no resource bottlenecks, these utilization shapes
will be significant in case of memory-bound execution or bandwidth-contended commu-
nication [3]. An exploration of these mechanisms is left for future work.

Noncompact communication Topology matrices with noncompact characteristics (Fig-
ures 1(d)–(e)) entail a more complex phenomenology of idle wave propagation. The
presence of “gaps” leads to multiple waves propagating at different speeds, with the
added complication that each “hop” of a faster wave sparks local idle waves wherever it
hits (see Figure 3). These secondary waves propagate and annihilate each other even-
tually (more specifically, after j/2 hops), and what remains is the fast wave emerging
from the longest-distance communication. The speed of this residual wave is faster with
(i) a larger number of split-waits, (ii) a smaller number of communication dimensions
spanned by each MPI_Waitall, and evidently (iii) a larger longest communication
distance j. The interpretation of timelines provides a visual aid for verification, e.g., the
idle wave ends sooner on the x-axis for the same number of split-waits in (a1) and (a2)
compared to the larger numbers of split-waits in (a3).

With respect to communication concurrency, there is a fundamental difference
between multiple split-waits and one wait-for-all in non-compact communication. The

=
𝒋(𝒋 + 𝟏)

𝟐

= 𝒋

6

Table 2: Selected algorithms for communication concurrency in our MPI microbench-
marks. Arrows of the same color correspond to a single MPI_Waitall call. “One
distance” means that one MPI_Waitall is responsible only for the send/recv pair of one
particular communication distance, while “all distances” means that it encompasses all
distances in one dimension.

1

Multi-wait, single-dimension
(MWSDim)
1: while d dims do
2: while dir bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: MPI_Waitall

7: end while

one distance

Multi-wait, multi-dimension
(MWMDim)
1: while dir bi do
2: while d dims do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: MPI_Waitall

7: end while

all distances

Single-wait, multi-dimension
(SWMDim)
1: while d dims do
2: while dir bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: end while
7: MPI_Waitall

all distances

Multi-wait, single-direction
(MWSDir)
1: while d dims do
2: while dir bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: MPI_Waitall

6: end while
7: end while

one distance

‡ Pi send to Pi+dir⇥d ; § Pi receive from Pi�dir⇥d

For example, sparse matrices emerging from numerical algorithms with high locality
lead to compact communication structures, while stencil-like discretizations on Cartesian
grids lead to noncompact structures with far-outlying sub-diagonals. Figures 1(a)–(c)
depict symmetric cases with 4, 12, and 24 neighbors, respectively (2, 6 and 12 distinct
processes per direction) for every process, while there are always four neighbors (two
distinct processes per direction) for both noncompact cases in Figures 1(d)–(e).

Communication concurrency When a process communicates with others, it is often a
deliberate choice of the developer which communications are grouped together and later
finished using MPI_Waitall (“split-waits”). However, since interprocess dependencies
have an impact on idle wave propagation, such details are relevant. Of course, beyond
user-defined communication concurrency, there could still be nonconcurrency “under
the hood,” depending on the internals of the MPI implementation.

Here we restrict ourselves to a manageable subset of options that nevertheless cover a
substantial range of patterns. We assume that all P2P communication is nonblocking. Ta-
ble 2 shows the four variants covered here in a 2D Cartesian setting according to the num-
ber of split-waits: multi-wait, single-dimension (MWSDim), multi-wait, multi-dimension
(MWMDim), single-wait, multi-dimension (SWMDim), and multi-wait, single-direction
(MWSDir). The iteration space of loops in Table 2 is defined as the outer (d) loop goes
over the Cartesian dimensions (i.e, x and y here) and the inner (dir) loop goes over
the two directions per dimension (i.e., positive and negative). For each direction (e.g.,
positive x), the communication is effectively a linear shift pattern; the pairing of send and
receive operations per MPI_Waitall ensures that no deadlocks will occur. The third and
fourth option are corner cases with minimum and maximum number of MPI_Waitalls.

More complex patterns Beyond the simple patterns described above, we will also
cover more general P2P heterogeneous communication scenarios, where subsets of

June 30, 2021 10Ayesha Afzal <ayesha.afzal@fau.de> | ISC High Performance 2021 Digital

Communication pattern and concurrency: compact
5

2 30 60 90 119

0

20

40

60

80

100

119

Receiver rank

Se
nd

er
ra

nk

(a) Pi

�

(Pi±1 . . .Pi±2)

6 30 60 90 119

Receiver rank

(b) Pi

�

(Pi±1 . . .Pi±6)

12 30 60 90 119

Receiver rank

(c) Pi

�

(Pi±1 . . .Pi±12)

6 30 60 90 119

Receiver rank

(d) Pi

�

(Pi±1,Pi±6)

12 30 60 90 119

Receiver rank

(e) Pi

�

(Pi±1,Pi±12)

Fig. 1: Compact and non-compact communication topologies with bidirectional open
chain characteristics. Pi sends (receives) data to (from) Pi±1 (a) to Pi±2 (b) to Pi±6 (c) to
Pi±12, (d) and Pi±6 (e) and Pi±12.

3.1 Execution characteristics

HPC workloads have a wide spectrum of requirements regarding code execution towards
resources of the parallel computing platform. The most straightforward categorization
is whether the workload is sensitive to certain resource bottlenecks, such as memory
bandwidth. Since we restrict ourselves to scalable code here, we run the traditionally
memory-bound algorithms such as stencil updates or SpMV with one MPI process
per contention domain (typically a ccNUMA node). This is not a problem for the
microbenchmarks since we deliberately choose an in-core workload there.

3.2 Categorization of communication characteristics

Here we briefly describe the different communication characteristics under investigation.
We start by assuming a “P2P-homogeneous” situation where all processes (except
boundary processes in case of open boundary conditions) have the same communication
partners and characteristics. We will later lift this restriction and cover more general
patterns.

Communication topology Communication topology is a consequence of the physical
problem underlying the numerical method and of the algorithm (discretization, geometry).
It boils down to the question “which other processes does rank i communicate with?”
and is characterized by a topology matrix (see Figure 1 for examples of compact and
noncompact topologies).

In a compact topology, each process communicates with a dense, continuous array
of neighbors with distances d = ±1,±2,...,±j. The topology matrix comprises a dense
band around the main diagonal. In a noncompact topology, each process communicates
with processes that are not arranged as a continuous block, e.g., d = ±1,±j. In both
variants, the topology matrix can be symmetric or asymmetric.

5

2 30 60 90 119

0

20

40

60

80

100

119

Receiver rank

Se
nd

er
ra

nk

(a) Pi

�

(Pi±1 . . .Pi±2)

6 30 60 90 119

Receiver rank

(b) Pi

�

(Pi±1 . . .Pi±6)

12 30 60 90 119

Receiver rank

(c) Pi

�

(Pi±1 . . .Pi±12)

6 30 60 90 119

Receiver rank

(d) Pi

�

(Pi±1,Pi±6)

12 30 60 90 119

Receiver rank

(e) Pi

�

(Pi±1,Pi±12)

Fig. 1: Compact and non-compact communication topologies with bidirectional open
chain characteristics. Pi sends (receives) data to (from) Pi±1 (a) to Pi±2 (b) to Pi±6 (c) to
Pi±12, (d) and Pi±6 (e) and Pi±12.

3.1 Execution characteristics

HPC workloads have a wide spectrum of requirements regarding code execution towards
resources of the parallel computing platform. The most straightforward categorization
is whether the workload is sensitive to certain resource bottlenecks, such as memory
bandwidth. Since we restrict ourselves to scalable code here, we run the traditionally
memory-bound algorithms such as stencil updates or SpMV with one MPI process
per contention domain (typically a ccNUMA node). This is not a problem for the
microbenchmarks since we deliberately choose an in-core workload there.

3.2 Categorization of communication characteristics

Here we briefly describe the different communication characteristics under investigation.
We start by assuming a “P2P-homogeneous” situation where all processes (except
boundary processes in case of open boundary conditions) have the same communication
partners and characteristics. We will later lift this restriction and cover more general
patterns.

Communication topology Communication topology is a consequence of the physical
problem underlying the numerical method and of the algorithm (discretization, geometry).
It boils down to the question “which other processes does rank i communicate with?”
and is characterized by a topology matrix (see Figure 1 for examples of compact and
noncompact topologies).

In a compact topology, each process communicates with a dense, continuous array
of neighbors with distances d = ±1,±2,...,±j. The topology matrix comprises a dense
band around the main diagonal. In a noncompact topology, each process communicates
with processes that are not arranged as a continuous block, e.g., d = ±1,±j. In both
variants, the topology matrix can be symmetric or asymmetric.

9

1

0
5

10
20
30
40
50
60
70
80
90

100
110
119

R
an

k

50
52
54
56
58
60 k = 3k = 3k = 3

50
52
54
56
58
60

k = 2k = 2k = 2

47
50

55

60

65
69

k = 21k = 21k = 21

47
50

55

60

65
69

k = 6k = 6k = 6

53

60

66 k = 78k = 78k = 78

53

60

66
k = 12k = 12k = 12

1.4 1.6 1.8 2 2.2 2.4
0

60

119

Time [s]

N
AM

AS
S

(a1) MWSDim

(a) Pi � (Pi±1 . . .Pi±2)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(a2) MWMDim/SWMDim

(a) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b1) MWSDim

(b) Pi � (Pi±1 . . .Pi±6)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b2) MWMDim/SWMDim

(b) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c1) MWSDim

(c) Pi � (Pi±1 . . .Pi±12)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c2) MWMDim/SWMDim

(c) Pi � (Pi±1)

Fig. 2: Top row: Idle wave propagation for 60 iterations in a core-bound microbenchmark
for an injected delay at rank 5 (see text for details) and compact communication patterns
with different numbers of communication partners: (a) two, (b) six, and (c) twelve
partners per direction. The quantitative NAMASS timelines in the second row of panels
show the fraction of MPI processes executing MPI library code (orange) versus the
number of processes in user code (blue).

k = Â6
k=1 k = 21, and in (b2) k = j = 6. In (c1), we getk = Â12

k=1 k = 78, confirming
intuitively our prediction that survival time in the high-speed limit is equal to Texec +
Tcomm. Finally, in (c2) we get k = j = 12.

The second row in Figure 2 shows that slower wave propagation causes a more even
spread of waiting times and thus resource utilization across processes. A rising/con-
stant/falling slope indicates an oncoming/traveling/leaving wave. Although our particular
scenarios have been designed to show no resource bottlenecks, these utilization shapes
will be significant in case of memory-bound execution or bandwidth-contended commu-
nication [3]. An exploration of these mechanisms is left for future work.

Noncompact communication Topology matrices with noncompact characteristics (Fig-
ures 1(d)–(e)) entail a more complex phenomenology of idle wave propagation. The
presence of “gaps” leads to multiple waves propagating at different speeds, with the
added complication that each “hop” of a faster wave sparks local idle waves wherever it
hits (see Figure 3). These secondary waves propagate and annihilate each other even-
tually (more specifically, after j/2 hops), and what remains is the fast wave emerging
from the longest-distance communication. The speed of this residual wave is faster with
(i) a larger number of split-waits, (ii) a smaller number of communication dimensions
spanned by each MPI_Waitall, and evidently (iii) a larger longest communication
distance j. The interpretation of timelines provides a visual aid for verification, e.g., the
idle wave ends sooner on the x-axis for the same number of split-waits in (a1) and (a2)
compared to the larger numbers of split-waits in (a3).

With respect to communication concurrency, there is a fundamental difference
between multiple split-waits and one wait-for-all in non-compact communication. The

1 KiB Msg

Dimensionless 𝜅

distance in processes
travelled in one time
step by the idle wave

9

1

0
5

10
20
30
40
50
60
70
80
90

100
110
119

R
an

k

50
52
54
56
58
60 k = 3k = 3k = 3

50
52
54
56
58
60

k = 2k = 2k = 2

47
50

55

60

65
69

k = 21k = 21k = 21

47
50

55

60

65
69

k = 6k = 6k = 6

53

60

66 k = 78k = 78k = 78

53

60

66
k = 12k = 12k = 12

1.4 1.6 1.8 2 2.2 2.4
0

60

119

Time [s]

N
AM

AS
S

(a1) MWSDim

(a) Pi � (Pi±1 . . .Pi±2)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(a2) MWMDim/SWMDim

(a) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b1) MWSDim

(b) Pi � (Pi±1 . . .Pi±6)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b2) MWMDim/SWMDim

(b) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c1) MWSDim

(c) Pi � (Pi±1 . . .Pi±12)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c2) MWMDim/SWMDim

(c) Pi � (Pi±1)

Fig. 2: Top row: Idle wave propagation for 60 iterations in a core-bound microbenchmark
for an injected delay at rank 5 (see text for details) and compact communication patterns
with different numbers of communication partners: (a) two, (b) six, and (c) twelve
partners per direction. The quantitative NAMASS timelines in the second row of panels
show the fraction of MPI processes executing MPI library code (orange) versus the
number of processes in user code (blue).

k = Â6
k=1 k = 21, and in (b2) k = j = 6. In (c1), we getk = Â12

k=1 k = 78, confirming
intuitively our prediction that survival time in the high-speed limit is equal to Texec +
Tcomm. Finally, in (c2) we get k = j = 12.

The second row in Figure 2 shows that slower wave propagation causes a more even
spread of waiting times and thus resource utilization across processes. A rising/con-
stant/falling slope indicates an oncoming/traveling/leaving wave. Although our particular
scenarios have been designed to show no resource bottlenecks, these utilization shapes
will be significant in case of memory-bound execution or bandwidth-contended commu-
nication [3]. An exploration of these mechanisms is left for future work.

Noncompact communication Topology matrices with noncompact characteristics (Fig-
ures 1(d)–(e)) entail a more complex phenomenology of idle wave propagation. The
presence of “gaps” leads to multiple waves propagating at different speeds, with the
added complication that each “hop” of a faster wave sparks local idle waves wherever it
hits (see Figure 3). These secondary waves propagate and annihilate each other even-
tually (more specifically, after j/2 hops), and what remains is the fast wave emerging
from the longest-distance communication. The speed of this residual wave is faster with
(i) a larger number of split-waits, (ii) a smaller number of communication dimensions
spanned by each MPI_Waitall, and evidently (iii) a larger longest communication
distance j. The interpretation of timelines provides a visual aid for verification, e.g., the
idle wave ends sooner on the x-axis for the same number of split-waits in (a1) and (a2)
compared to the larger numbers of split-waits in (a3).

With respect to communication concurrency, there is a fundamental difference
between multiple split-waits and one wait-for-all in non-compact communication. The

9

1

0
5

10
20
30
40
50
60
70
80
90

100
110
119

R
an

k

50
52
54
56
58
60 k = 3k = 3k = 3

50
52
54
56
58
60

k = 2k = 2k = 2

47
50

55

60

65
69

k = 21k = 21k = 21

47
50

55

60

65
69

k = 6k = 6k = 6

53

60

66 k = 78k = 78k = 78

53

60

66
k = 12k = 12k = 12

1.4 1.6 1.8 2 2.2 2.4
0

60

119

Time [s]

N
AM

AS
S

(a1) MWSDim

(a) Pi � (Pi±1 . . .Pi±2)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(a2) MWMDim/SWMDim

(a) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b1) MWSDim

(b) Pi � (Pi±1 . . .Pi±6)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b2) MWMDim/SWMDim

(b) Pi � (Pi±1)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c1) MWSDim

(c) Pi � (Pi±1 . . .Pi±12)

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c2) MWMDim/SWMDim

(c) Pi � (Pi±1)

Fig. 2: Top row: Idle wave propagation for 60 iterations in a core-bound microbenchmark
for an injected delay at rank 5 (see text for details) and compact communication patterns
with different numbers of communication partners: (a) two, (b) six, and (c) twelve
partners per direction. The quantitative NAMASS timelines in the second row of panels
show the fraction of MPI processes executing MPI library code (orange) versus the
number of processes in user code (blue).

k = Â6
k=1 k = 21, and in (b2) k = j = 6. In (c1), we getk = Â12

k=1 k = 78, confirming
intuitively our prediction that survival time in the high-speed limit is equal to Texec +
Tcomm. Finally, in (c2) we get k = j = 12.

The second row in Figure 2 shows that slower wave propagation causes a more even
spread of waiting times and thus resource utilization across processes. A rising/con-
stant/falling slope indicates an oncoming/traveling/leaving wave. Although our particular
scenarios have been designed to show no resource bottlenecks, these utilization shapes
will be significant in case of memory-bound execution or bandwidth-contended commu-
nication [3]. An exploration of these mechanisms is left for future work.

Noncompact communication Topology matrices with noncompact characteristics (Fig-
ures 1(d)–(e)) entail a more complex phenomenology of idle wave propagation. The
presence of “gaps” leads to multiple waves propagating at different speeds, with the
added complication that each “hop” of a faster wave sparks local idle waves wherever it
hits (see Figure 3). These secondary waves propagate and annihilate each other even-
tually (more specifically, after j/2 hops), and what remains is the fast wave emerging
from the longest-distance communication. The speed of this residual wave is faster with
(i) a larger number of split-waits, (ii) a smaller number of communication dimensions
spanned by each MPI_Waitall, and evidently (iii) a larger longest communication
distance j. The interpretation of timelines provides a visual aid for verification, e.g., the
idle wave ends sooner on the x-axis for the same number of split-waits in (a1) and (a2)
compared to the larger numbers of split-waits in (a3).

With respect to communication concurrency, there is a fundamental difference
between multiple split-waits and one wait-for-all in non-compact communication. The

=
𝒋(𝒋 + 𝟏)

𝟐

= 𝒋

6

Table 2: Selected algorithms for communication concurrency in our MPI microbench-
marks. Arrows of the same color correspond to a single MPI_Waitall call. “One
distance” means that one MPI_Waitall is responsible only for the send/recv pair of one
particular communication distance, while “all distances” means that it encompasses all
distances in one dimension.

1

Multi-wait, single-dimension
(MWSDim)
1: while d dims do
2: while dir bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: MPI_Waitall

7: end while

one distance

Multi-wait, multi-dimension
(MWMDim)
1: while dir bi do
2: while d dims do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: MPI_Waitall

7: end while

all distances

Single-wait, multi-dimension
(SWMDim)
1: while d dims do
2: while dir bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: end while
7: MPI_Waitall

all distances

Multi-wait, single-direction
(MWSDir)
1: while d dims do
2: while dir bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: MPI_Waitall

6: end while
7: end while

one distance

‡ Pi send to Pi+dir⇥d ; § Pi receive from Pi�dir⇥d

For example, sparse matrices emerging from numerical algorithms with high locality
lead to compact communication structures, while stencil-like discretizations on Cartesian
grids lead to noncompact structures with far-outlying sub-diagonals. Figures 1(a)–(c)
depict symmetric cases with 4, 12, and 24 neighbors, respectively (2, 6 and 12 distinct
processes per direction) for every process, while there are always four neighbors (two
distinct processes per direction) for both noncompact cases in Figures 1(d)–(e).

Communication concurrency When a process communicates with others, it is often a
deliberate choice of the developer which communications are grouped together and later
finished using MPI_Waitall (“split-waits”). However, since interprocess dependencies
have an impact on idle wave propagation, such details are relevant. Of course, beyond
user-defined communication concurrency, there could still be nonconcurrency “under
the hood,” depending on the internals of the MPI implementation.

Here we restrict ourselves to a manageable subset of options that nevertheless cover a
substantial range of patterns. We assume that all P2P communication is nonblocking. Ta-
ble 2 shows the four variants covered here in a 2D Cartesian setting according to the num-
ber of split-waits: multi-wait, single-dimension (MWSDim), multi-wait, multi-dimension
(MWMDim), single-wait, multi-dimension (SWMDim), and multi-wait, single-direction
(MWSDir). The iteration space of loops in Table 2 is defined as the outer (d) loop goes
over the Cartesian dimensions (i.e, x and y here) and the inner (dir) loop goes over
the two directions per dimension (i.e., positive and negative). For each direction (e.g.,
positive x), the communication is effectively a linear shift pattern; the pairing of send and
receive operations per MPI_Waitall ensures that no deadlocks will occur. The third and
fourth option are corner cases with minimum and maximum number of MPI_Waitalls.

More complex patterns Beyond the simple patterns described above, we will also
cover more general P2P heterogeneous communication scenarios, where subsets of

April 26, 2022 11Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Communication pattern and concurrency: heterogeneous

11

Fig. 4: Idle wave propaga-
tion with heterogeneous com-
pact communication charac-
tersitics (60 iterations) on
Emmy. (a) Topology matrix:
Pi sends (receives) 1 KiB to
(from) Pi±1,. . . ,Pi±3 for pro-
cesses near boundaries and to
(from) Pi±1,. . . ,Pi±12 for 40 in-
ner processes. (b) Idle wave
propagation for SWMDim con-
currency.

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk

(a)

1.4 1.6 1.8 2 2.2 2.4

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

R
an

k

0

50

119

N
AM

AS
S

(b)

and the quantitative model of propagation speed holds for the different regions: We have
k = 12 in the middle and k = 3 elsewhere.

Blocking communication and eager vs. rendezvous mode Instead of grouped non-
blocking point-to-point calls, a popular choice is MPI_Sendrecv for a pair of in- and
outgoing messages along the same direction. This is identical to the MWSDir case in
Table 2, so the phenomenology shown in Figures 2 (a1, b1, c1) and Figures 3 (a1,b1)
applies. Similarly one can employ a MPI_Irecv/MPI_Send/MPI_Wait sequence within
the innermost loop. In all these cases, the wave propagation speed doubles in rendezvous
mode, where synchronization between sender and receiver is implied. However, the dif-
ference between eager and rendezvous mode does not impact the other variants beyond
MWSDir.

Stencil smoother with halo exchange Figure 5 shows an idle wave experiment with
a double-precision Jacobi smoother using Cartesian domain decomposition and two
different process grids (4⇥5⇥6 vs. 2⇥6⇥10; inner dimension goes first). Here we used
MWSDir concurrency via MPI_Irecv/MPI_Send/MPI_Wait per direction. The message
sizes are such that the rendezvous mode applies. As expected from the model, the
longest-distance communication determines the overall wave speed, i.e., it is lower in
case (b) where the topology matrix is narrower.

The communication topology is more intricate here than in the microbenchmark
studies covered so far. It turns out that all connections apart from the longest-distance
one can be summarized by averaging over their respective distances and taking the
largest smaller integer (floor function) when calculating the k factor. For the case in
Figure 5(a), this leads to k = 2+20 = 22, so the propagation speed is 22⇥2 = 44 times
larger than vmin

silent. For Figure 5(b), we have k = 0 + 12 = 12 and thus 24 times vmin
silent.

Both predictions are confirmed by the data after the initial slow, short-distance waves
have died out.

SpMV with halo exchange The High Performance Conjugate Gradient (HPCG) bench-
mark is popular for ranking supercomputers beyond the ubiquitous LINPACK. Here we

11

Fig. 4: Idle wave propaga-
tion with heterogeneous com-
pact communication charac-
tersitics (60 iterations) on
Emmy. (a) Topology matrix:
Pi sends (receives) 1 KiB to
(from) Pi±1,. . . ,Pi±3 for pro-
cesses near boundaries and to
(from) Pi±1,. . . ,Pi±12 for 40 in-
ner processes. (b) Idle wave
propagation for SWMDim con-
currency.

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk

(a)

1.4 1.6 1.8 2 2.2 2.4

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

R
an

k

0

50

119

N
AM

AS
S

(b)

and the quantitative model of propagation speed holds for the different regions: We have
k = 12 in the middle and k = 3 elsewhere.

Blocking communication and eager vs. rendezvous mode Instead of grouped non-
blocking point-to-point calls, a popular choice is MPI_Sendrecv for a pair of in- and
outgoing messages along the same direction. This is identical to the MWSDir case in
Table 2, so the phenomenology shown in Figures 2 (a1, b1, c1) and Figures 3 (a1,b1)
applies. Similarly one can employ a MPI_Irecv/MPI_Send/MPI_Wait sequence within
the innermost loop. In all these cases, the wave propagation speed doubles in rendezvous
mode, where synchronization between sender and receiver is implied. However, the dif-
ference between eager and rendezvous mode does not impact the other variants beyond
MWSDir.

Stencil smoother with halo exchange Figure 5 shows an idle wave experiment with
a double-precision Jacobi smoother using Cartesian domain decomposition and two
different process grids (4⇥5⇥6 vs. 2⇥6⇥10; inner dimension goes first). Here we used
MWSDir concurrency via MPI_Irecv/MPI_Send/MPI_Wait per direction. The message
sizes are such that the rendezvous mode applies. As expected from the model, the
longest-distance communication determines the overall wave speed, i.e., it is lower in
case (b) where the topology matrix is narrower.

The communication topology is more intricate here than in the microbenchmark
studies covered so far. It turns out that all connections apart from the longest-distance
one can be summarized by averaging over their respective distances and taking the
largest smaller integer (floor function) when calculating the k factor. For the case in
Figure 5(a), this leads to k = 2+20 = 22, so the propagation speed is 22⇥2 = 44 times
larger than vmin

silent. For Figure 5(b), we have k = 0 + 12 = 12 and thus 24 times vmin
silent.

Both predictions are confirmed by the data after the initial slow, short-distance waves
have died out.

SpMV with halo exchange The High Performance Conjugate Gradient (HPCG) bench-
mark is popular for ranking supercomputers beyond the ubiquitous LINPACK. Here we

Refraction
effect

𝜅 = 3

𝜅 = 3

𝜅 = 12

6

Table 2: Selected algorithms for communication concurrency in our MPI microbench-
marks. Arrows of the same color correspond to a single MPI_Waitall call. “One
distance” means that one MPI_Waitall is responsible only for the send/recv pair of one
particular communication distance, while “all distances” means that it encompasses all
distances in one dimension.

1

Multi-wait, single-dimension
(MWSDim)
1: while d dims do
2: while dir bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: MPI_Waitall

7: end while

one distance

Multi-wait, multi-dimension
(MWMDim)
1: while dir bi do
2: while d dims do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: MPI_Waitall

7: end while

all distances

Single-wait, multi-dimension
(SWMDim)
1: while d dims do
2: while dir bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: end while
6: end while
7: MPI_Waitall

all distances

Multi-wait, single-direction
(MWSDir)
1: while d dims do
2: while dir bi do
3: MPI_Isend ‡
4: MPI_Irecv §
5: MPI_Waitall

6: end while
7: end while

one distance

‡ Pi send to Pi+dir⇥d ; § Pi receive from Pi�dir⇥d

For example, sparse matrices emerging from numerical algorithms with high locality
lead to compact communication structures, while stencil-like discretizations on Cartesian
grids lead to noncompact structures with far-outlying sub-diagonals. Figures 1(a)–(c)
depict symmetric cases with 4, 12, and 24 neighbors, respectively (2, 6 and 12 distinct
processes per direction) for every process, while there are always four neighbors (two
distinct processes per direction) for both noncompact cases in Figures 1(d)–(e).

Communication concurrency When a process communicates with others, it is often a
deliberate choice of the developer which communications are grouped together and later
finished using MPI_Waitall (“split-waits”). However, since interprocess dependencies
have an impact on idle wave propagation, such details are relevant. Of course, beyond
user-defined communication concurrency, there could still be nonconcurrency “under
the hood,” depending on the internals of the MPI implementation.

Here we restrict ourselves to a manageable subset of options that nevertheless cover a
substantial range of patterns. We assume that all P2P communication is nonblocking. Ta-
ble 2 shows the four variants covered here in a 2D Cartesian setting according to the num-
ber of split-waits: multi-wait, single-dimension (MWSDim), multi-wait, multi-dimension
(MWMDim), single-wait, multi-dimension (SWMDim), and multi-wait, single-direction
(MWSDir). The iteration space of loops in Table 2 is defined as the outer (d) loop goes
over the Cartesian dimensions (i.e, x and y here) and the inner (dir) loop goes over
the two directions per dimension (i.e., positive and negative). For each direction (e.g.,
positive x), the communication is effectively a linear shift pattern; the pairing of send and
receive operations per MPI_Waitall ensures that no deadlocks will occur. The third and
fourth option are corner cases with minimum and maximum number of MPI_Waitalls.

More complex patterns Beyond the simple patterns described above, we will also
cover more general P2P heterogeneous communication scenarios, where subsets of

April 26, 2022 12Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Idle wave propagation: 3D jacobi smoother12

Fig. 5: Idle wave propagation within a
double-precision 3D Jacobi algorithm
with Cartesian domain decomposition
and bidirectional halo exchange (15 it-
erations) at a problem size of 12003

and two different process grids (120
processes on Emmy) with open bound-
ary conditions. Top row: topology ma-
trices color-coded with communication
volume. Bottom row: timelines of idle
wave progression. Orange color shows
idleness in MPI_Wait, while pink color
indicates waiting time in MPI_Send. See
text for communication grouping. Single-
message communication volumes are (a)
576 kB, 480 kB, 384 kB and (b) 960 kB,
576 kB, 192 kB per dimension.

1

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk

380
400
420
440
460
480
500
520
540
560

M
sg

[K
B

]

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk

150
235
320
405
490
575
660
745
830
915

M
sg

[K
B

]

40.6 40.8 41.0 41.2 41.45

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

R
an

k

(a) Process grid 4⇥5⇥6

40.6 40.8 41.0 41.2 41.45

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

(b) Process grid 2⇥6⇥10

choose to discuss idle wave propagation during multiple back-to-back sparse matrix-
vector multiplications using the HPCG matrix, which emerges from a sparse linear
system using a 27-point stencil in 3D. Communication is largely symmetric, except for
boundaries. The number of communication partners varies between 7 (corners) and 26
(interior processes), and MWSDir concurrency applies just like in the stencil example.
The per-process problem size is small enough for eager mode, but communication time
is a relevant contribution to the overall runtime.

Figure 6 shows idle wave propagation through three different process grids with
2 ⇥ 4 ⇥ 5 = 40, 4 ⇥ 3 ⇥ 5 = 60, and 4 ⇥ 5 ⇥ 5 = 100 processes, respectively (inner
dimension goes first). The decomposition is indicated in the captions of Figures 6(a)–(c).
In case (a) we get k = 8, for (b) we get k = 12, and for (c) we get k = 24.

4 Idle waves interacting with MPI collectives

Few MPI programs use point-to-point communications only. Concerning idle wave prop-
agation, the question arises which collective routines may be permeable to a traveling
wave. In practice, the elimination or the survival of the wave may be desirable depend-
ing on the context; for instance, it was shown that idle waves can lead to automatic
communication-computation overlap in desynchronized bottleneck-bound programs [3].

The effects we discuss here for collective communications are certainly heavily
dependent on the details of the MPI implementation, the communication buffer size, and
possibly other parameters, so it is impossible to give a comprehensive overview. We
thus restrict ourselves to Intel MPI on one of the three benchmark systems (Emmy). The
results are summarized in Figure 7 and discussed below.

One MPI process per ccNUMA
Process grid: 4 x 5 x 6

12

Fig. 5: Idle wave propagation within a
double-precision 3D Jacobi algorithm
with Cartesian domain decomposition
and bidirectional halo exchange (15 it-
erations) at a problem size of 12003

and two different process grids (120
processes on Emmy) with open bound-
ary conditions. Top row: topology ma-
trices color-coded with communication
volume. Bottom row: timelines of idle
wave progression. Orange color shows
idleness in MPI_Wait, while pink color
indicates waiting time in MPI_Send. See
text for communication grouping. Single-
message communication volumes are (a)
576 kB, 480 kB, 384 kB and (b) 960 kB,
576 kB, 192 kB per dimension.

1

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk
380
400
420
440
460
480
500
520
540
560

M
sg

[K
B

]

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk

150
235
320
405
490
575
660
745
830
915

M
sg

[K
B

]

40.6 40.8 41.0 41.2 41.45

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

R
an

k

(a) Process grid 4⇥5⇥6

40.6 40.8 41.0 41.2 41.45

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

(b) Process grid 2⇥6⇥10

choose to discuss idle wave propagation during multiple back-to-back sparse matrix-
vector multiplications using the HPCG matrix, which emerges from a sparse linear
system using a 27-point stencil in 3D. Communication is largely symmetric, except for
boundaries. The number of communication partners varies between 7 (corners) and 26
(interior processes), and MWSDir concurrency applies just like in the stencil example.
The per-process problem size is small enough for eager mode, but communication time
is a relevant contribution to the overall runtime.

Figure 6 shows idle wave propagation through three different process grids with
2 ⇥ 4 ⇥ 5 = 40, 4 ⇥ 3 ⇥ 5 = 60, and 4 ⇥ 5 ⇥ 5 = 100 processes, respectively (inner
dimension goes first). The decomposition is indicated in the captions of Figures 6(a)–(c).
In case (a) we get k = 8, for (b) we get k = 12, and for (c) we get k = 24.

4 Idle waves interacting with MPI collectives

Few MPI programs use point-to-point communications only. Concerning idle wave prop-
agation, the question arises which collective routines may be permeable to a traveling
wave. In practice, the elimination or the survival of the wave may be desirable depend-
ing on the context; for instance, it was shown that idle waves can lead to automatic
communication-computation overlap in desynchronized bottleneck-bound programs [3].

The effects we discuss here for collective communications are certainly heavily
dependent on the details of the MPI implementation, the communication buffer size, and
possibly other parameters, so it is impossible to give a comprehensive overview. We
thus restrict ourselves to Intel MPI on one of the three benchmark systems (Emmy). The
results are summarized in Figure 7 and discussed below.

MPI_Wait

wait in
MPI_Send

𝜎. 𝜅 =
2 ∗ 22 = 44

April 26, 2022 13Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Idle wave propagation: 3D jacobi smoother12

Fig. 5: Idle wave propagation within a
double-precision 3D Jacobi algorithm
with Cartesian domain decomposition
and bidirectional halo exchange (15 it-
erations) at a problem size of 12003

and two different process grids (120
processes on Emmy) with open bound-
ary conditions. Top row: topology ma-
trices color-coded with communication
volume. Bottom row: timelines of idle
wave progression. Orange color shows
idleness in MPI_Wait, while pink color
indicates waiting time in MPI_Send. See
text for communication grouping. Single-
message communication volumes are (a)
576 kB, 480 kB, 384 kB and (b) 960 kB,
576 kB, 192 kB per dimension.

1

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk

380
400
420
440
460
480
500
520
540
560

M
sg

[K
B

]

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk

150
235
320
405
490
575
660
745
830
915

M
sg

[K
B

]
40.6 40.8 41.0 41.2 41.45

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

R
an

k

(a) Process grid 4⇥5⇥6

40.6 40.8 41.0 41.2 41.45

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

(b) Process grid 2⇥6⇥10

choose to discuss idle wave propagation during multiple back-to-back sparse matrix-
vector multiplications using the HPCG matrix, which emerges from a sparse linear
system using a 27-point stencil in 3D. Communication is largely symmetric, except for
boundaries. The number of communication partners varies between 7 (corners) and 26
(interior processes), and MWSDir concurrency applies just like in the stencil example.
The per-process problem size is small enough for eager mode, but communication time
is a relevant contribution to the overall runtime.

Figure 6 shows idle wave propagation through three different process grids with
2 ⇥ 4 ⇥ 5 = 40, 4 ⇥ 3 ⇥ 5 = 60, and 4 ⇥ 5 ⇥ 5 = 100 processes, respectively (inner
dimension goes first). The decomposition is indicated in the captions of Figures 6(a)–(c).
In case (a) we get k = 8, for (b) we get k = 12, and for (c) we get k = 24.

4 Idle waves interacting with MPI collectives

Few MPI programs use point-to-point communications only. Concerning idle wave prop-
agation, the question arises which collective routines may be permeable to a traveling
wave. In practice, the elimination or the survival of the wave may be desirable depend-
ing on the context; for instance, it was shown that idle waves can lead to automatic
communication-computation overlap in desynchronized bottleneck-bound programs [3].

The effects we discuss here for collective communications are certainly heavily
dependent on the details of the MPI implementation, the communication buffer size, and
possibly other parameters, so it is impossible to give a comprehensive overview. We
thus restrict ourselves to Intel MPI on one of the three benchmark systems (Emmy). The
results are summarized in Figure 7 and discussed below.

One MPI process per ccNUMA
Process grid: 2 x 6 x 10

12

Fig. 5: Idle wave propagation within a
double-precision 3D Jacobi algorithm
with Cartesian domain decomposition
and bidirectional halo exchange (15 it-
erations) at a problem size of 12003

and two different process grids (120
processes on Emmy) with open bound-
ary conditions. Top row: topology ma-
trices color-coded with communication
volume. Bottom row: timelines of idle
wave progression. Orange color shows
idleness in MPI_Wait, while pink color
indicates waiting time in MPI_Send. See
text for communication grouping. Single-
message communication volumes are (a)
576 kB, 480 kB, 384 kB and (b) 960 kB,
576 kB, 192 kB per dimension.

1

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk

380
400
420
440
460
480
500
520
540
560

M
sg

[K
B

]
0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank
Se

nd
er

ra
nk

150
235
320
405
490
575
660
745
830
915

M
sg

[K
B

]

40.6 40.8 41.0 41.2 41.45

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

R
an

k

(a) Process grid 4⇥5⇥6

40.6 40.8 41.0 41.2 41.45

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

(b) Process grid 2⇥6⇥10

choose to discuss idle wave propagation during multiple back-to-back sparse matrix-
vector multiplications using the HPCG matrix, which emerges from a sparse linear
system using a 27-point stencil in 3D. Communication is largely symmetric, except for
boundaries. The number of communication partners varies between 7 (corners) and 26
(interior processes), and MWSDir concurrency applies just like in the stencil example.
The per-process problem size is small enough for eager mode, but communication time
is a relevant contribution to the overall runtime.

Figure 6 shows idle wave propagation through three different process grids with
2 ⇥ 4 ⇥ 5 = 40, 4 ⇥ 3 ⇥ 5 = 60, and 4 ⇥ 5 ⇥ 5 = 100 processes, respectively (inner
dimension goes first). The decomposition is indicated in the captions of Figures 6(a)–(c).
In case (a) we get k = 8, for (b) we get k = 12, and for (c) we get k = 24.

4 Idle waves interacting with MPI collectives

Few MPI programs use point-to-point communications only. Concerning idle wave prop-
agation, the question arises which collective routines may be permeable to a traveling
wave. In practice, the elimination or the survival of the wave may be desirable depend-
ing on the context; for instance, it was shown that idle waves can lead to automatic
communication-computation overlap in desynchronized bottleneck-bound programs [3].

The effects we discuss here for collective communications are certainly heavily
dependent on the details of the MPI implementation, the communication buffer size, and
possibly other parameters, so it is impossible to give a comprehensive overview. We
thus restrict ourselves to Intel MPI on one of the three benchmark systems (Emmy). The
results are summarized in Figure 7 and discussed below.

12

Fig. 5: Idle wave propagation within a
double-precision 3D Jacobi algorithm
with Cartesian domain decomposition
and bidirectional halo exchange (15 it-
erations) at a problem size of 12003

and two different process grids (120
processes on Emmy) with open bound-
ary conditions. Top row: topology ma-
trices color-coded with communication
volume. Bottom row: timelines of idle
wave progression. Orange color shows
idleness in MPI_Wait, while pink color
indicates waiting time in MPI_Send. See
text for communication grouping. Single-
message communication volumes are (a)
576 kB, 480 kB, 384 kB and (b) 960 kB,
576 kB, 192 kB per dimension.

1

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk
380
400
420
440
460
480
500
520
540
560

M
sg

[K
B

]

0 30 60 90 119

0
10
20
30
40
50
60
70
80
90

100
110
119

Receiver rank

Se
nd

er
ra

nk

150
235
320
405
490
575
660
745
830
915

M
sg

[K
B

]

40.6 40.8 41.0 41.2 41.45

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

R
an

k

(a) Process grid 4⇥5⇥6

40.6 40.8 41.0 41.2 41.45

0
5

10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

(b) Process grid 2⇥6⇥10

choose to discuss idle wave propagation during multiple back-to-back sparse matrix-
vector multiplications using the HPCG matrix, which emerges from a sparse linear
system using a 27-point stencil in 3D. Communication is largely symmetric, except for
boundaries. The number of communication partners varies between 7 (corners) and 26
(interior processes), and MWSDir concurrency applies just like in the stencil example.
The per-process problem size is small enough for eager mode, but communication time
is a relevant contribution to the overall runtime.

Figure 6 shows idle wave propagation through three different process grids with
2 ⇥ 4 ⇥ 5 = 40, 4 ⇥ 3 ⇥ 5 = 60, and 4 ⇥ 5 ⇥ 5 = 100 processes, respectively (inner
dimension goes first). The decomposition is indicated in the captions of Figures 6(a)–(c).
In case (a) we get k = 8, for (b) we get k = 12, and for (c) we get k = 24.

4 Idle waves interacting with MPI collectives

Few MPI programs use point-to-point communications only. Concerning idle wave prop-
agation, the question arises which collective routines may be permeable to a traveling
wave. In practice, the elimination or the survival of the wave may be desirable depend-
ing on the context; for instance, it was shown that idle waves can lead to automatic
communication-computation overlap in desynchronized bottleneck-bound programs [3].

The effects we discuss here for collective communications are certainly heavily
dependent on the details of the MPI implementation, the communication buffer size, and
possibly other parameters, so it is impossible to give a comprehensive overview. We
thus restrict ourselves to Intel MPI on one of the three benchmark systems (Emmy). The
results are summarized in Figure 7 and discussed below.

MPI_Wait
wait in

MPI_Send

𝜎. 𝜅 =
2 ∗ 12 = 24

April 26, 2022 14Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Idle wave propagation: sparse MVM with HPCG matrix

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk
5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk

5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk

5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

One MPI process per ccNUMA
Process grid: 2 x 4 x 5

𝜅 = 8

M
sg

 [B
]

April 26, 2022 15Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Idle wave propagation: sparse MVM with HPCG matrix

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk
5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk

5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk

5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk

5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk

5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

One MPI process per ccNUMA
Process grid: 4 x 3 x 5

𝜅 = 12

M
sg

 [B
]

April 26, 2022 16Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Idle wave propagation: sparse MVM with HPCG matrix

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk
5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk

5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk

5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk

5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

13

Fig. 6: Idle wave propagation
in sparse matrix-vector mul-
tiplication (SpMV) using the
HPCG matrix with a prob-
lem size of 163 per process
and bidirectional halo exchange
(15 iterations) on Emmy and
three different process grids (a)–
(c). Top row: topology matri-
ces with color-coded commu-
nication volumes. Bottom row:
Timelines of idle wave progres-
sion. Message sizes are 8 B,
128 B, and 2.05 kB per dimen-
sion (symmetry across main di-
agonals).

3 11 20 30 39

0

5

10

15

20

25

30

35
39

Receiver rank

Se
nd

er
ra

nk

5 17 30 40 59

0

10

20

30

40

50

59

Receiver rank

5 25 40 60 80 99

0
10
20
30
40
50
60
70
80
90
99

Receiver rank

0
124
247
371
494
618
741
865
988

1110
1240
1360
1480
1610
1730
1850
1980

Msg [B]

7.140 7.142 7.144

0

5

10

15

20

25

30

35

39

Time [ms]

R
an

k

(a) Ranks: 2⇥4⇥5

7.140 7.142 7.144

0
5

10

20

30

40

50

59

Time [ms]
(b) Ranks: 4⇥3⇥5

7.705 7.708

0
5

10

20

30

40

50

60

70

80

90

99

Time [ms]
(c) Ranks: 4⇥5⇥5

Globally synchronizing primitives Examples of necessarily synchronizing collectives
are MPI_Allreduce, MPI_Alltoall, MPI_Allgather, MPI_Barrier, etc. These de-
stroy propagating idle waves completely (see Figure 7(a)). The default Intel implemen-
tations of MPI_Scatter and MPI_Bcast are also synchronizing. If the autotuner mode
is enabled by setting I_MPI_TUNING_AUTO_SYNC=1 (disabled by default), an internal
barrier is called on every tuning iteration. This, of course, completely eradicates an idle
wave on any collective call.

Global non-synchronizing primitives Figure 7(b) shows an idle wave colliding with
the default Intel implementation of MPI_Reduce. Reductions are not necessarily syn-
chronizing, and indeed the idle wave can pass the collective, which appears like a global,
compact communication block through which the wave travels with maximum speed
(see the discussion of inhomogeneous communication above).

If the survival of idle waves is desirable, one option is to avoid synchronizing
collectives if the performance implications are noncritical. In Figure 7(c), we show that
the default MPI_Gather implementation is completely permeable to the wave.

Implementation variants MPI implementations usually provide tuning knobs to opti-
mize the internal implementation of collectives in order to better adapt it to the applica-
tion. The process of finding the optimal parameter settings can also be automated [10,
14]. With Intel MPI, the I_MPI_ADJUST_<opname> environment variable can be set to a
value that selects a particular implementation variant for the <opname> collective. Eleven
documented settings are available in case of MPI_Reduce. Figure 7(c), although it de-
picts a gather operation, is also applicable to MPI_Reduce with I_MPI_ADJUST_REDUCE
set to 2 or a value between 4 and 7. Finally, Figure 7(d) illustrates how the interaction of

One MPI process per ccNUMA
Process grid: 4 x 5 x 5

𝜅 = 24

M
sg

 [B
]

April 26, 2022 17Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Idle wave propagation: Adaptive Mesh Refinement - miniAMR

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 15

0 30 63

0

10

20

30

40

50

63

Receiver rank

Se
nd

er
ra

nk

(a) Msg profile

Time

(b) Idle wave

0 30 63

Receiver rank

(c) Msg profile

Time

(d) Idle wave

1.4 1.6 1.8 2 2.2 2.4
0

59

59

Time [s]

b
M

E
M

[G
B/

s]

(e) Bandwidth evolution

Fig. 11: (b, d) Idle waves (after load balance) behave differently at diverse states of simulations; 64 processes on seven
ccNUMA domains of Meggie system. (a, c) Message profile between sender and receiver ranks in miniAMR. (e) Timeline
of memory bandwidth utilization for read (write) is in the light (dark) blue color.

TABLE 7: (Left) Parallel HPCG algorithm. (Right) Domain sizes and corresponding runtime breakdown for execution
and communication in one iteration of HPCG (including three reductions) and an undisturbed fully synchronized state
(first iteration after an MPI_Barrier) on (a) 1280 processes on Meggie and (b) 1296 processes on SuperMUC-NG.
Communication plays less role for large problems (small CER) and gets higher for small problems. All runs used the
default MPI_Allreduce implementation. 1

1: while (iter nIters) AND (rNorm tol) do
2: z = MG_SWEEP (A, rOld) ;

3: a = DDOT2 (rOld, z) ;

4: MPI_Allreduce ;

5: p= DAXPY (
a

aOld
, pOld, z) ;

6: Ap = SPMVM (A, p) ;

7: MPI_Irecv ;

8: MPI_Send ;

9: MPI_Wait ;

10: pAp = DDOT2 (p, Ap) ;

11: MPI_Allreduce ;

12: xNew = DAXPY (x,
a

pAP
, p) ;

13: r = DAXPY (rOld,
a

pAP
, Ap) ;

14: rNorm = DDOT1 (r, r) ;

15: MPI_Allreduce ;

16: rNorm = sqrt (rNorm) ;

17: end while

(a) M: Subdomain (full domain) Exec [ms] Comm [ms] Comm [GB] Allreduce min [us] Allreduce mean [ms] CER

32
3 (256x512x320) 18.77 2.626 0.303 690 2.913 0.14

48
3 (384x768x480) 53.27 1.335 0.665 202 0.639 0.025

64
3 (512x1024x640) 135.3 2.27 1.17 2 988 7.3 0.017

96
3 (768x1536x960) 493 17.766 2.6 116 37.36 0.036

128
3 (1024x2048x1280) 1 102.1 20.852 4.59 119 102.93 0.019

144
3 (1152x2304x1440) 1 573.19 6.348 5.8 116 153 0.004

(b) S: Subdomain (full domain) Exec [ms] Comm [ms] Comm [GB] Allreduce min [us] Allreduce mean [ms] CER

32
3 (384x384x288) 16.578 2.686 0.308 1 200 4.03 0.162

48
3 (576x576x432) 61.722 1.546 0.758 400 1.122 0.025

64
3 (768x768x576) 147.708 5.483 1.27 169 3.768 0.037

96
3 (1152x1152x864) 516.171 7.487 2.64 1 500 4.094 0.015

Timestep

C
om

m
un

ic
at

io
n

pa
rt

ne
rs

0 20 40 60 80 100 120 140 160 180 200
0

20

40

Number of total communication partners
Number of unique communication partners

Fig. 12: Statistics (minimum, maximum, and average) of
total and unique communication partners varying over time
in miniAMR proxy application.

4.6 High Performance Conjugate Gradient (HPCG)
HPCG11 complements the LINPACK benchmark when
ranking supercomputer systems; both together provide a
better measure for real-world application performance. In
HPCG, a linear system of equations (LSE) is solved whose

11. http://www.hpcg-benchmark.org/

coefficient matrix emerges from a 27-point stencil at each
grid point in a 3-D domain. On many systems, its perfor-
mance is determined by memory bandwidth at large prob-
lem sizes because of its low operational intensity. Hence,
it shows the typical saturating performance pattern when
scaling across the cores of a contention domain.

4.6.1 Implementation
The MPI-parallel reference implementation of HPCG com-
prises a multigrid (MG) preconditioner and seven com-
pute kernels (see Table 7(left)); six of the kernels are of
BLAS-1 type (one DDOT1, two DDOT2 and three DAXPY)
and one is a sparse matrix-vector multiplication (SPMV). The
MG preconditioner comprises five kernels: RESTRICTION,
PROLONGATION, SPMV, and two symmetric Gauss-Seidel
(SYMGS) kernels serving as pre- and post-smoothers (each
with forward and backward sweeps) for coarsening and
refinement, respectively. MPI parallelization is performed
on a npxnpynpz = np process grid, where npx is the inner di-
mension. Domain sizes are always given per process (weak
scaling). There are two types of MPI communication: Three
MPI_Allreduce collectives are required for the dot prod-
ucts. Within SpMV and SymGS, point-to-point communica-
tion is used to handle halo exchanges for each subdomain

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 15

0 30 63

0

10

20

30

40

50

63

Receiver rank

Se
nd

er
ra

nk

(a) Msg profile

Time

(b) Idle wave

0 30 63

Receiver rank

(c) Msg profile

Time

(d) Idle wave

1.4 1.6 1.8 2 2.2 2.4
0

59

59

Time [s]

b
M

E
M

[G
B/

s]

(e) Bandwidth evolution

Fig. 11: (b, d) Idle waves (after load balance) behave differently at diverse states of simulations; 64 processes on seven
ccNUMA domains of Meggie system. (a, c) Message profile between sender and receiver ranks in miniAMR. (e) Timeline
of memory bandwidth utilization for read (write) is in the light (dark) blue color.

TABLE 7: (Left) Parallel HPCG algorithm. (Right) Domain sizes and corresponding runtime breakdown for execution
and communication in one iteration of HPCG (including three reductions) and an undisturbed fully synchronized state
(first iteration after an MPI_Barrier) on (a) 1280 processes on Meggie and (b) 1296 processes on SuperMUC-NG.
Communication plays less role for large problems (small CER) and gets higher for small problems. All runs used the
default MPI_Allreduce implementation. 1

1: while (iter nIters) AND (rNorm tol) do
2: z = MG_SWEEP (A, rOld) ;

3: a = DDOT2 (rOld, z) ;

4: MPI_Allreduce ;

5: p= DAXPY (
a

aOld
, pOld, z) ;

6: Ap = SPMVM (A, p) ;

7: MPI_Irecv ;

8: MPI_Send ;

9: MPI_Wait ;

10: pAp = DDOT2 (p, Ap) ;

11: MPI_Allreduce ;

12: xNew = DAXPY (x,
a

pAP
, p) ;

13: r = DAXPY (rOld,
a

pAP
, Ap) ;

14: rNorm = DDOT1 (r, r) ;

15: MPI_Allreduce ;

16: rNorm = sqrt (rNorm) ;

17: end while

(a) M: Subdomain (full domain) Exec [ms] Comm [ms] Comm [GB] Allreduce min [us] Allreduce mean [ms] CER

32
3 (256x512x320) 18.77 2.626 0.303 690 2.913 0.14

48
3 (384x768x480) 53.27 1.335 0.665 202 0.639 0.025

64
3 (512x1024x640) 135.3 2.27 1.17 2 988 7.3 0.017

96
3 (768x1536x960) 493 17.766 2.6 116 37.36 0.036

128
3 (1024x2048x1280) 1 102.1 20.852 4.59 119 102.93 0.019

144
3 (1152x2304x1440) 1 573.19 6.348 5.8 116 153 0.004

(b) S: Subdomain (full domain) Exec [ms] Comm [ms] Comm [GB] Allreduce min [us] Allreduce mean [ms] CER

32
3 (384x384x288) 16.578 2.686 0.308 1 200 4.03 0.162

48
3 (576x576x432) 61.722 1.546 0.758 400 1.122 0.025

64
3 (768x768x576) 147.708 5.483 1.27 169 3.768 0.037

96
3 (1152x1152x864) 516.171 7.487 2.64 1 500 4.094 0.015

Timestep

C
om

m
un

ic
at

io
n

pa
rt

ne
rs

0 20 40 60 80 100 120 140 160 180 200
0

20

40

Number of total communication partners
Number of unique communication partners

Fig. 12: Statistics (minimum, maximum, and average) of
total and unique communication partners varying over time
in miniAMR proxy application.

4.6 High Performance Conjugate Gradient (HPCG)
HPCG11 complements the LINPACK benchmark when
ranking supercomputer systems; both together provide a
better measure for real-world application performance. In
HPCG, a linear system of equations (LSE) is solved whose

11. http://www.hpcg-benchmark.org/

coefficient matrix emerges from a 27-point stencil at each
grid point in a 3-D domain. On many systems, its perfor-
mance is determined by memory bandwidth at large prob-
lem sizes because of its low operational intensity. Hence,
it shows the typical saturating performance pattern when
scaling across the cores of a contention domain.

4.6.1 Implementation
The MPI-parallel reference implementation of HPCG com-
prises a multigrid (MG) preconditioner and seven com-
pute kernels (see Table 7(left)); six of the kernels are of
BLAS-1 type (one DDOT1, two DDOT2 and three DAXPY)
and one is a sparse matrix-vector multiplication (SPMV). The
MG preconditioner comprises five kernels: RESTRICTION,
PROLONGATION, SPMV, and two symmetric Gauss-Seidel
(SYMGS) kernels serving as pre- and post-smoothers (each
with forward and backward sweeps) for coarsening and
refinement, respectively. MPI parallelization is performed
on a npxnpynpz = np process grid, where npx is the inner di-
mension. Domain sizes are always given per process (weak
scaling). There are two types of MPI communication: Three
MPI_Allreduce collectives are required for the dot prod-
ucts. Within SpMV and SymGS, point-to-point communica-
tion is used to handle halo exchanges for each subdomain

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 15

0 30 63

0

10

20

30

40

50

63

Receiver rank

Se
nd

er
ra

nk

(a) Msg profile

Time

(b) Idle wave

0 30 63

Receiver rank

(c) Msg profile

Time

(d) Idle wave

1.4 1.6 1.8 2 2.2 2.4
0

59

59

Time [s]

b
M

E
M

[G
B/

s]

(e) Bandwidth evolution

Fig. 11: (b, d) Idle waves (after load balance) behave differently at diverse states of simulations; 64 processes on seven
ccNUMA domains of Meggie system. (a, c) Message profile between sender and receiver ranks in miniAMR. (e) Timeline
of memory bandwidth utilization for read (write) is in the light (dark) blue color.

TABLE 7: (Left) Parallel HPCG algorithm. (Right) Domain sizes and corresponding runtime breakdown for execution
and communication in one iteration of HPCG (including three reductions) and an undisturbed fully synchronized state
(first iteration after an MPI_Barrier) on (a) 1280 processes on Meggie and (b) 1296 processes on SuperMUC-NG.
Communication plays less role for large problems (small CER) and gets higher for small problems. All runs used the
default MPI_Allreduce implementation. 1

1: while (iter nIters) AND (rNorm tol) do
2: z = MG_SWEEP (A, rOld) ;

3: a = DDOT2 (rOld, z) ;

4: MPI_Allreduce ;

5: p= DAXPY (
a

aOld
, pOld, z) ;

6: Ap = SPMVM (A, p) ;

7: MPI_Irecv ;

8: MPI_Send ;

9: MPI_Wait ;

10: pAp = DDOT2 (p, Ap) ;

11: MPI_Allreduce ;

12: xNew = DAXPY (x,
a

pAP
, p) ;

13: r = DAXPY (rOld,
a

pAP
, Ap) ;

14: rNorm = DDOT1 (r, r) ;

15: MPI_Allreduce ;

16: rNorm = sqrt (rNorm) ;

17: end while

(a) M: Subdomain (full domain) Exec [ms] Comm [ms] Comm [GB] Allreduce min [us] Allreduce mean [ms] CER

32
3 (256x512x320) 18.77 2.626 0.303 690 2.913 0.14

48
3 (384x768x480) 53.27 1.335 0.665 202 0.639 0.025

64
3 (512x1024x640) 135.3 2.27 1.17 2 988 7.3 0.017

96
3 (768x1536x960) 493 17.766 2.6 116 37.36 0.036

128
3 (1024x2048x1280) 1 102.1 20.852 4.59 119 102.93 0.019

144
3 (1152x2304x1440) 1 573.19 6.348 5.8 116 153 0.004

(b) S: Subdomain (full domain) Exec [ms] Comm [ms] Comm [GB] Allreduce min [us] Allreduce mean [ms] CER

32
3 (384x384x288) 16.578 2.686 0.308 1 200 4.03 0.162

48
3 (576x576x432) 61.722 1.546 0.758 400 1.122 0.025

64
3 (768x768x576) 147.708 5.483 1.27 169 3.768 0.037

96
3 (1152x1152x864) 516.171 7.487 2.64 1 500 4.094 0.015

Timestep

C
om

m
un

ic
at

io
n

pa
rt

ne
rs

0 20 40 60 80 100 120 140 160 180 200
0

20

40

Number of total communication partners
Number of unique communication partners

Fig. 12: Statistics (minimum, maximum, and average) of
total and unique communication partners varying over time
in miniAMR proxy application.

4.6 High Performance Conjugate Gradient (HPCG)
HPCG11 complements the LINPACK benchmark when
ranking supercomputer systems; both together provide a
better measure for real-world application performance. In
HPCG, a linear system of equations (LSE) is solved whose

11. http://www.hpcg-benchmark.org/

coefficient matrix emerges from a 27-point stencil at each
grid point in a 3-D domain. On many systems, its perfor-
mance is determined by memory bandwidth at large prob-
lem sizes because of its low operational intensity. Hence,
it shows the typical saturating performance pattern when
scaling across the cores of a contention domain.

4.6.1 Implementation
The MPI-parallel reference implementation of HPCG com-
prises a multigrid (MG) preconditioner and seven com-
pute kernels (see Table 7(left)); six of the kernels are of
BLAS-1 type (one DDOT1, two DDOT2 and three DAXPY)
and one is a sparse matrix-vector multiplication (SPMV). The
MG preconditioner comprises five kernels: RESTRICTION,
PROLONGATION, SPMV, and two symmetric Gauss-Seidel
(SYMGS) kernels serving as pre- and post-smoothers (each
with forward and backward sweeps) for coarsening and
refinement, respectively. MPI parallelization is performed
on a npxnpynpz = np process grid, where npx is the inner di-
mension. Domain sizes are always given per process (weak
scaling). There are two types of MPI communication: Three
MPI_Allreduce collectives are required for the dot prod-
ucts. Within SpMV and SymGS, point-to-point communica-
tion is used to handle halo exchanges for each subdomain

April 26, 2022 18Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Lessons learned: Impact of idle wave on overlap

Propagation
speed of
idle wave

Overlap
amplified /
damped?

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

…

…

DOI:10.1109/CLUSTER.2019.8890995

IEEE Cluster 2019
Afzal	et	al.

April 26, 2022 19Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Lessons learned: Impact of idle wave on overlap

Propagation
speed of
idle wave

Overlap
amplified /
damped?

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

…

…

𝑷𝒊$𝟏

𝑷𝒊

𝑷𝒊-𝟏

𝑷𝒊$𝟏

𝑷𝒊

𝑷𝒊-𝟏
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 5

ONE-DISTANCE-WAITS means that each MPI wait is respon-
sible for MPI receive and send requests of one particu-
lar communication distance to complete. While in ALL-
DISTANCES-WAITS, each wait encompasses all communica-
tion distances to complete. As anticipated by Equation 1,
D̄ factor is better in ONE-DISTANCE implementation than
ALL-DISTANCES. The D̄ = 0 for barrier-like communica-
tion (� = 0) sparking the idle waves of maximum speed,
otherwise D̄ > 0. For maximum number of MPI waits
in each distance and direction, synchronization between
sender and receiver is implied in rendezvous mode and idle
wave propagation speed doubles (� = 2) compared to eager
mode (� = 1).

The speed up via desynchronization in terms of per-
centage increment is computed using the rest of the system
attributes and D̄:

D =
P (D̄)� Pbarrier

|Pbarrier|
⇥ 100 [%] . (3)

The D factor quantifies the capability of performing com-
munication alongside the computation. P (D̄) would be
insignificant for negligible communication overhead or
scalable execution of processes. It increases with CER
and the communication can fully overlap until a purely
communication-bound regime (CER > 1) is reached.

3.0.2 Phenomenological matrix

The matrix reflects the measured speedup in desynchroniza-
tion caused by bottleneck evasion in shared resources, i.e.,
memory bandwidth, network bandwidth, or so forth. Exper-
imentally, the D factor, in terms of percentage increment, is
estimated:

D =
Pbarrier_free � Pbarrier

|Pbarrier|
⇥ 100 [%] (4)

For a true comparison, the performance of barrier included
implementation Pbarrier excludes the barrier cost. Speeding
up a program to a certain factor (e.g., through asynchronous
communication) shifts the parallel efficiency point5 to a
higher node count. Consequently, the code computes more
efficiently for larger systems and actual speedup is even
higher for the same utilization of resources, making the
applications more scalable. A higher D factor indicates a
more effective communication overlap and better scalability.

4 EVALUATION AND IMPLICATIONS

This section describes analysis results for several mi-
crobenchmarks and proxy applications with a focus on
idle waves and the automatic overlap communication and
computation via computational wavefronts. Great care hasAY: The

goal
is
not
to
pro-
vide
the
com-
pre-
hen-
sive
anal-
ysis
of
each
ap-
pli-
ca-
tion
but a
through
anal-
ysis
of
deesyn-
chro-
niza-
tion
im-
pact.

been taken to separate the speedup observed by desynchro-
nization from other desirable effects, such as the removal
of synchronizing collectives or the reduction of communica-
tion volume.

5. The parallel efficiency of a certain percentage is a point with respect
to the optimistic socket-level performance that indicates a threshold for
an efficient hardware utilization.

1

0

10

20

30

39

Wall-clock time [s]

R
a
n

k

(a) d = ±(1)

Wall-clock time [s]

(b) d = ±(1, 2)

Wall-clock time [s]

(c) d = ±(1, 12)

Wall-clock time [s]

(d) d = ±(1, 2, . . . , 12)

Fig. 1: Snippets of MPI trace timelines of a fully devel-
oped computational wavefront state in the MPI-augmented
STREAM triad with different communication topologies
((a)–(d)), open boundary conditions, and 5 ⇥ 10

4 iterations
on 40 cores (four ccNUMA domains) of the Meggie cluster.
Only the waiting time spent in the MPI library (red) and the
message transfers (black lines) are shown.

5 5.5

0

10

20

30

39

80

Time step (above);

R
a
n

k

6.2 6.7

100

7.4 7.9

200

(a) 15 Mdivides as one-off extra workload

0

10

20

30

39

Wall-clock time [s] (below)

5 5.5

0

10

20

30

39

80

Time step (above);

7 7.5

100

8.2 8.7

200

(b) 150 Mdivides as one-off extra workload

0

10

20

30

39

Wall-clock time [s] (below)

Fig. 2: Stability of computational wavefronts against (a)
small and (b) large disturbances. The slope of the wavefront
is the same (60 ranks/s) before the extra workload is injected
(79th iteration) and after the idle wave dies out (200th
iteration). (a) The “lagging” ccNUMA domain (first socket)
remains the same for a small disturbance. (b) The “lagging”
ccNUMA domain shifts to the second socket, which is where
the large disturbance was injected.

4.1 MPI-augmented STREAM triad
We start with the simple case of the pure-MPI version of the
McCalpin STREAM triad [31] loop (A(:)=B(:)+s*C(:)).
It allows a straightforward application of the Roofline model
to predict the memory-bound parallel performance limit on
a ccNUMA domain as P = bS/BC, where bS is the domain
memory bandwidth and Bc = 12 byte/flop is the code
balance (assuming that streaming stores are used, i.e., write-
allocate transfers do not apply). A constant overall working
set of 2.4GB (108 elements) is distributed evenly among the
MPI processes. Communication is added after each sweep of
the loop to mimic a real MPI-parallel program. The commu-
nication topology can be varied, but nonblocking point-to-
point calls (MPI_Isend/MPI_Irecv) together with a final
MPI_Waitall are used in all cases. The implementation
uses open boundary conditions (i.e., process 0 (n � 1) only
communicates with processes 1 and above (n�2 and below)
and bidirectional direct-neighbor communication (i.e., each
MPI process i sends and receives 16 384B to and from i ± 1

after each STREAM phase).

Socket	0
Node	0

Socket	1
Node	0

Socket	0
Node	1

Socket	1
Node	1

Triple
idle wave

speed

April 26, 2022 20Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Lessons learned: Impact of idle wave on overlap

Propagation
speed of
idle wave

Overlap
amplified /
damped?

Idle wave
decay

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

…

…

DOI:10.1109/CLUSTER.2019.8890995

IEEE Cluster 2019
Afzal	et	al.

April 26, 2022 21Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Non-linear interactions of idle wave

April 26, 2022 22Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Non-linear interactions of idle wave with system topology

Emmy
2 x 1 x 10

(12 domains)

SuperMUC-NG
2 x 1 x 24

(5 domains)

Hawk
2 x 4 x 16

(30 domains)
15

0 0.2 0.4

0
10
20
30
40
50
60
70
80
90

100
110
119

Time [s]

R
an

k

40

50

60

70

80

(a) ClusterA

0 0.2 0.4

0

24

48

72

96

120

144

Time [s]
48

72

96

(b) SuperMUC-NG

0 0.2 0.4

0
8

16
24
32
40
48
56
64
72
80
88
96

104
112
120
128

Time [s]
48
56
64
72
80

(c) Hawk

Fig. 8: Topological idle wave decay on the benchmark systems running one process per
core (scalable workload) using nonblocking MPI distance-1 communication topology
(i.e., Pi � Pi±1) for 120 iterations. We chose Texec = 2.7ms (white color) and injected
extra work of 58 ms (blue color) at rank 0. The message size was 1 MB. (a) 12 domains
(sockets), 120 processes (b) 5 domains (sockets), 120 processes, (c) 30 domains (CCX),
120 processes. Topological boundaries exist at every 10, 24, and 4 cores on Emmy,
SuperMUC-NG and Hawk, respectively.

(i) Does the system topology lead to idle wave decay also for resource-scalable parallel
programs?, and (ii) Which characteristics of the system noise have an impact on the
decay rate of the idle wave? Here we answer both.

5.1 Topological decay

It has been shown that the system topology, specifically a memory bandwidth bottleneck,
can cause idle wave decay without the presence of system noise [3]. For the resource-
scalable codes considered here this mechanism does not apply, but there is more to
system topology than memory bottlenecks. The three benchmark systems we use here
have quite different features in this respect, even within a single node: Hawk has 16
cores (4⇥4 CCX) per ccNUMA domain, 4 ccNUMA domains per socket, and 2 sockets
per node. SuperMUC-NG has 24 cores per ccNUMA domain, 1 ccNUMA domain per
socket, and 2 sockets per node. Emmy has 10 cores per ccNUMA domain, 1 ccNUMA
domain per socket, and 2 sockets per node. The inherent topological boundaries cause
communication heterogeneities, which create structured noise as small variations in
communication time (intranode vs. internode) propagate and interact with the idle wave
to cause visible kinks. This is demonstrated in Figure 8 for the three benchmark clusters,

1 KiB Msg

346
𝜇𝑠
𝑟𝑎𝑛𝑘

203
𝜇𝑠
𝑟𝑎𝑛𝑘149

𝜇𝑠
𝑟𝑎𝑛𝑘

5

2 30 60 90 119

0

20

40

60

80

100

119

Receiver rank

Se
nd

er
ra

nk

(a) Pi

�

(Pi±1 . . .Pi±2)

6 30 60 90 119

Receiver rank

(b) Pi

�

(Pi±1 . . .Pi±6)

12 30 60 90 119

Receiver rank

(c) Pi

�

(Pi±1 . . .Pi±12)

6 30 60 90 119

Receiver rank

(d) Pi

�

(Pi±1,Pi±6)

12 30 60 90 119

Receiver rank

(e) Pi

�

(Pi±1,Pi±12)

Fig. 1: Compact and non-compact communication topologies with bidirectional open
chain characteristics. Pi sends (receives) data to (from) Pi±1 (a) to Pi±2 (b) to Pi±6 (c) to
Pi±12, (d) and Pi±6 (e) and Pi±12.

3.1 Execution characteristics

HPC workloads have a wide spectrum of requirements regarding code execution towards
resources of the parallel computing platform. The most straightforward categorization
is whether the workload is sensitive to certain resource bottlenecks, such as memory
bandwidth. Since we restrict ourselves to scalable code here, we run the traditionally
memory-bound algorithms such as stencil updates or SpMV with one MPI process
per contention domain (typically a ccNUMA node). This is not a problem for the
microbenchmarks since we deliberately choose an in-core workload there.

3.2 Categorization of communication characteristics

Here we briefly describe the different communication characteristics under investigation.
We start by assuming a “P2P-homogeneous” situation where all processes (except
boundary processes in case of open boundary conditions) have the same communication
partners and characteristics. We will later lift this restriction and cover more general
patterns.

Communication topology Communication topology is a consequence of the physical
problem underlying the numerical method and of the algorithm (discretization, geometry).
It boils down to the question “which other processes does rank i communicate with?”
and is characterized by a topology matrix (see Figure 1 for examples of compact and
noncompact topologies).

In a compact topology, each process communicates with a dense, continuous array
of neighbors with distances d = ±1,±2,...,±j. The topology matrix comprises a dense
band around the main diagonal. In a noncompact topology, each process communicates
with processes that are not arranged as a continuous block, e.g., d = ±1,±j. In both
variants, the topology matrix can be symmetric or asymmetric.

Single Node:
sockets per node x

ccNUMA domain per socket x
physical cores per domain

April 26, 2022 23Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Lessons learned: Impact of idle wave on overlap

Propagation
speed of
idle wave

Overlap
amplified /
damped?

Idle wave
decay

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

…

…

DOI:10.1109/CLUSTER.2019.8890995

IEEE Cluster 2019
Afzal	et	al.

DOI: 10.1007/978-3-030-78713-4_19

ISC HPC 2021

April 26, 2022 24Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Lessons learned: Impact of idle wave on overlap

Propagation
speed of
idle wave

Overlap
amplified /
damped?

Contention
(i.e., saturation

point in memory
bandwidth bottleneck)

Idle wave
decay

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

…

…

Pe
rfo

rm
an

ce

Number of MPI
processes

resource-scalable

lin
ear

in
crement

Pe
rfo

rm
an

ce

Number of MPI
processes

memory-bandwidth bottleneck

resource
bottleneck

lin
ea

r
in

cr
em

en
t

𝑷𝒐𝒔𝒔𝒊𝒃𝒍𝒆 bottlenecks
• memory
• cache
• on-/inter-chip network
• link b/w host & accelerator

DOI:10.1109/CLUSTER.2019.8890995

IEEE Cluster 2019
Afzal	et	al.

DOI: 10.1007/978-3-030-78713-4_19

ISC HPC 2021

April 26, 2022 25Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Scalable versus contented processes

𝐀 : = 𝐁 : + 𝐬 ∗ 𝐂(:)

4 Emmy 10-core sockets @2.2 GHz,
non-temporal stores, bi-dir, open
chain, distance-1 communication

April 26, 2022 26Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Scalable versus contented processes

𝐀 : = 𝐁 : + 𝐬 ∗ 𝐂(:)

𝐀 :
= 𝐁

: +
𝐜𝐨𝐬
(
𝐂(:
)

𝐃(:
)
)

Cores	per	socket,	N

M
em

or
y	
ba
nd
w
id
th
[G
B/
s]

Core-sc
alable	c

ode

SuperMUC-NG	@2.3	GHz,	non-temporal	stores,	
bi-dir,	1024	B,	close chain,	distance-1	communication

Saturation
point

M
em

or
y

ba
nd

w
id

th
 [G

B/
s]

Number of concurrently active processes

M
em

or
y

ba
nd

w
id

th
 [G

B/
s]

Number of concurrently active processes

Saturation
point

Scalable processes No overlap
Strongly contented

processes Maximum overlap

April 26, 2022 27Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Lessons learned: Impact of idle wave on overlap

Propagation
speed of
idle wave

Overlap
amplified /
damped?

Contention
(i.e., saturation

point in memory
bandwidth bottleneck)

Idle wave
decay

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄 𝑻𝒏𝒐𝒏$𝒆𝒙𝒆𝒄𝑻𝒆𝒙𝒆𝒄

…

…
DOI: 10.1007/978-3-030-50743-5_20

ISC HPC 2020

DOI:10.1109/CLUSTER.2019.8890995

IEEE Cluster 2019
Afzal	et	al.

DOI: 10.1007/978-3-030-78713-4_19

ISC HPC 2021

April 26, 2022 28Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Lessons learned: Scope

14

0
5

10
20
30
40
50
60
70
80
90

100
110
119

R
an

k

50
52
54
56
58
60

1.4 1.6 1.8 2 2.2 2.4
0

60

119

Time [s]

N
AM

AS
S

(a) Sync

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b) Non-sync

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c) Non-sync

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(d) Non-sync

Fig. 7: Transparency of collective routines for idle waves on Emmy. (a) Default In-
tel MPI implementation of MPI_Allreduce / MPI_Alltoall / MPI_Allgather
/ MPI_Scatter / MPI_Bcast / MPI_Barrier / I_MPI_ADJUST_REDUCE=1 /
any collective with I_MPI_TUNING_AUTO_SYNC=1, (b) default MPI_Reduce or
with I_MPI_ADJUST_REDUCE=8-11, (c) default MPI_Gather / MPI_Reduce with
I_MPI_ADJUST_REDUCE=2,4-7, (d) MPI_Reduce with I_MPI_ADJUST_REDUCE=3.
Collective calls are injected at rank 5 in the 20th iteration and the root (where ap-
plicable) is rank 0. The message size is 1024 B, and MPI_SUM is used for all operations.
Green color indicates the time spent by MPI processes in the collective routines.

the idle wave with MPI_Reduce changes for I_MPI_ADJUST_REDUCE set to 3 (topology-
aware Shumilin’s algorithm).

Another option is to override the default shared-memory node-level implementation
of collectives and substitute it with a standard point-to-point variant. For instance, setting
I_MPI_COLL_INTRANODE=pt2pt (insted of the default shm) modifies the reduction
behavior from Figure 7(b) to Figure 7(c).

In general, our results show that it is possible to implement collectives that are
permeable to idle waves. Thus, the existence of collectives in a program does not make
idle waves a non-issue and extends their relevance beyond collective-free algorithms.

5 Idle wave decay

The decay of traveling idle waves is a well-known phenomenon [11], and the under-
lying microscopic mechanism via interaction with short idle periods (“noise”) is well
understood [4]. There are, however, two questions that have not been addressed so far:

14

0
5

10
20
30
40
50
60
70
80
90

100
110
119

R
an

k
50
52
54
56
58
60

1.4 1.6 1.8 2 2.2 2.4
0

60

119

Time [s]

N
AM

AS
S

(a) Sync

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(b) Non-sync

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(c) Non-sync

1.4 1.6 1.8 2 2.2 2.4

Time [s]
(d) Non-sync

Fig. 7: Transparency of collective routines for idle waves on Emmy. (a) Default In-
tel MPI implementation of MPI_Allreduce / MPI_Alltoall / MPI_Allgather
/ MPI_Scatter / MPI_Bcast / MPI_Barrier / I_MPI_ADJUST_REDUCE=1 /
any collective with I_MPI_TUNING_AUTO_SYNC=1, (b) default MPI_Reduce or
with I_MPI_ADJUST_REDUCE=8-11, (c) default MPI_Gather / MPI_Reduce with
I_MPI_ADJUST_REDUCE=2,4-7, (d) MPI_Reduce with I_MPI_ADJUST_REDUCE=3.
Collective calls are injected at rank 5 in the 20th iteration and the root (where ap-
plicable) is rank 0. The message size is 1024 B, and MPI_SUM is used for all operations.
Green color indicates the time spent by MPI processes in the collective routines.

the idle wave with MPI_Reduce changes for I_MPI_ADJUST_REDUCE set to 3 (topology-
aware Shumilin’s algorithm).

Another option is to override the default shared-memory node-level implementation
of collectives and substitute it with a standard point-to-point variant. For instance, setting
I_MPI_COLL_INTRANODE=pt2pt (insted of the default shm) modifies the reduction
behavior from Figure 7(b) to Figure 7(c).

In general, our results show that it is possible to implement collectives that are
permeable to idle waves. Thus, the existence of collectives in a program does not make
idle waves a non-issue and extends their relevance beyond collective-free algorithms.

5 Idle wave decay

The decay of traveling idle waves is a well-known phenomenon [11], and the under-
lying microscopic mechanism via interaction with short idle periods (“noise”) is well
understood [4]. There are, however, two questions that have not been addressed so far:

MPI_Allreduce
(Defualt)

MPI_Reduce
(Defualt)

MPI_Reduce
(Binomial)

MPI_Reduce
(Topology aware

Shumilin's)

co
lle

ct
iv

e

Algorithmic
dependency:

some collectives
can be permeable

to idle waves

Intel MPI 19.1

5

2 30 60 90 119

0

20

40

60

80

100

119

Receiver rank

Se
nd

er
ra

nk

(a) Pi

�

(Pi±1 . . .Pi±2)

6 30 60 90 119

Receiver rank

(b) Pi

�

(Pi±1 . . .Pi±6)

12 30 60 90 119

Receiver rank

(c) Pi

�

(Pi±1 . . .Pi±12)

6 30 60 90 119

Receiver rank

(d) Pi

�

(Pi±1,Pi±6)

12 30 60 90 119

Receiver rank

(e) Pi

�

(Pi±1,Pi±12)

Fig. 1: Compact and non-compact communication topologies with bidirectional open
chain characteristics. Pi sends (receives) data to (from) Pi±1 (a) to Pi±2 (b) to Pi±6 (c) to
Pi±12, (d) and Pi±6 (e) and Pi±12.

3.1 Execution characteristics

HPC workloads have a wide spectrum of requirements regarding code execution towards
resources of the parallel computing platform. The most straightforward categorization
is whether the workload is sensitive to certain resource bottlenecks, such as memory
bandwidth. Since we restrict ourselves to scalable code here, we run the traditionally
memory-bound algorithms such as stencil updates or SpMV with one MPI process
per contention domain (typically a ccNUMA node). This is not a problem for the
microbenchmarks since we deliberately choose an in-core workload there.

3.2 Categorization of communication characteristics

Here we briefly describe the different communication characteristics under investigation.
We start by assuming a “P2P-homogeneous” situation where all processes (except
boundary processes in case of open boundary conditions) have the same communication
partners and characteristics. We will later lift this restriction and cover more general
patterns.

Communication topology Communication topology is a consequence of the physical
problem underlying the numerical method and of the algorithm (discretization, geometry).
It boils down to the question “which other processes does rank i communicate with?”
and is characterized by a topology matrix (see Figure 1 for examples of compact and
noncompact topologies).

In a compact topology, each process communicates with a dense, continuous array
of neighbors with distances d = ±1,±2,...,±j. The topology matrix comprises a dense
band around the main diagonal. In a noncompact topology, each process communicates
with processes that are not arranged as a continuous block, e.g., d = ±1,±j. In both
variants, the topology matrix can be symmetric or asymmetric.

April 26, 2022 29Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Lessons learned: Scope

Multi-
phase

programs
(HPCG)

Task-
parallel

programs

Spatial
multi-
tasking
in GPUs

Time	[s]

Pe
rm

ut
ed

ra
nk

 R
an
k

0

3

6

9

1

6
0.29									0.295											0.3										0.305

DOI: 10.1002/cpe.6816

CCPE 2022
Afzal	et	al.

April 26, 2022 30Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Performance: MPI parallel Sparse Matrix-Vector MultiplicationIEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 6

TABLE 3: Structure of the MPI-parallel SpMVM implementation. Split-wait and non-split are implementation alternatives.
1

Listing 1: CRS based SPMVM kernel

1: double :: valA[nnz], b[nr], x[nr] ;

2: int :: colIdxA[nnz], rowPtrA[nr + 1], tmp ;

3: for row = 0 : nr�1 do
4: tmp = 0.0 ;

5: for idx = rowPtrA[row] : rowPtrA[row+1]�1 do
6: tmp += valA[idx] ⇤ x[colIdxA [idx]] ;

7: end for
8: b[row] += tmp ;

9: end for

Listing 2: SPLIT-WAIT mode

1: while iter nIters do
2: MPI_Irecv ;

3: MPI_Isend ;

4: local_spMVM (A, x, b) ;

5: MPI_Wait ; ?

6: remote_spMVM (A, x, b) ;

7: MPI_Barrier ;

8: swap (b, x) ;

9: end while

Listing 3: NON-SPLIT mode

1: while iter nIters do
2: MPI_Irecv ;

3: MPI_Isend ;

4: MPI_Wait ; ?

5: local_spMVM (A, x, b) ;

6: remote_spMVM (A, x, b) ;

7: MPI_Barrier ;

8: swap (b, x) ;

9: end while

? Two MPI_Wait routines wait for both MPI receive and send requests to complete.

TABLE 4: Key specifications of symmetric sparse matrices.

Matrix-order Bandwidth nelectrons � nsites � nphonons
§
nr = nc

?
nnz

?
nnzr

‡ Size [GB]¶

HHQ-large-pe high 3� 8� 10 60988928 889816368 13 10.9
HHQ-large-ep low 3� 8� 10 60988928 889816368 13 10.9
HHQ-small-pe high 6� 6� 15 6201600 92527872 15 1.14
HHQ-small-ep low 6� 6� 15 6201600 92527872 15 1.14
§ The described quantum system comprises nelectrons electrons on nsites lattice sites coupled
to nphonons phonons.
?

nr , nc and nnz are the total number of rows, columns and non-zero entries of sparse
square matrix respectively.
‡ The inner loop length of the CRS SpMVM kernel nnzr(⇡ nnz

nr
) is the average number of

non-zero entries in each row of the sparse matrix.
¶ Data set size is estimated by 12nnz + 4nr (eight byte per matrix entry and four byte for
column indices).

4.1.1 Shape of computational wavefronts
Figure 1 shows MPI traces of the MPI-augmented STREAM
triad on 40 processes (two nodes of Meggie) with different
communication topologies. In these figures, code execution
is white and MPI waiting time is red. With pure next-
neighbor communication as in (a), the number of concur-
rently active (i.e., code-executing) processes per ccNUMA
domain settles in the vicinity of the performance satu-
ration point6, as was already pointed out in [5]. In (b)
one can observe the difference to next-pair communication
(d = ±(1, 2)): The developed desynchronized state (the
computational wavefront) is about 3⇥ steeper, i.e., it has a
smaller amplitude. This correlates with the higher idle wave
velocity for longer-distance communication scenarios [8].
This restricts the communication-computation overlap, and
the number of concurrently active processes per ccNUMA
domain is higher than what is needed for saturation. With a
mixed short-/long-range communication topology as in (c),
computational wavefront structures on different scales over-
lap, i.e., two periodicities can be observed which emerge
from the long- and short-distance communication, respec-
tively. Compact long-distance communication as in (d) with
d = ±(1, . . . , 12) causes high-velocity idle waves [8], which
leads to steep computational wavefronts. Starting at a com-
munication distance of at least d = ±(1, . . . , 8), the pro-
cesses keep in lockstep for a system size of 40 ranks as in
the example. This is due to the comparatively small system
size; idle waves are so fast that they leave the system in a
single compute-communicate cycle.

4.1.2 Wavefront stability
The question arises how stable a developed computational
wavefront is against disturbances like system noise or single

6. A saturation point is the minimum number of processes required
to achieve the maximum memory bandwidth on the ccNUMA domain.

one-off delay injections. After all, the translational symme-
try of the system should not favor a particular position of the
“lagger,” i.e., the slowest process. In all our measurements,
natural system noise was never able to alter the shape or
position of computational wavefronts. However, long one-
off delay injections can. In Fig. 2 we show the results of an
experiment on the Meggie system, where a fully developed
computational wavefront state is disturbed by an injection
on a ccNUMA domain different from the one where the
lagger initially resides. To spark an idle wave, a series of
floating-point divide operations are performed by rank 15

at time step 80 as illustrated by blue bars in the second
and forth graph of Fig. 2. For one-off disturbances, we use
a core-bound workload which does not impose an addi-
tional strain on the memory interface. The overall impact
is independent of the nature of the disturbance though. As
a consequence, after the ensuing idle wave has run out,
the lagger shifts to the domain where the injection took
place if the injection is strong enough. There is currently no
first-principles understanding about what “strong enough”
means; experimentally, we observe that the idle wave must
at least be able to travel (despite the inevitable damping) far
enough as to intrude the slowest socket.

4.2 Sparse Matrix-Vector Multiplication (SpMVM)

The multiplication of a sparse matrix with a dense vector
(~y = A~x) is a central component in numerous numerical
algorithms such as linear solvers and eigenvalue solvers.
For large matrices, the performance of sparse matrix-vector
multiplication (SpMVM) is memory bound on the node
level due to its low computational intensity. Distributed-
memory parallelization requires the matrix A and the vec-
tors x and y to be distributed across MPI processes. This can
cause significant communication overhead if the pattern of
nonzeros in the matrix is very scattered.

An SpMVM kernel is usually the dominant part of a
larger algorithm (such as Conjugate-Gradient); sometimes,
several SpMVM kernels are executed in a back-to-back man-
ner. Together with the properties described above, SpMVM
constitutes an interesting test bed for desynchronization
phenomena. In this section we investigate such a sequence
of MPI-parallel SpMVMs, with left-hand side (LHS) and
right-hand side (RHS) vectors swapped after every step.
There is no explicit or implicit synchronization among MPI
processes.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 6

TABLE 3: Structure of the MPI-parallel SpMVM implementation. Split-wait and non-split are implementation alternatives.
1

Listing 1: CRS based SPMVM kernel

1: double :: valA[nnz], b[nr], x[nr] ;

2: int :: colIdxA[nnz], rowPtrA[nr + 1], tmp ;

3: for row = 0 : nr�1 do
4: tmp = 0.0 ;

5: for idx = rowPtrA[row] : rowPtrA[row+1]�1 do
6: tmp += valA[idx] ⇤ x[colIdxA [idx]] ;

7: end for
8: b[row] += tmp ;

9: end for

Listing 2: SPLIT-WAIT mode

1: while iter nIters do
2: MPI_Irecv ;

3: MPI_Isend ;

4: local_spMVM (A, x, b) ;

5: MPI_Wait ; ?

6: remote_spMVM (A, x, b) ;

7: MPI_Barrier ;

8: swap (b, x) ;

9: end while

Listing 3: NON-SPLIT mode

1: while iter nIters do
2: MPI_Irecv ;

3: MPI_Isend ;

4: MPI_Wait ; ?

5: local_spMVM (A, x, b) ;

6: remote_spMVM (A, x, b) ;

7: MPI_Barrier ;

8: swap (b, x) ;

9: end while

? Two MPI_Wait routines wait for both MPI receive and send requests to complete.

TABLE 4: Key specifications of symmetric sparse matrices.

Matrix-order Bandwidth nelectrons � nsites � nphonons
§
nr = nc

?
nnz

?
nnzr

‡ Size [GB]¶

HHQ-large-pe high 3� 8� 10 60988928 889816368 13 10.9
HHQ-large-ep low 3� 8� 10 60988928 889816368 13 10.9
HHQ-small-pe high 6� 6� 15 6201600 92527872 15 1.14
HHQ-small-ep low 6� 6� 15 6201600 92527872 15 1.14
§ The described quantum system comprises nelectrons electrons on nsites lattice sites coupled
to nphonons phonons.
?

nr , nc and nnz are the total number of rows, columns and non-zero entries of sparse
square matrix respectively.
‡ The inner loop length of the CRS SpMVM kernel nnzr(⇡ nnz

nr
) is the average number of

non-zero entries in each row of the sparse matrix.
¶ Data set size is estimated by 12nnz + 4nr (eight byte per matrix entry and four byte for
column indices).

4.1.1 Shape of computational wavefronts
Figure 1 shows MPI traces of the MPI-augmented STREAM
triad on 40 processes (two nodes of Meggie) with different
communication topologies. In these figures, code execution
is white and MPI waiting time is red. With pure next-
neighbor communication as in (a), the number of concur-
rently active (i.e., code-executing) processes per ccNUMA
domain settles in the vicinity of the performance satu-
ration point6, as was already pointed out in [5]. In (b)
one can observe the difference to next-pair communication
(d = ±(1, 2)): The developed desynchronized state (the
computational wavefront) is about 3⇥ steeper, i.e., it has a
smaller amplitude. This correlates with the higher idle wave
velocity for longer-distance communication scenarios [8].
This restricts the communication-computation overlap, and
the number of concurrently active processes per ccNUMA
domain is higher than what is needed for saturation. With a
mixed short-/long-range communication topology as in (c),
computational wavefront structures on different scales over-
lap, i.e., two periodicities can be observed which emerge
from the long- and short-distance communication, respec-
tively. Compact long-distance communication as in (d) with
d = ±(1, . . . , 12) causes high-velocity idle waves [8], which
leads to steep computational wavefronts. Starting at a com-
munication distance of at least d = ±(1, . . . , 8), the pro-
cesses keep in lockstep for a system size of 40 ranks as in
the example. This is due to the comparatively small system
size; idle waves are so fast that they leave the system in a
single compute-communicate cycle.

4.1.2 Wavefront stability
The question arises how stable a developed computational
wavefront is against disturbances like system noise or single

6. A saturation point is the minimum number of processes required
to achieve the maximum memory bandwidth on the ccNUMA domain.

one-off delay injections. After all, the translational symme-
try of the system should not favor a particular position of the
“lagger,” i.e., the slowest process. In all our measurements,
natural system noise was never able to alter the shape or
position of computational wavefronts. However, long one-
off delay injections can. In Fig. 2 we show the results of an
experiment on the Meggie system, where a fully developed
computational wavefront state is disturbed by an injection
on a ccNUMA domain different from the one where the
lagger initially resides. To spark an idle wave, a series of
floating-point divide operations are performed by rank 15

at time step 80 as illustrated by blue bars in the second
and forth graph of Fig. 2. For one-off disturbances, we use
a core-bound workload which does not impose an addi-
tional strain on the memory interface. The overall impact
is independent of the nature of the disturbance though. As
a consequence, after the ensuing idle wave has run out,
the lagger shifts to the domain where the injection took
place if the injection is strong enough. There is currently no
first-principles understanding about what “strong enough”
means; experimentally, we observe that the idle wave must
at least be able to travel (despite the inevitable damping) far
enough as to intrude the slowest socket.

4.2 Sparse Matrix-Vector Multiplication (SpMVM)

The multiplication of a sparse matrix with a dense vector
(~y = A~x) is a central component in numerous numerical
algorithms such as linear solvers and eigenvalue solvers.
For large matrices, the performance of sparse matrix-vector
multiplication (SpMVM) is memory bound on the node
level due to its low computational intensity. Distributed-
memory parallelization requires the matrix A and the vec-
tors x and y to be distributed across MPI processes. This can
cause significant communication overhead if the pattern of
nonzeros in the matrix is very scattered.

An SpMVM kernel is usually the dominant part of a
larger algorithm (such as Conjugate-Gradient); sometimes,
several SpMVM kernels are executed in a back-to-back man-
ner. Together with the properties described above, SpMVM
constitutes an interesting test bed for desynchronization
phenomena. In this section we investigate such a sequence
of MPI-parallel SpMVMs, with left-hand side (LHS) and
right-hand side (RHS) vectors swapped after every step.
There is no explicit or implicit synchronization among MPI
processes.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 7

TABLE 5: Measured walltime minimum, maximum, and median for execution (rows 1–3) and communication (rows 4–6) of
one MPI-only SpMVM with the HHQ-large matrix on SuperMUC-NG, using strong scaling from 96 processes (two nodes)
up to 1296 processes (27 nodes) using barriers between successive SpMVs. Row 7 shows the mean per-process message
sizes (transmitted via rendezvous protocol at small processes count till eager limit), and the last row denotes the median
of the communication-to-execution time ratio (CER). Color coding is used as a guide to the eye (scale from white to pink).

Phase vs. Rank-order 96-pe 144-pe 240-pe 480-pe 720-pe 960-pe 1296-pe 96-ep 144-ep 240-ep 480-ep 720-ep 960-ep 1296-ep
Exec min [ms] 31.58 18.04 9.67 4.28 3.13 2.44 1.82 26.09 19.92 9.72 3.92 2.72 1.99 1.35
Exec max [ms] 64.92 45.73 27.55 13.49 10.53 8.25 6.24 53.36 36.22 22.13 11.49 7.98 6.59 4.76
Exec median [ms] 53.5 35.74 18.51 9.05 6.53 5.06 3.85 48.47 30.87 17.57 8.23 5.7 4.54 3.03
Comm min [ms] 20.7 15.38 6.72 5.62 3.57 4.03 2.51 9.28 8.5 3.73 2.48 2.04 1.18 2.45
Comm max [ms] 38.73 29.49 21 18.46 14.83 12.97 11.32 19.36 18.78 17.71 15.36 11.59 8.53 10.16
Comm median [ms] 29.48 24.56 16.17 14.75 11.28 9.78 7.99 16.17 15.01 14.41 12.17 8.96 6.62 6.13
Mean P2P msg size [kB] 2 390 1 460 957 480 302 213 153 1 310 848 505 260 178 137 105

CER median 0.55 0.69 0.87 1.63 1.73 1.93 2.08 0.33 0.49 0.82 1.48 1.57 1.46 2.02

4.2.1 Implementation

A compressed storage format must be chosen for the sparse
matrix so that the SpMVM can be carried out efficiently.
On multicore CPUs, the standard Compressed Row Storage
(CRS) format is typically a good choice. It allows for a com-
pact implementation of the kernel that enables to exploit the
relevant bottleneck (memory bandwidth) in many cases (see
Listing 1 of Table 3). CRS requires one-dimensional arrays
for matrix entries (valA[]), column indices (colIdxA[]),
and row pointers (rowPtrA[]). If the matrix entries are in
double precision and the indices are 32-bit integers, the min-
imum code balance for CRS-SpMVM is 6 byte/flop7 [32],
[33].

In the MPI-parallel SpMVM implementation, contiguous
blocks of matrix rows (and corresponding LHS and RHS
vectors) are assigned to the processes so that the number
of matrix nonzeros per process is as balanced as possible.
Each process can compute the part of the SpMVM for
which it already holds the LHS and RHS entries right
away. Matrix entries outside of this column range require
communication of the corresponding RHS values. Splitting
the operation into “local” and “remote” kernels causes an
additional memory traffic of 16/nnzr byte per multiply-add
because the local result vector must be updated twice in
memory [32].

Two different implementations were tested:

1) SPLIT-WAIT mode: Communication is initiated with
nonblocking MPI calls before the local SpMVM and
finalized after it. Only after the call to MPI_Wait
can the remote SpMVM kernel be executed. This al-
lows for overlapping communication with the local
SpMVM if the MPI implementation supports it; see
Listing 2 of Table 3.

2) NON-SPLIT mode: The full non-blocking remote
communication is initiated and finalized before the
local and remote SpMVM kernels are called. This
rules out any communication overlap by MPI; see
Listing 3 of Table 3. In this case, the two kernel
calls could be fused for improved computational
intensity, but we want to keep the properties of the

7. Per iteration, the kernel carries out 2 flops and causes a minimum
data traffic of 8 byte for the matrix entry and 4 byte for the column
index.

underlying kernels unchanged for the experiments
shown here.

4.2.2 Test matrices
For benchmarking we use real, symmetric matrices that
describe a strongly correlated one-dimensional electron-
phonon system in solid state physics (Holstein-Hubbard
Hamiltonian) [34]. The key specifications of the matrices are
shown in Table 4. Due to the moderate number of nonzeros
per row (13 and 15, respectively), the minimum code bal-
ance is about 6.9 byte/flop and 7.1 byte/flop, respectively
(assuming optimal reuse of the right-hand side vector; see
also [33].). Overall we use four variants that emerge from
two different problem sizes (numbers of electrons, phonons,
and lattice sites) and two different orderings of the degrees
of freedom (phonons first vs. electrons first). The “phonons
first” numbering (labeled “pe”) produces a more scattered
matrix, whereas with “electrons first” (labeled “ep”) the
nonzeros are closer to the diagonal (see (a) and (b) of Figs. 3
and 4). The motivation behind the different problem sizes
(10.9 GB and 1.135 GB for the matrix, respectively) is that the
smaller problem can fit into the aggregate last-level cache of
the CPUs in the chosen clusters at a moderate node count,
removing the memory bandwidth bottleneck at the socket
level. The matrices were generated using the scalable matrix
collection (ScaMaC) library.8

4.2.3 Matrix topology and communication schemes
The communication characteristics of distributed-memory
SpMVM depend strongly on the structure of the sparse
matrix. Thus we expect the pe versions of the Hamiltoni-
ans to have larger communication overhead. The sparsity
pattern impacts the node-level performance and bandwidth
saturation as well, however, due to the indirect access to
the RHS vector. Table 5 shows execution and communica-
tion properties of one SpMVM execution with the large pe
and ep matrices, respectively, for different numbers of MPI
processes on the SuperMUC-NG system. To keep the MPI
processes in lockstep, an MPI barrier was called before the

8. TheScaMaC library allows for scalable generation of large matri-
ces related to quantum physics applications. The open source imple-
mentation is available for download at https://bitbucket.org/essex/
matrixcollection/ and documentation of matrices can be found at
https://alvbit.bitbucket.io/scamac_docs/_matrices_page.html, respec-
tively.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 8

0 500 1 279

0

200

400

600

800

1 000

1 279

Receiver rank

S
e
n

d
e
r

ra
n

k

(a) pe order

0 500 1 279

Receiver rank

(b) ep order

0 500 1 000
0

100

200

300

400

Number of processes

P
e
rf

o
rm

a
n

c
e
,

P
[G

fl
o

p
/s

] pe-barrier

pe-no barrier

ep-barrier

ep-no barrier

(c) Non-split

0 500 1 000

Number of processes

pe-barrier

pe-no barrier

ep-barrier

ep-no barrier

(d) Split-wait

500 1 000
0

20

40

60

80

Number of processes

D
e
s
y

n
c

fa
c
to

r,
D

[%
]

pe-non-split

pe-split-wait

ep-non-split

ep-split-wait

(e) Desync speedup

Fig. 3: (a-b) The communication topology of HHQ-large matrices using periodic boundary conditions in the wider pe
order (left/right bandwidth of 41385344) and slimer ep order (left/right bandwidth of 12907776), respectively. (c-d) Strong
scaling performance for 10

6 iterations on SuperMUC-NG using NON-SPLIT and SPLIT-WAIT algorithms, respectively.
(e) Performance boost as a result of improved overlap in the absence of barriers in the NON-SPLIT and SPLIT-WAIT
implementation on the SuperMUC-NG system. Markers in black at 1280 processes mark performance and the D factor
for the NON-SPLIT algorithm on the Meggie system.

SpMV (the barrier time is not part of the reported communi-
cation time). The data shows that the more scattered pe ma-
trix clearly causes much higher communication overhead,
especially at lower process counts where pe incurs more
communication partners per rank than ep. It can be seen that
the communication overhead in SpMV is significant but not
dominant at 96 processes. The last row of the table shows
the median of the communication-to-execution time ratio
(CER), which can serve as a rough indicator of communi-
cation boundedness. The minimum, maximum, and median
numbers for execution and communication times indicate
that even in a single SpMV without desynchronization there
is considerable variation in both metrics across processes.

In order to fathom the consequences of desynchroniza-
tion, we compare the barrier version of the benchmark (i.e.,
a barrier after each SpMVM) with the barrier-free version.
Performance for the barrier version was calculated by sub-
tracting the actual barrier time (as determined by a separate
benchmark) from the measured walltime. Any observed
speedup of the barrier-free version must thus be caused by
automatic overlap of communication via desynchronization
of processes. Figures 3(c) and (d) show strong scaling per-
formance for the HHQ-large matrices on SuperMUC-NG.
The behavior of the split (c) and non-split (d) variants is
similar. Note that the best version (ep without barrier) is
strongly communication bound at 1296 processes: Assum-
ing a socket memory bandwidth of 100 GB/s, the Roofline
limit is 760 Gflop/s, while the observed performance is
only about 270 Gflop/s. The speedup D (defined in Sec-
tion 3) caused by bottleneck evasion via desynchronization
is shown in Fig. 3(e). Depending on the matrix structure
and the communication scheme, performance gains between
20% and 55% (out of a theoretical maximum of 100%) can
be observed. This goes with a significant improvement in
scalability.

Although the details of matrix partitioning and commu-
nication topology add a considerable amount of variation,
the speedup D shows the expected behavior along the

scaling curve: It starts out small because the communication
overhead is small (albeit significant), providing only minor
opportunity for overlapping. As the number of processes
grows, this benefit becomes larger until at some point
communication and computation take roughly the same
amount of time. This is when no further speedup can
be expected. Scaling up further, the benefit drops because
communication is dominant. One can also see that the non-
split communication scheme (circles and triangles) generally
shows higher speedup than the split-wait scheme (squares
and diamonds). This is expected because no-split has no
potential for asynchronous MPI communication in the lock-
step case; this leaves more opportunity for overlap in the
desynchronized case.

Note that the “slimmer” ep matrix with its smaller
communication radius supports stronger desynchronization
due to a lower idle wave velocity [5], [8]. This effect is
counteracted, however, by the smaller absolute communi-
cation overhead of ep, which is why no clear advantage
of ep in terms of overlap can be observed in Fig. 3(e).
Note also that particular process counts can interact with
the inherent structure of the matrix, which leads to more
or less favorable communication topologies and adds extra
variation to the scaling behavior. The general trend is similar
but less pronounced on the Meggie system, as shown by the
black markers in Fig. 3. This can be attributed to the larger
fraction of cores needed per ccNUMA domain to achieve
memory bandwidth saturation compared to SuperMUC-
NG.

In this experiment, the matrices were large enough to
keep the execution memory bound even at large scale,
which made memory bandwidth the relevant bottleneck for
desynchronization. The HHQ-small matrices in Table 4 fit
into the aggregate last-level cache (LLC) on 23 nodes and
beyond (for Meggie) and 18 nodes (for SuperMUC-NG),
respectively. The LLC shows much better bandwidth scal-
ability than the memory interface, so the bottleneck shifts to
the network communication for larger node counts. In Fig. 4

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 10

0 500 1 279

0

200

400

600

800

1 000

1 279

Receiver rank

Se
nd

er
ra

nk

(a) pe order

0 500 1 279

Receiver rank

(b) ep order

2
7
.8
%

2
1
.1
%

3
8
.3
%

3
6
.7
%

Memory-bound Communication-bound

Pe
rf

or
m

an
ce

,P
[G

flo
p/

s]

(c) Memory-bound performance (d) Communication-bound performance

6
.5
%

3
.3
%

6
.2
%

3
.9
%

0 0Meggie SuperMUC-NG Meggie SuperMUC-NG
100

200

300

20

30

40
pe-barrier-Meggie pe-barrier-free-Meggie
ep-barrier-Meggie ep-barrier-free-Meggie

pe-barrier-SuperMUC-NG pe-barrier-free-SuperMUC-NG
ep-barrier-SuperMUC-NG ep-barrier-free-SuperMUC-NG

Fig. 4: (a-b) Communication topology of HHQ-small-orderpe and HHQ-small-orderep Hamiltonian matrices. (c)
Performance (blue y-axis) and speedup for barrier-free (desynchronized) execution in the memory-bound case (60 processes
on Meggie and 96 processes on SuperMUC-NG) and in non-split mode. The percentage increments denote the speedup
of the no-barrier versions. (d) Same data but for the communication-bound case with performance on the red y-axis (1280
processes on Meggie and 1296 processes on SuperMUC-NG). 1

Pseudo implementation of parallel LBM

1: while iter nIters do
2: stream_collide_update (lattice, u_lid, omega);

3: set_boundary_condition (u_lid);

4: MPI_Isend ;
?

5: MPI_Irecv ;
?

6: MPI_Wait ;

7: ghost_cells_update ();

8: if ((iter % collective_step) == 0) then
9: MPI_Allreduce ;

10: end if
11: swap (local_src_lattice, local_dst_lattice) ;

12: end while
10

1
10

2
10

3
10

4
10

5
10

6
1

1.05

1.1

1.15

1.2

Collective step size

N
or

m
al

iz
e

pe
rf

or
m

an
ce

,P
n 202 ⇤ 677 ⇤ 202 302 ⇤ 402 ⇤ 227

227 ⇤ 302 ⇤ 402 202 ⇤ 202 ⇤ 677
152 ⇤ 152 ⇤ 1202 125 ⇤ 125 ⇤ 1728
102 ⇤ 102 ⇤ 2702 52 ⇤ 52 ⇤ 10802
Theoretical-sync

10
1

10
3

10
5

Collective step size

252 ⇤ 362 ⇤ 302
202 ⇤ 452 ⇤ 302
152 ⇤ 602 ⇤ 302
52 ⇤ 1802 ⇤ 302
130 ⇤ 130 ⇤ 130

Theoretical-sync

Fig. 5: Influence of the frequency of collectives (specifically MPI_Allreduce()) on LBM performance in 10
6
iterations

on 64 Meggie nodes (1280 MPI processes). Graphs are linear on the y-axis, and a base-10 log scale is used for the
x-axis. Performance is normalized to the case of one collective per 20 iterations. (left) Pseudocode of LBM algorithm:
Boundary layers are exchanged using non-blocking MPI routines, including (un)packing in between. (middle) Normalized
performance (speedup vs. smallest collective stepsize) vs. collective step size for constant overall problem size (8.37GB) but
different domain shapes, which causes different communication overhead. (right) Normalized performance for constant
CER but different shapes of the cross section nx · ny at constant overall problem size. A smaller problem size of 130

3

lattice cells is added to show the impact of higher CER (network-bound case). Finally, the black crosses show the
calculated speedup when subtracting the MPI_Allreduce time from the runtime for the problem size with the best
desynchronization speedup in each diagram.

shows that the actual time for the call does not play a role
here. In the experiment shown in Fig. 5(right), we kept the
CER constant and modified the shape of the nx ⇥ ny cross
section to check if this has an impact on the speedup, which
is not the case as expected. We also included a problem size
of 130

3, which fits into the aggregate LLC of the CPUs.
Since the LLC is bandwidth scalable, desynchronization
can only occur due to the communication bottleneck, and
a corresponding speedup of almost 10 % can be observed.
On SuperMUC (Fig. 6(right)), the behavior is similar to
Meggie, with a slighty reduced optimum CER of 0.75 at a
size of 202 ⇥ 677 ⇥ 202 (red circles), where a speedup via
desynchronization of close to 10 % can be achieved.

Note that even with automatic overlap, the impact of

communication overhead is still significant. In Fig. 6(left)
we show the actual asymptotic performance in MLUP/s in
absence of any collectives on the two systems for different
domain shapes. The maximum performance on both sys-
tems according to the Roofline model is 14 GLUP/s (Meg-
gie) and 12 GLUP/s (SuperMUC), respectively. The best ob-
served performance is significantly lower (8.5 GLUP/s and
7 GLUP/s), which shows that there is considerable residual
communication overhead.

—————

out the general behavior on Meggie and SuperMUC-
NG by reducing the frequency of collectives. It shows
how the performance alleviates and saturates at one point.
We influence the frequency of sync by tuning how often

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 7

TABLE 5: Measured walltime minimum, maximum, and median for execution (rows 1–3) and communication (rows 4–6) of
one MPI-only SpMVM with the HHQ-large matrix on SuperMUC-NG, using strong scaling from 96 processes (two nodes)
up to 1296 processes (27 nodes) using barriers between successive SpMVs. Row 7 shows the mean per-process message
sizes (transmitted via rendezvous protocol at small processes count till eager limit), and the last row denotes the median
of the communication-to-execution time ratio (CER). Color coding is used as a guide to the eye (scale from white to pink).

Phase vs. Rank-order 96-pe 144-pe 240-pe 480-pe 720-pe 960-pe 1296-pe 96-ep 144-ep 240-ep 480-ep 720-ep 960-ep 1296-ep
Exec min [ms] 31.58 18.04 9.67 4.28 3.13 2.44 1.82 26.09 19.92 9.72 3.92 2.72 1.99 1.35
Exec max [ms] 64.92 45.73 27.55 13.49 10.53 8.25 6.24 53.36 36.22 22.13 11.49 7.98 6.59 4.76
Exec median [ms] 53.5 35.74 18.51 9.05 6.53 5.06 3.85 48.47 30.87 17.57 8.23 5.7 4.54 3.03
Comm min [ms] 20.7 15.38 6.72 5.62 3.57 4.03 2.51 9.28 8.5 3.73 2.48 2.04 1.18 2.45
Comm max [ms] 38.73 29.49 21 18.46 14.83 12.97 11.32 19.36 18.78 17.71 15.36 11.59 8.53 10.16
Comm median [ms] 29.48 24.56 16.17 14.75 11.28 9.78 7.99 16.17 15.01 14.41 12.17 8.96 6.62 6.13
Mean P2P msg size [kB] 2 390 1 460 957 480 302 213 153 1 310 848 505 260 178 137 105

CER median 0.55 0.69 0.87 1.63 1.73 1.93 2.08 0.33 0.49 0.82 1.48 1.57 1.46 2.02

4.2.1 Implementation

A compressed storage format must be chosen for the sparse
matrix so that the SpMVM can be carried out efficiently.
On multicore CPUs, the standard Compressed Row Storage
(CRS) format is typically a good choice. It allows for a com-
pact implementation of the kernel that enables to exploit the
relevant bottleneck (memory bandwidth) in many cases (see
Listing 1 of Table 3). CRS requires one-dimensional arrays
for matrix entries (valA[]), column indices (colIdxA[]),
and row pointers (rowPtrA[]). If the matrix entries are in
double precision and the indices are 32-bit integers, the min-
imum code balance for CRS-SpMVM is 6 byte/flop7 [32],
[33].

In the MPI-parallel SpMVM implementation, contiguous
blocks of matrix rows (and corresponding LHS and RHS
vectors) are assigned to the processes so that the number
of matrix nonzeros per process is as balanced as possible.
Each process can compute the part of the SpMVM for
which it already holds the LHS and RHS entries right
away. Matrix entries outside of this column range require
communication of the corresponding RHS values. Splitting
the operation into “local” and “remote” kernels causes an
additional memory traffic of 16/nnzr byte per multiply-add
because the local result vector must be updated twice in
memory [32].

Two different implementations were tested:

1) SPLIT-WAIT mode: Communication is initiated with
nonblocking MPI calls before the local SpMVM and
finalized after it. Only after the call to MPI_Wait
can the remote SpMVM kernel be executed. This al-
lows for overlapping communication with the local
SpMVM if the MPI implementation supports it; see
Listing 2 of Table 3.

2) NON-SPLIT mode: The full non-blocking remote
communication is initiated and finalized before the
local and remote SpMVM kernels are called. This
rules out any communication overlap by MPI; see
Listing 3 of Table 3. In this case, the two kernel
calls could be fused for improved computational
intensity, but we want to keep the properties of the

7. Per iteration, the kernel carries out 2 flops and causes a minimum
data traffic of 8 byte for the matrix entry and 4 byte for the column
index.

underlying kernels unchanged for the experiments
shown here.

4.2.2 Test matrices
For benchmarking we use real, symmetric matrices that
describe a strongly correlated one-dimensional electron-
phonon system in solid state physics (Holstein-Hubbard
Hamiltonian) [34]. The key specifications of the matrices are
shown in Table 4. Due to the moderate number of nonzeros
per row (13 and 15, respectively), the minimum code bal-
ance is about 6.9 byte/flop and 7.1 byte/flop, respectively
(assuming optimal reuse of the right-hand side vector; see
also [33].). Overall we use four variants that emerge from
two different problem sizes (numbers of electrons, phonons,
and lattice sites) and two different orderings of the degrees
of freedom (phonons first vs. electrons first). The “phonons
first” numbering (labeled “pe”) produces a more scattered
matrix, whereas with “electrons first” (labeled “ep”) the
nonzeros are closer to the diagonal (see (a) and (b) of Figs. 3
and 4). The motivation behind the different problem sizes
(10.9 GB and 1.135 GB for the matrix, respectively) is that the
smaller problem can fit into the aggregate last-level cache of
the CPUs in the chosen clusters at a moderate node count,
removing the memory bandwidth bottleneck at the socket
level. The matrices were generated using the scalable matrix
collection (ScaMaC) library.8

4.2.3 Matrix topology and communication schemes
The communication characteristics of distributed-memory
SpMVM depend strongly on the structure of the sparse
matrix. Thus we expect the pe versions of the Hamiltoni-
ans to have larger communication overhead. The sparsity
pattern impacts the node-level performance and bandwidth
saturation as well, however, due to the indirect access to
the RHS vector. Table 5 shows execution and communica-
tion properties of one SpMVM execution with the large pe
and ep matrices, respectively, for different numbers of MPI
processes on the SuperMUC-NG system. To keep the MPI
processes in lockstep, an MPI barrier was called before the

8. TheScaMaC library allows for scalable generation of large matri-
ces related to quantum physics applications. The open source imple-
mentation is available for download at https://bitbucket.org/essex/
matrixcollection/ and documentation of matrices can be found at
https://alvbit.bitbucket.io/scamac_docs/_matrices_page.html, respec-
tively.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 7

TABLE 5: Measured walltime minimum, maximum, and median for execution (rows 1–3) and communication (rows 4–6) of
one MPI-only SpMVM with the HHQ-large matrix on SuperMUC-NG, using strong scaling from 96 processes (two nodes)
up to 1296 processes (27 nodes) using barriers between successive SpMVs. Row 7 shows the mean per-process message
sizes (transmitted via rendezvous protocol at small processes count till eager limit), and the last row denotes the median
of the communication-to-execution time ratio (CER). Color coding is used as a guide to the eye (scale from white to pink).

Phase vs. Rank-order 96-pe 144-pe 240-pe 480-pe 720-pe 960-pe 1296-pe 96-ep 144-ep 240-ep 480-ep 720-ep 960-ep 1296-ep
Exec min [ms] 31.58 18.04 9.67 4.28 3.13 2.44 1.82 26.09 19.92 9.72 3.92 2.72 1.99 1.35
Exec max [ms] 64.92 45.73 27.55 13.49 10.53 8.25 6.24 53.36 36.22 22.13 11.49 7.98 6.59 4.76
Exec median [ms] 53.5 35.74 18.51 9.05 6.53 5.06 3.85 48.47 30.87 17.57 8.23 5.7 4.54 3.03
Comm min [ms] 20.7 15.38 6.72 5.62 3.57 4.03 2.51 9.28 8.5 3.73 2.48 2.04 1.18 2.45
Comm max [ms] 38.73 29.49 21 18.46 14.83 12.97 11.32 19.36 18.78 17.71 15.36 11.59 8.53 10.16
Comm median [ms] 29.48 24.56 16.17 14.75 11.28 9.78 7.99 16.17 15.01 14.41 12.17 8.96 6.62 6.13
Mean P2P msg size [kB] 2 390 1 460 957 480 302 213 153 1 310 848 505 260 178 137 105

CER median 0.55 0.69 0.87 1.63 1.73 1.93 2.08 0.33 0.49 0.82 1.48 1.57 1.46 2.02

4.2.1 Implementation

A compressed storage format must be chosen for the sparse
matrix so that the SpMVM can be carried out efficiently.
On multicore CPUs, the standard Compressed Row Storage
(CRS) format is typically a good choice. It allows for a com-
pact implementation of the kernel that enables to exploit the
relevant bottleneck (memory bandwidth) in many cases (see
Listing 1 of Table 3). CRS requires one-dimensional arrays
for matrix entries (valA[]), column indices (colIdxA[]),
and row pointers (rowPtrA[]). If the matrix entries are in
double precision and the indices are 32-bit integers, the min-
imum code balance for CRS-SpMVM is 6 byte/flop7 [32],
[33].

In the MPI-parallel SpMVM implementation, contiguous
blocks of matrix rows (and corresponding LHS and RHS
vectors) are assigned to the processes so that the number
of matrix nonzeros per process is as balanced as possible.
Each process can compute the part of the SpMVM for
which it already holds the LHS and RHS entries right
away. Matrix entries outside of this column range require
communication of the corresponding RHS values. Splitting
the operation into “local” and “remote” kernels causes an
additional memory traffic of 16/nnzr byte per multiply-add
because the local result vector must be updated twice in
memory [32].

Two different implementations were tested:

1) SPLIT-WAIT mode: Communication is initiated with
nonblocking MPI calls before the local SpMVM and
finalized after it. Only after the call to MPI_Wait
can the remote SpMVM kernel be executed. This al-
lows for overlapping communication with the local
SpMVM if the MPI implementation supports it; see
Listing 2 of Table 3.

2) NON-SPLIT mode: The full non-blocking remote
communication is initiated and finalized before the
local and remote SpMVM kernels are called. This
rules out any communication overlap by MPI; see
Listing 3 of Table 3. In this case, the two kernel
calls could be fused for improved computational
intensity, but we want to keep the properties of the

7. Per iteration, the kernel carries out 2 flops and causes a minimum
data traffic of 8 byte for the matrix entry and 4 byte for the column
index.

underlying kernels unchanged for the experiments
shown here.

4.2.2 Test matrices
For benchmarking we use real, symmetric matrices that
describe a strongly correlated one-dimensional electron-
phonon system in solid state physics (Holstein-Hubbard
Hamiltonian) [34]. The key specifications of the matrices are
shown in Table 4. Due to the moderate number of nonzeros
per row (13 and 15, respectively), the minimum code bal-
ance is about 6.9 byte/flop and 7.1 byte/flop, respectively
(assuming optimal reuse of the right-hand side vector; see
also [33].). Overall we use four variants that emerge from
two different problem sizes (numbers of electrons, phonons,
and lattice sites) and two different orderings of the degrees
of freedom (phonons first vs. electrons first). The “phonons
first” numbering (labeled “pe”) produces a more scattered
matrix, whereas with “electrons first” (labeled “ep”) the
nonzeros are closer to the diagonal (see (a) and (b) of Figs. 3
and 4). The motivation behind the different problem sizes
(10.9 GB and 1.135 GB for the matrix, respectively) is that the
smaller problem can fit into the aggregate last-level cache of
the CPUs in the chosen clusters at a moderate node count,
removing the memory bandwidth bottleneck at the socket
level. The matrices were generated using the scalable matrix
collection (ScaMaC) library.8

4.2.3 Matrix topology and communication schemes
The communication characteristics of distributed-memory
SpMVM depend strongly on the structure of the sparse
matrix. Thus we expect the pe versions of the Hamiltoni-
ans to have larger communication overhead. The sparsity
pattern impacts the node-level performance and bandwidth
saturation as well, however, due to the indirect access to
the RHS vector. Table 5 shows execution and communica-
tion properties of one SpMVM execution with the large pe
and ep matrices, respectively, for different numbers of MPI
processes on the SuperMUC-NG system. To keep the MPI
processes in lockstep, an MPI barrier was called before the

8. TheScaMaC library allows for scalable generation of large matri-
ces related to quantum physics applications. The open source imple-
mentation is available for download at https://bitbucket.org/essex/
matrixcollection/ and documentation of matrices can be found at
https://alvbit.bitbucket.io/scamac_docs/_matrices_page.html, respec-
tively.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 7

TABLE 5: Measured walltime minimum, maximum, and median for execution (rows 1–3) and communication (rows 4–6) of
one MPI-only SpMVM with the HHQ-large matrix on SuperMUC-NG, using strong scaling from 96 processes (two nodes)
up to 1296 processes (27 nodes) using barriers between successive SpMVs. Row 7 shows the mean per-process message
sizes (transmitted via rendezvous protocol at small processes count till eager limit), and the last row denotes the median
of the communication-to-execution time ratio (CER). Color coding is used as a guide to the eye (scale from white to pink).

Phase vs. Rank-order 96-pe 144-pe 240-pe 480-pe 720-pe 960-pe 1296-pe 96-ep 144-ep 240-ep 480-ep 720-ep 960-ep 1296-ep
Exec min [ms] 31.58 18.04 9.67 4.28 3.13 2.44 1.82 26.09 19.92 9.72 3.92 2.72 1.99 1.35
Exec max [ms] 64.92 45.73 27.55 13.49 10.53 8.25 6.24 53.36 36.22 22.13 11.49 7.98 6.59 4.76
Exec median [ms] 53.5 35.74 18.51 9.05 6.53 5.06 3.85 48.47 30.87 17.57 8.23 5.7 4.54 3.03
Comm min [ms] 20.7 15.38 6.72 5.62 3.57 4.03 2.51 9.28 8.5 3.73 2.48 2.04 1.18 2.45
Comm max [ms] 38.73 29.49 21 18.46 14.83 12.97 11.32 19.36 18.78 17.71 15.36 11.59 8.53 10.16
Comm median [ms] 29.48 24.56 16.17 14.75 11.28 9.78 7.99 16.17 15.01 14.41 12.17 8.96 6.62 6.13
Mean P2P msg size [kB] 2 390 1 460 957 480 302 213 153 1 310 848 505 260 178 137 105

CER median 0.55 0.69 0.87 1.63 1.73 1.93 2.08 0.33 0.49 0.82 1.48 1.57 1.46 2.02

4.2.1 Implementation

A compressed storage format must be chosen for the sparse
matrix so that the SpMVM can be carried out efficiently.
On multicore CPUs, the standard Compressed Row Storage
(CRS) format is typically a good choice. It allows for a com-
pact implementation of the kernel that enables to exploit the
relevant bottleneck (memory bandwidth) in many cases (see
Listing 1 of Table 3). CRS requires one-dimensional arrays
for matrix entries (valA[]), column indices (colIdxA[]),
and row pointers (rowPtrA[]). If the matrix entries are in
double precision and the indices are 32-bit integers, the min-
imum code balance for CRS-SpMVM is 6 byte/flop7 [32],
[33].

In the MPI-parallel SpMVM implementation, contiguous
blocks of matrix rows (and corresponding LHS and RHS
vectors) are assigned to the processes so that the number
of matrix nonzeros per process is as balanced as possible.
Each process can compute the part of the SpMVM for
which it already holds the LHS and RHS entries right
away. Matrix entries outside of this column range require
communication of the corresponding RHS values. Splitting
the operation into “local” and “remote” kernels causes an
additional memory traffic of 16/nnzr byte per multiply-add
because the local result vector must be updated twice in
memory [32].

Two different implementations were tested:

1) SPLIT-WAIT mode: Communication is initiated with
nonblocking MPI calls before the local SpMVM and
finalized after it. Only after the call to MPI_Wait
can the remote SpMVM kernel be executed. This al-
lows for overlapping communication with the local
SpMVM if the MPI implementation supports it; see
Listing 2 of Table 3.

2) NON-SPLIT mode: The full non-blocking remote
communication is initiated and finalized before the
local and remote SpMVM kernels are called. This
rules out any communication overlap by MPI; see
Listing 3 of Table 3. In this case, the two kernel
calls could be fused for improved computational
intensity, but we want to keep the properties of the

7. Per iteration, the kernel carries out 2 flops and causes a minimum
data traffic of 8 byte for the matrix entry and 4 byte for the column
index.

underlying kernels unchanged for the experiments
shown here.

4.2.2 Test matrices
For benchmarking we use real, symmetric matrices that
describe a strongly correlated one-dimensional electron-
phonon system in solid state physics (Holstein-Hubbard
Hamiltonian) [34]. The key specifications of the matrices are
shown in Table 4. Due to the moderate number of nonzeros
per row (13 and 15, respectively), the minimum code bal-
ance is about 6.9 byte/flop and 7.1 byte/flop, respectively
(assuming optimal reuse of the right-hand side vector; see
also [33].). Overall we use four variants that emerge from
two different problem sizes (numbers of electrons, phonons,
and lattice sites) and two different orderings of the degrees
of freedom (phonons first vs. electrons first). The “phonons
first” numbering (labeled “pe”) produces a more scattered
matrix, whereas with “electrons first” (labeled “ep”) the
nonzeros are closer to the diagonal (see (a) and (b) of Figs. 3
and 4). The motivation behind the different problem sizes
(10.9 GB and 1.135 GB for the matrix, respectively) is that the
smaller problem can fit into the aggregate last-level cache of
the CPUs in the chosen clusters at a moderate node count,
removing the memory bandwidth bottleneck at the socket
level. The matrices were generated using the scalable matrix
collection (ScaMaC) library.8

4.2.3 Matrix topology and communication schemes
The communication characteristics of distributed-memory
SpMVM depend strongly on the structure of the sparse
matrix. Thus we expect the pe versions of the Hamiltoni-
ans to have larger communication overhead. The sparsity
pattern impacts the node-level performance and bandwidth
saturation as well, however, due to the indirect access to
the RHS vector. Table 5 shows execution and communica-
tion properties of one SpMVM execution with the large pe
and ep matrices, respectively, for different numbers of MPI
processes on the SuperMUC-NG system. To keep the MPI
processes in lockstep, an MPI barrier was called before the

8. TheScaMaC library allows for scalable generation of large matri-
ces related to quantum physics applications. The open source imple-
mentation is available for download at https://bitbucket.org/essex/
matrixcollection/ and documentation of matrices can be found at
https://alvbit.bitbucket.io/scamac_docs/_matrices_page.html, respec-
tively.

April 26, 2022 31Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Performance: MPI parallel Sparse Matrix-Vector Multiplication
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 8

0 500 1 279

0

200

400

600

800

1 000

1 279

Receiver rank

S
e
n

d
e
r

ra
n

k

(a) pe order

0 500 1 279

Receiver rank

(b) ep order

0 500 1 000
0

100

200

300

400

Number of processes

P
e
rf

o
rm

a
n

c
e
,

P
[G

fl
o

p
/s

] pe-barrier

pe-no barrier

ep-barrier

ep-no barrier

(c) Non-split

0 500 1 000

Number of processes

pe-barrier

pe-no barrier

ep-barrier

ep-no barrier

(d) Split-wait

500 1 000
0

20

40

60

80

Number of processes

D
e
s
y

n
c

fa
c
to

r,
D

[%
]

pe-non-split

pe-split-wait

ep-non-split

ep-split-wait

(e) Desync speedup

Fig. 3: (a-b) The communication topology of HHQ-large matrices using periodic boundary conditions in the wider pe
order (left/right bandwidth of 41385344) and slimer ep order (left/right bandwidth of 12907776), respectively. (c-d) Strong
scaling performance for 10

6 iterations on SuperMUC-NG using NON-SPLIT and SPLIT-WAIT algorithms, respectively.
(e) Performance boost as a result of improved overlap in the absence of barriers in the NON-SPLIT and SPLIT-WAIT
implementation on the SuperMUC-NG system. Markers in black at 1280 processes mark performance and the D factor
for the NON-SPLIT algorithm on the Meggie system.

SpMV (the barrier time is not part of the reported communi-
cation time). The data shows that the more scattered pe ma-
trix clearly causes much higher communication overhead,
especially at lower process counts where pe incurs more
communication partners per rank than ep. It can be seen that
the communication overhead in SpMV is significant but not
dominant at 96 processes. The last row of the table shows
the median of the communication-to-execution time ratio
(CER), which can serve as a rough indicator of communi-
cation boundedness. The minimum, maximum, and median
numbers for execution and communication times indicate
that even in a single SpMV without desynchronization there
is considerable variation in both metrics across processes.

In order to fathom the consequences of desynchroniza-
tion, we compare the barrier version of the benchmark (i.e.,
a barrier after each SpMVM) with the barrier-free version.
Performance for the barrier version was calculated by sub-
tracting the actual barrier time (as determined by a separate
benchmark) from the measured walltime. Any observed
speedup of the barrier-free version must thus be caused by
automatic overlap of communication via desynchronization
of processes. Figures 3(c) and (d) show strong scaling per-
formance for the HHQ-large matrices on SuperMUC-NG.
The behavior of the split (c) and non-split (d) variants is
similar. Note that the best version (ep without barrier) is
strongly communication bound at 1296 processes: Assum-
ing a socket memory bandwidth of 100 GB/s, the Roofline
limit is 760 Gflop/s, while the observed performance is
only about 270 Gflop/s. The speedup D (defined in Sec-
tion 3) caused by bottleneck evasion via desynchronization
is shown in Fig. 3(e). Depending on the matrix structure
and the communication scheme, performance gains between
20% and 55% (out of a theoretical maximum of 100%) can
be observed. This goes with a significant improvement in
scalability.

Although the details of matrix partitioning and commu-
nication topology add a considerable amount of variation,
the speedup D shows the expected behavior along the

scaling curve: It starts out small because the communication
overhead is small (albeit significant), providing only minor
opportunity for overlapping. As the number of processes
grows, this benefit becomes larger until at some point
communication and computation take roughly the same
amount of time. This is when no further speedup can
be expected. Scaling up further, the benefit drops because
communication is dominant. One can also see that the non-
split communication scheme (circles and triangles) generally
shows higher speedup than the split-wait scheme (squares
and diamonds). This is expected because no-split has no
potential for asynchronous MPI communication in the lock-
step case; this leaves more opportunity for overlap in the
desynchronized case.

Note that the “slimmer” ep matrix with its smaller
communication radius supports stronger desynchronization
due to a lower idle wave velocity [5], [8]. This effect is
counteracted, however, by the smaller absolute communi-
cation overhead of ep, which is why no clear advantage
of ep in terms of overlap can be observed in Fig. 3(e).
Note also that particular process counts can interact with
the inherent structure of the matrix, which leads to more
or less favorable communication topologies and adds extra
variation to the scaling behavior. The general trend is similar
but less pronounced on the Meggie system, as shown by the
black markers in Fig. 3. This can be attributed to the larger
fraction of cores needed per ccNUMA domain to achieve
memory bandwidth saturation compared to SuperMUC-
NG.

In this experiment, the matrices were large enough to
keep the execution memory bound even at large scale,
which made memory bandwidth the relevant bottleneck for
desynchronization. The HHQ-small matrices in Table 4 fit
into the aggregate last-level cache (LLC) on 23 nodes and
beyond (for Meggie) and 18 nodes (for SuperMUC-NG),
respectively. The LLC shows much better bandwidth scal-
ability than the memory interface, so the bottleneck shifts to
the network communication for larger node counts. In Fig. 4

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 10

0 500 1 279

0

200

400

600

800

1 000

1 279

Receiver rank

Se
nd

er
ra

nk

(a) pe order

0 500 1 279

Receiver rank

(b) ep order

2
7
.8
%

2
1
.1
%

3
8
.3
%

3
6
.7
%

Memory-bound Communication-bound

Pe
rf

or
m

an
ce

,P
[G

flo
p/

s]

(c) Memory-bound performance (d) Communication-bound performance

6
.5
%

3
.3
%

6
.2
%

3
.9
%

0 0Meggie SuperMUC-NG Meggie SuperMUC-NG
100

200

300

20

30

40
pe-barrier-Meggie pe-barrier-free-Meggie
ep-barrier-Meggie ep-barrier-free-Meggie

pe-barrier-SuperMUC-NG pe-barrier-free-SuperMUC-NG
ep-barrier-SuperMUC-NG ep-barrier-free-SuperMUC-NG

Fig. 4: (a-b) Communication topology of HHQ-small-orderpe and HHQ-small-orderep Hamiltonian matrices. (c)
Performance (blue y-axis) and speedup for barrier-free (desynchronized) execution in the memory-bound case (60 processes
on Meggie and 96 processes on SuperMUC-NG) and in non-split mode. The percentage increments denote the speedup
of the no-barrier versions. (d) Same data but for the communication-bound case with performance on the red y-axis (1280
processes on Meggie and 1296 processes on SuperMUC-NG). 1

Pseudo implementation of parallel LBM

1: while iter nIters do
2: stream_collide_update (lattice, u_lid, omega);

3: set_boundary_condition (u_lid);

4: MPI_Isend ;
?

5: MPI_Irecv ;
?

6: MPI_Wait ;

7: ghost_cells_update ();

8: if ((iter % collective_step) == 0) then
9: MPI_Allreduce ;

10: end if
11: swap (local_src_lattice, local_dst_lattice) ;

12: end while
10

1
10

2
10

3
10

4
10

5
10

6
1

1.05

1.1

1.15

1.2

Collective step size

N
or

m
al

iz
e

pe
rf

or
m

an
ce

,P
n 202 ⇤ 677 ⇤ 202 302 ⇤ 402 ⇤ 227

227 ⇤ 302 ⇤ 402 202 ⇤ 202 ⇤ 677
152 ⇤ 152 ⇤ 1202 125 ⇤ 125 ⇤ 1728
102 ⇤ 102 ⇤ 2702 52 ⇤ 52 ⇤ 10802
Theoretical-sync

10
1

10
3

10
5

Collective step size

252 ⇤ 362 ⇤ 302
202 ⇤ 452 ⇤ 302
152 ⇤ 602 ⇤ 302
52 ⇤ 1802 ⇤ 302
130 ⇤ 130 ⇤ 130

Theoretical-sync

Fig. 5: Influence of the frequency of collectives (specifically MPI_Allreduce()) on LBM performance in 10
6
iterations

on 64 Meggie nodes (1280 MPI processes). Graphs are linear on the y-axis, and a base-10 log scale is used for the
x-axis. Performance is normalized to the case of one collective per 20 iterations. (left) Pseudocode of LBM algorithm:
Boundary layers are exchanged using non-blocking MPI routines, including (un)packing in between. (middle) Normalized
performance (speedup vs. smallest collective stepsize) vs. collective step size for constant overall problem size (8.37GB) but
different domain shapes, which causes different communication overhead. (right) Normalized performance for constant
CER but different shapes of the cross section nx · ny at constant overall problem size. A smaller problem size of 130

3

lattice cells is added to show the impact of higher CER (network-bound case). Finally, the black crosses show the
calculated speedup when subtracting the MPI_Allreduce time from the runtime for the problem size with the best
desynchronization speedup in each diagram.

shows that the actual time for the call does not play a role
here. In the experiment shown in Fig. 5(right), we kept the
CER constant and modified the shape of the nx ⇥ ny cross
section to check if this has an impact on the speedup, which
is not the case as expected. We also included a problem size
of 130

3, which fits into the aggregate LLC of the CPUs.
Since the LLC is bandwidth scalable, desynchronization
can only occur due to the communication bottleneck, and
a corresponding speedup of almost 10 % can be observed.
On SuperMUC (Fig. 6(right)), the behavior is similar to
Meggie, with a slighty reduced optimum CER of 0.75 at a
size of 202 ⇥ 677 ⇥ 202 (red circles), where a speedup via
desynchronization of close to 10 % can be achieved.

Note that even with automatic overlap, the impact of

communication overhead is still significant. In Fig. 6(left)
we show the actual asymptotic performance in MLUP/s in
absence of any collectives on the two systems for different
domain shapes. The maximum performance on both sys-
tems according to the Roofline model is 14 GLUP/s (Meg-
gie) and 12 GLUP/s (SuperMUC), respectively. The best ob-
served performance is significantly lower (8.5 GLUP/s and
7 GLUP/s), which shows that there is considerable residual
communication overhead.

—————

out the general behavior on Meggie and SuperMUC-
NG by reducing the frequency of collectives. It shows
how the performance alleviates and saturates at one point.
We influence the frequency of sync by tuning how often

High	matrix	
bandwidth	(pe)

Non-split	
communication	

scheme

Low	matrix	
bandwidth	(ep)

LARGE	COMMUNICATION	OVERHEAD

SLOW	SYNCHRONIZED	BASELINE

SLOW	IDLE	WAVE

Higher speedup with
automatic overlap

𝑫[%] =
𝑷𝒃𝒂𝒓𝒓𝒊𝒆𝒓_𝒇𝒓𝒆𝒆 = 𝑷𝒃𝒂𝒓𝒓𝒊𝒆𝒓

𝑷𝒃𝒂𝒓𝒓𝒊𝒆𝒓
× 100

April 26, 2022 32Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Performance: MPI parallel High Performance Conjugate Gradient

Large	amount	of	time	spent	in	the	MPI	library	is	not	necessarily	harmful	if	overlapping	useful	work

Better	speed-up	with	less-synchronizing	collective	variant	even	if	it	not	the	most	efficient	implementationIEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 16

1

323(256x512x320) 483(384x768x480) 643(512x1024x640) 963(768x1536x960) 1283(1024x2048x1280) 1443(1152x2304x1440)

0

200

400

600

800

A
ll

re
d
u
c
e

ru
n
ti

m
e

[s
]

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

0

100

200

300

323(384x384x288) 483(576x576x432) 643(768x768x576) 963(1152x1152x864)

0

200

400

600

Local (global) domain in each dimension

A
ll

re
d
u
c
e

ru
n
ti

m
e

[s
]

0

50

100

Fig. 13: Average, minimum, and maximum aggregated time spent in MPI_Allreduce versus implementation variants
and local domain size for (top) 1280 processes distributed on 64 Meggie nodes and (bottom) 1296 processes distributed on
27 SuperMUC-NG nodes. The total runtime was about 1800 s in all cases. Note the different y axis scaling in the left and
right parts of these plots (separated by a solid line).

1

323(256x512x320) 483(384x768x480) 643(512x1024x640) 963(768x1536x960) 1283(1024x2048x1280) 1443(1152x2304x1440)

0

0.05

0.1

0.15

0.2

R
u
n
ti

m
e

p
e
r

it
e
ra

ti
o
n

[s
]

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

0

0.5

1

1.5

323(384x384x288) 483(576x576x432) 643(768x768x576) 963(1152x1152x864)

0

0.05

0.1

0.15

Local (global) domain in each dimension

R
u
n
ti

m
e

p
e
r

it
e
ra

ti
o
n

[s
]

0

0.2

0.4

0.6

Fig. 14: Average runtime per HPCG iteration at fixed run time of 1800 s for MPI-parallelized (top) 1280 processes distributed
on 64 Meggie nodes and (bottom) 1296 processes distributed on 27 SuperMUC-NG nodes. The x-axis denotes local (global)
domain dimensions in x, y, and z directions. The legend represents diverse MPI_Allreduce algorithms. Note the different
y axis scalings left and right of the solid line.

with MPI_Irecv/MPI_Send/MPI_Wait sequences. Com-
munication is symmetric throughout, excluding boundaries,
and the number of communication partners per process can
vary between 7 (corners) and 26 (interior).

In all our HPCG experiments, desynchronization across
MPI processes occurs automatically, i.e., it is not pro-
voked [40]. The propagation speed of idle waves within

back-to-back SpMVM operations using the HPCG matrix
was modeled and analyzed in [8].

4.6.2 Desynchronization and reduction algorithms
We chose HPCG to analyze design alternatives for the
MPI_Allreduce collective, especially with regard to
desynchronization. In HPCG, the collectives have a different

Local	(global)	domain	in	each	dimension

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 16

1

323(256x512x320) 483(384x768x480) 643(512x1024x640) 963(768x1536x960) 1283(1024x2048x1280) 1443(1152x2304x1440)

0

200

400

600

800

A
ll

re
d

u
c
e

ru
n

ti
m

e
[s

]

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

0

100

200

300

323(384x384x288) 483(576x576x432) 643(768x768x576) 963(1152x1152x864)

0

200

400

600

Local (global) domain in each dimension

A
ll

re
d

u
c
e

ru
n

ti
m

e
[s

]

0

50

100

Fig. 13: Average, minimum, and maximum aggregated time spent in MPI_Allreduce versus implementation variants
and local domain size for (top) 1280 processes distributed on 64 Meggie nodes and (bottom) 1296 processes distributed on
27 SuperMUC-NG nodes. The total runtime was about 1800 s in all cases. Note the different y axis scaling in the left and
right parts of these plots (separated by a solid line).

1

323(256x512x320) 483(384x768x480) 643(512x1024x640) 963(768x1536x960) 1283(1024x2048x1280) 1443(1152x2304x1440)

0

0.05

0.1

0.15

0.2

R
u

n
ti

m
e

p
e
r

it
e
ra

ti
o

n
[s

]

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

0

0.5

1

1.5

323(384x384x288) 483(576x576x432) 643(768x768x576) 963(1152x1152x864)

0

0.05

0.1

0.15

Local (global) domain in each dimension

R
u

n
ti

m
e

p
e
r

it
e
ra

ti
o

n
[s

]

0

0.2

0.4

0.6

Fig. 14: Average runtime per HPCG iteration at fixed run time of 1800 s for MPI-parallelized (top) 1280 processes distributed
on 64 Meggie nodes and (bottom) 1296 processes distributed on 27 SuperMUC-NG nodes. The x-axis denotes local (global)
domain dimensions in x, y, and z directions. The legend represents diverse MPI_Allreduce algorithms. Note the different
y axis scalings left and right of the solid line.

with MPI_Irecv/MPI_Send/MPI_Wait sequences. Com-
munication is symmetric throughout, excluding boundaries,
and the number of communication partners per process can
vary between 7 (corners) and 26 (interior).

In all our HPCG experiments, desynchronization across
MPI processes occurs automatically, i.e., it is not pro-
voked [40]. The propagation speed of idle waves within

back-to-back SpMVM operations using the HPCG matrix
was modeled and analyzed in [8].

4.6.2 Desynchronization and reduction algorithms
We chose HPCG to analyze design alternatives for the
MPI_Allreduce collective, especially with regard to
desynchronization. In HPCG, the collectives have a different

April 26, 2022 33Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Performance: MPI parallel Lattice Boltzmann fluid solver

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

Collective time step

𝑻𝒄𝒐𝒎𝒎
𝑻𝒄𝒐𝒎𝒑

High	collective	
frequency

NOISE	IS	NOT	DETRIMENTAL

Speedup with higher
automatic overlap

1

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 10

0 500 1 279

0

200

400

600

800

1 000

1 279

Receiver rank

Se
nd

er
ra

nk

(a) pe order

0 500 1 279

Receiver rank

(b) ep order

2
7
.8
%

2
1
.1
%

3
8
.3
%

3
6
.7
%

Memory-bound Communication-bound

Pe
rf

or
m

an
ce

,P
[G

flo
p/

s]

(c) Memory-bound performance (d) Communication-bound performance

6
.5
%

3
.3
%

6
.2
%

3
.9
%

0 0Meggie SuperMUC-NG Meggie SuperMUC-NG
100

200

300

20

30

40
pe-barrier-Meggie pe-barrier-free-Meggie
ep-barrier-Meggie ep-barrier-free-Meggie

pe-barrier-SuperMUC-NG pe-barrier-free-SuperMUC-NG
ep-barrier-SuperMUC-NG ep-barrier-free-SuperMUC-NG

Fig. 4: (a-b) Communication topology of HHQ-small-orderpe and HHQ-small-orderep Hamiltonian matrices. (c)
Performance (blue y-axis) and speedup for barrier-free (desynchronized) execution in the memory-bound case (60 processes
on Meggie and 96 processes on SuperMUC-NG) and in non-split mode. The percentage increments denote the speedup
of the no-barrier versions. (d) Same data but for the communication-bound case with performance on the red y-axis (1280
processes on Meggie and 1296 processes on SuperMUC-NG). 1

Pseudo implementation of parallel LBM

1: while iter nIters do
2: stream_collide_update (lattice, u_lid, omega);

3: set_boundary_condition (u_lid);

4: MPI_Isend ;
?

5: MPI_Irecv ;
?

6: MPI_Wait ;

7: ghost_cells_update ();

8: if ((iter % collective_step) == 0) then
9: MPI_Allreduce ;

10: end if
11: swap (local_src_lattice, local_dst_lattice) ;

12: end while
10

1
10

2
10

3
10

4
10

5
10

6
1

1.05

1.1

1.15

1.2

Collective step size

N
or

m
al

iz
e

pe
rf

or
m

an
ce

,P
n 202 ⇤ 677 ⇤ 202 302 ⇤ 402 ⇤ 227

227 ⇤ 302 ⇤ 402 202 ⇤ 202 ⇤ 677
152 ⇤ 152 ⇤ 1202 125 ⇤ 125 ⇤ 1728
102 ⇤ 102 ⇤ 2702 52 ⇤ 52 ⇤ 10802
Theoretical-sync

10
1

10
3

10
5

Collective step size

252 ⇤ 362 ⇤ 302
202 ⇤ 452 ⇤ 302
152 ⇤ 602 ⇤ 302
52 ⇤ 1802 ⇤ 302
130 ⇤ 130 ⇤ 130

Theoretical-sync

Fig. 5: Influence of the frequency of collectives (specifically MPI_Allreduce()) on LBM performance in 10
6
iterations

on 64 Meggie nodes (1280 MPI processes). Graphs are linear on the y-axis, and a base-10 log scale is used for the
x-axis. Performance is normalized to the case of one collective per 20 iterations. (left) Pseudocode of LBM algorithm:
Boundary layers are exchanged using non-blocking MPI routines, including (un)packing in between. (middle) Normalized
performance (speedup vs. smallest collective stepsize) vs. collective step size for constant overall problem size (8.37GB) but
different domain shapes, which causes different communication overhead. (right) Normalized performance for constant
CER but different shapes of the cross section nx · ny at constant overall problem size. A smaller problem size of 130

3

lattice cells is added to show the impact of higher CER (network-bound case). Finally, the black crosses show the
calculated speedup when subtracting the MPI_Allreduce time from the runtime for the problem size with the best
desynchronization speedup in each diagram.

shows that the actual time for the call does not play a role
here. In the experiment shown in Fig. 5(right), we kept the
CER constant and modified the shape of the nx ⇥ ny cross
section to check if this has an impact on the speedup, which
is not the case as expected. We also included a problem size
of 130

3, which fits into the aggregate LLC of the CPUs.
Since the LLC is bandwidth scalable, desynchronization
can only occur due to the communication bottleneck, and
a corresponding speedup of almost 10 % can be observed.
On SuperMUC (Fig. 6(right)), the behavior is similar to
Meggie, with a slighty reduced optimum CER of 0.75 at a
size of 202 ⇥ 677 ⇥ 202 (red circles), where a speedup via
desynchronization of close to 10 % can be achieved.

Note that even with automatic overlap, the impact of

communication overhead is still significant. In Fig. 6(left)
we show the actual asymptotic performance in MLUP/s in
absence of any collectives on the two systems for different
domain shapes. The maximum performance on both sys-
tems according to the Roofline model is 14 GLUP/s (Meg-
gie) and 12 GLUP/s (SuperMUC), respectively. The best ob-
served performance is significantly lower (8.5 GLUP/s and
7 GLUP/s), which shows that there is considerable residual
communication overhead.

—————

out the general behavior on Meggie and SuperMUC-
NG by reducing the frequency of collectives. It shows
how the performance alleviates and saturates at one point.
We influence the frequency of sync by tuning how often

April 26, 2022 34Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Performance: MPI parallel LULESH proxy application
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 14

0 500 999

0

200

400

600

800

999

Receiver rank

Se
nd

er
ra

nk

(a) Message profile

Time

(b) -c 0 -b 0

Time

(b) -c 4 -b 4

·106

Imbalance -b

El
em

en
ts

so
lv

ed
[z

/
s
]

(c) Performance (trigger load imbalance)

c = 0 c = 1 c = 2 c = 3 c = 4

0 4 0 4 0 4 0 4 0 4

0.4

0.6

0.8

1 403, reduction 403, no reduction
603, reduction 603, no reduction
903, reduction 903, no reduction

Fig. 9: (a) LULESH communication topology matrix. Maximum message sizes are {144 kB, 630 kB, 1.44MB 1.26MB} with
domain sizes of {40, 60, 90, 120}3 per process. (b) Performance in elements solved per second versus domain size without
load imbalance, comparing runs with reductions (squares) with runs without (circles) on 50 Meggie nodes (1000 processes).
(c) Impact of load imbalance on performance for 1000 MPI processes on 50 Meggie nodes. The imbalance is triggered among
domains via the -b flag and among regions within a domain via the -c flag.

·106

Imbalance -b

El
em

en
ts

so
lv

ed
[z

/
s
]

c = 0 c = 1 c = 2 c = 3 c = 4

0 4 0 4 0 4 0 4 0 4

0.4

0.6

0.8

1 403, reduction 403, no reduction
603, reduction 603, no reduction
903, reduction 903, no reduction

Fig. 10: Load imbalance impact (trigging cost -c and imbal-
ance -b flag, varying between zero to four) on performance
for 1000 MPI processes on 21 SuperMUC-NG nodes.

Recursive Coordinate Bisection (RCB) for load balancing, so
instead of a natural ordering of the processors, the blocks
are ordered by RCB ordering of the processors. We use four
levels of refinement for blocks (-num_refine 4). Blocks
communicate ghost values with neighboring blocks, which
can be at the same or a neighboring level (±1). This implies
that the length of cells in neighboring blocks can differ by
only a factor of two in each direction. The total 1263300
blocks increases in each time step from 64 to 806 (average
315.825) over the 200 time steps with maximum 30 blocks
on a processor at any time.

4.5.2 Message profile and idle wave propagation
(Need to add explanation of Fig 12) We choose
20 compute/communicate stages in each time step
(-stages_per_ts 20). Each cell contains 40 variables
to be computed and communicated, each of which is
evaluated independently (-num_vars 40). Two variables
will be communicated together instead of communicat-
ing all of the variables at once to allow shorter but
more variables (-comm_vars 2). The messages (the data
bundle from faces) are communicated in the x, y, and

then z directions with non-blocking point-to-point call se-
quences (MPI_Isend, MPI_Irecv, MPI_Waitany). The
message profile in Fig. 11 shows that there is abundant long-
distance communication, leading to a high idle wave speed.
With successive refinement steps, the characteristics of idle
wave progression change due to the changing message pro-
file (constant speed at the beginning but variable, inhomo-
geneous behavior with fast elimination at boundaries at the
end). This data suggests that overlapping communication
via desynchronization is probably not an expected scenario
in miniAMR. Need to reformulate

4.5.3 Memory bandwidth utilization timeline

TO BE ADDRESSED. The refinement and coarsening of
the blocks is driven by objects that are pushed through
the mesh. We use one object of the spheroid surface
type (-num_objects 1 -object 2 0 -0.01 -0.01
-0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0009 0.0009
0.0009). It can leave the mesh when its center hits an edge
of the unit cube. In each x, y, and z direction, the initial
object size from the center to edge is 0.0 and the position of
the object center is �0.01 with its zero rate of movement at
each timestep. The change in object size is 0.0009 in each
direction; this will be multiplied by the size of the timestep.
Small object and course grid at start; since the obstacle
grows the area, the mesh refines along the boundary of the
object (mesh finer grows) that makes the overall problem
size bigger and there comes a point where the mesh
doesn’t fit into the LLC any more. Fig. 11 shows memory
bandwidth utilization increases continuously as the sphere
expands in 200 iterations (--num_tsteps 200).

As the obstacle grows, load balancing is done alongside
local refinement and coarsening. Decomposition changes,
so does the communication topology. Interesting feature of
such applications is how the idle wave travels and balances
itself (a problem of consistent intrinsic load imbalances). The
topology matrix becomes skinnier for frequent rebalancing,
making easy visualization of the idle wave.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 14

0 500 999

0

200

400

600

800

999

Receiver rank

Se
nd

er
ra

nk

(a) Message profile

Time

(b) -c 0 -b 0

Time

(b) -c 4 -b 4

·106

Imbalance -b

El
em

en
ts

so
lv

ed
[z

/
s
]

(c) Performance (trigger load imbalance)

c = 0 c = 1 c = 2 c = 3 c = 4

0 4 0 4 0 4 0 4 0 4

0.4

0.6

0.8

1 403, reduction 403, no reduction
603, reduction 603, no reduction
903, reduction 903, no reduction

Fig. 9: (a) LULESH communication topology matrix. Maximum message sizes are {144 kB, 630 kB, 1.44MB 1.26MB} with
domain sizes of {40, 60, 90, 120}3 per process. (b) Performance in elements solved per second versus domain size without
load imbalance, comparing runs with reductions (squares) with runs without (circles) on 50 Meggie nodes (1000 processes).
(c) Impact of load imbalance on performance for 1000 MPI processes on 50 Meggie nodes. The imbalance is triggered among
domains via the -b flag and among regions within a domain via the -c flag.

·106

Imbalance -b
El

em
en

ts
so

lv
ed

[z
/
s
]

c = 0 c = 1 c = 2 c = 3 c = 4

0 4 0 4 0 4 0 4 0 4

0.4

0.6

0.8

1 403, reduction 403, no reduction
603, reduction 603, no reduction
903, reduction 903, no reduction

Fig. 10: Load imbalance impact (trigging cost -c and imbal-
ance -b flag, varying between zero to four) on performance
for 1000 MPI processes on 21 SuperMUC-NG nodes.

Recursive Coordinate Bisection (RCB) for load balancing, so
instead of a natural ordering of the processors, the blocks
are ordered by RCB ordering of the processors. We use four
levels of refinement for blocks (-num_refine 4). Blocks
communicate ghost values with neighboring blocks, which
can be at the same or a neighboring level (±1). This implies
that the length of cells in neighboring blocks can differ by
only a factor of two in each direction. The total 1263300
blocks increases in each time step from 64 to 806 (average
315.825) over the 200 time steps with maximum 30 blocks
on a processor at any time.

4.5.2 Message profile and idle wave propagation
(Need to add explanation of Fig 12) We choose
20 compute/communicate stages in each time step
(-stages_per_ts 20). Each cell contains 40 variables
to be computed and communicated, each of which is
evaluated independently (-num_vars 40). Two variables
will be communicated together instead of communicat-
ing all of the variables at once to allow shorter but
more variables (-comm_vars 2). The messages (the data
bundle from faces) are communicated in the x, y, and

then z directions with non-blocking point-to-point call se-
quences (MPI_Isend, MPI_Irecv, MPI_Waitany). The
message profile in Fig. 11 shows that there is abundant long-
distance communication, leading to a high idle wave speed.
With successive refinement steps, the characteristics of idle
wave progression change due to the changing message pro-
file (constant speed at the beginning but variable, inhomo-
geneous behavior with fast elimination at boundaries at the
end). This data suggests that overlapping communication
via desynchronization is probably not an expected scenario
in miniAMR. Need to reformulate

4.5.3 Memory bandwidth utilization timeline

TO BE ADDRESSED. The refinement and coarsening of
the blocks is driven by objects that are pushed through
the mesh. We use one object of the spheroid surface
type (-num_objects 1 -object 2 0 -0.01 -0.01
-0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0009 0.0009
0.0009). It can leave the mesh when its center hits an edge
of the unit cube. In each x, y, and z direction, the initial
object size from the center to edge is 0.0 and the position of
the object center is �0.01 with its zero rate of movement at
each timestep. The change in object size is 0.0009 in each
direction; this will be multiplied by the size of the timestep.
Small object and course grid at start; since the obstacle
grows the area, the mesh refines along the boundary of the
object (mesh finer grows) that makes the overall problem
size bigger and there comes a point where the mesh
doesn’t fit into the LLC any more. Fig. 11 shows memory
bandwidth utilization increases continuously as the sphere
expands in 200 iterations (--num_tsteps 200).

As the obstacle grows, load balancing is done alongside
local refinement and coarsening. Decomposition changes,
so does the communication topology. Interesting feature of
such applications is how the idle wave travels and balances
itself (a problem of consistent intrinsic load imbalances). The
topology matrix becomes skinnier for frequent rebalancing,
making easy visualization of the idle wave.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 14

0 500 999

0

200

400

600

800

999

Receiver rank

Se
nd

er
ra

nk

(a) Message profile

Time

(b) -c 0 -b 0

Time

(b) -c 4 -b 4

·106

Imbalance -b

El
em

en
ts

so
lv

ed
[z

/
s
]

(c) Performance (trigger load imbalance)

c = 0 c = 1 c = 2 c = 3 c = 4

0 4 0 4 0 4 0 4 0 4

0.4

0.6

0.8

1 403, reduction 403, no reduction
603, reduction 603, no reduction
903, reduction 903, no reduction

Fig. 9: (a) LULESH communication topology matrix. Maximum message sizes are {144 kB, 630 kB, 1.44MB 1.26MB} with
domain sizes of {40, 60, 90, 120}3 per process. (b) Performance in elements solved per second versus domain size without
load imbalance, comparing runs with reductions (squares) with runs without (circles) on 50 Meggie nodes (1000 processes).
(c) Impact of load imbalance on performance for 1000 MPI processes on 50 Meggie nodes. The imbalance is triggered among
domains via the -b flag and among regions within a domain via the -c flag.

·106

Imbalance -b

El
em

en
ts

so
lv

ed
[z

/
s
]

c = 0 c = 1 c = 2 c = 3 c = 4

0 4 0 4 0 4 0 4 0 4

0.4

0.6

0.8

1 403, reduction 403, no reduction
603, reduction 603, no reduction
903, reduction 903, no reduction

Fig. 10: Load imbalance impact (trigging cost -c and imbal-
ance -b flag, varying between zero to four) on performance
for 1000 MPI processes on 21 SuperMUC-NG nodes.

Recursive Coordinate Bisection (RCB) for load balancing, so
instead of a natural ordering of the processors, the blocks
are ordered by RCB ordering of the processors. We use four
levels of refinement for blocks (-num_refine 4). Blocks
communicate ghost values with neighboring blocks, which
can be at the same or a neighboring level (±1). This implies
that the length of cells in neighboring blocks can differ by
only a factor of two in each direction. The total 1263300
blocks increases in each time step from 64 to 806 (average
315.825) over the 200 time steps with maximum 30 blocks
on a processor at any time.

4.5.2 Message profile and idle wave propagation
(Need to add explanation of Fig 12) We choose
20 compute/communicate stages in each time step
(-stages_per_ts 20). Each cell contains 40 variables
to be computed and communicated, each of which is
evaluated independently (-num_vars 40). Two variables
will be communicated together instead of communicat-
ing all of the variables at once to allow shorter but
more variables (-comm_vars 2). The messages (the data
bundle from faces) are communicated in the x, y, and

then z directions with non-blocking point-to-point call se-
quences (MPI_Isend, MPI_Irecv, MPI_Waitany). The
message profile in Fig. 11 shows that there is abundant long-
distance communication, leading to a high idle wave speed.
With successive refinement steps, the characteristics of idle
wave progression change due to the changing message pro-
file (constant speed at the beginning but variable, inhomo-
geneous behavior with fast elimination at boundaries at the
end). This data suggests that overlapping communication
via desynchronization is probably not an expected scenario
in miniAMR. Need to reformulate

4.5.3 Memory bandwidth utilization timeline

TO BE ADDRESSED. The refinement and coarsening of
the blocks is driven by objects that are pushed through
the mesh. We use one object of the spheroid surface
type (-num_objects 1 -object 2 0 -0.01 -0.01
-0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0009 0.0009
0.0009). It can leave the mesh when its center hits an edge
of the unit cube. In each x, y, and z direction, the initial
object size from the center to edge is 0.0 and the position of
the object center is �0.01 with its zero rate of movement at
each timestep. The change in object size is 0.0009 in each
direction; this will be multiplied by the size of the timestep.
Small object and course grid at start; since the obstacle
grows the area, the mesh refines along the boundary of the
object (mesh finer grows) that makes the overall problem
size bigger and there comes a point where the mesh
doesn’t fit into the LLC any more. Fig. 11 shows memory
bandwidth utilization increases continuously as the sphere
expands in 200 iterations (--num_tsteps 200).

As the obstacle grows, load balancing is done alongside
local refinement and coarsening. Decomposition changes,
so does the communication topology. Interesting feature of
such applications is how the idle wave travels and balances
itself (a problem of consistent intrinsic load imbalances). The
topology matrix becomes skinnier for frequent rebalancing,
making easy visualization of the idle wave.

Overlap	effect	is	swamped	by	dominating	laggers	è no	benefit

Meggie@RRZE

SUPERMUC-NG

April 26, 2022 35Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Performance: Hybrid parallel Chebychev Filter Diagonalization

(a)	TOPI-EHN (b)	SPIN26

lower	code	balance

April 26, 2022 36Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

Performance: Hybrid parallel Chebychev Filter Diagonalization
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 20

0

1 000

2 000

3 000

4 000

Pe
rf

or
m

an
ce

[G
flo

p/
s]

M1-NON-SPLIT M1-SPLIT M1-PIPELINE M2-NON-SPLIT M2-SPLIT M2-PIPELINE M3-NON-SPLIT M3-SPLIT M3-PIPELINE

M4-NON-SPLIT M4-SPLIT M4-PIPELINE M5-NON-SPLIT M5-SPLIT M5-PIPELINE M6-NON-SPLIT M6-SPLIT M6-PIPELINE

M7-NON-SPLIT M7-SPLIT M7-PIPELINE M8-NON-SPLIT M8-SPLIT M8-PIPELINE M9-NON-SPLIT M9-SPLIT M9-PIPELINE

20:1 140:7 240:12 480:24 720:36 960:48 1280:64
0

2 000

4 000

6 000

Number of processes np : number of nodes nnodes = mxmymz

Fig. 16: Weak scaling performance of ChebFD with TOPI-ENH matrices in nine domain decompositions (M1–M9 in different
colors) with three communication schemes (NON-SPLIT in horizontal lines, SPLIT-WAIT in north east hatch lines, PIPELINE
in north west hatch lines) on the Meggie cluster. The number of MPI processes and compute nodes are shown on the x-axis.
Top: block vector size of nb = 2, bottom: nb = 32. The red line indicates performance with a barrier in each p iteration (see
text).

and {6.1, 5.1, 2.8} % with nb = 32 at 1280 MPI processes
on Meggie. The nb = 32 cases exhibit a stronger slowdown
from the non-split to the split version due to the dominant
data traffic from the vector blocks. The pipeline version is
always better than non-split in the synchronized scenario,
while in the naturally desynchronized case, the non-split
version is generally on par or even better for the more satu-
rating case. Contrarily, the non-split version suffers a higher
performance hit at nb = 2 with synchronizing barriers in
place.
Key takeaway: The 1-D domain decomposition is better
suited for automatic communication overlap by desyn-
chronization due to the lower idle wave speed. The do-
main decomposition that allows the lower idle wave speed
is better suited for automatic communication overlap.

SPIN matrices: Figure 17 shows strong scaling re-
sults for the SPIN matrices. Due to the working set
size, SPIN-28 can only be used on 36 nodes and more,
and SPIN-30 requires 64 nodes at least. Aggregate LLC
sizes of {0.05, 0.35, 0.6, 1.2, 1.8, 2.4, 3.2}GB are available
for {60, 120, 240, 480, 720, 960, 1280} MPI processes on the
Meggie system. As a consequence, contrarily to the SPIN28
and SPIN30 matrices, ChebFD with the SPIN26 matrix starts
to be cache bound from 720 processes up.

In NON-SPLIT mode and on 64 nodes on Meggie, we
observe {Texec [ms], Tcomm [ms], CER} = {0.6,0.41,0.68},
{2.38,1.86,0.78} and {10.2,7,0.69} for SPIN26, SPIN28 and
SPIN30, respectively. Similarly, the range of P2P message
sizes is {Vmin [B], Vmax [kB] (red)} = {16,130} (SPIN26),
{64,501.5} (SPIN28) and {32,1939} (SPIN30). These matri-
ces cause significantly more communication overhead than
TOPI-ENH, which leads to more opportunity for desynchro-
nized execution and communication overlap in the NON-
SPLIT case. The case with nb = 32 shows stronger socket-
level saturation here, so it has a higher potential for desyn-

chronization than nb = 2, which can be observed in the
data in Fig. 17. There is no prominent advantage of explicit
overlap (PIPELINE). In fact, the speedup from removing the
barrier synchronization in the non-split version grows with
increasing communication volume along the strong scaling
curve and at certain points it becomes competitive with the
PIPELINE version. Also, the barrier-free NON-SPLIT variant
is consistently worse for nb = 2, as expected.

Key takeaway: Overlapping via explicit programming tech-
niques may not be necessary for strongly bandwidth-
saturating code with large (but not dominant) communi-
cation overhead due to the presence of natural overlap by
desynchronization.

5 OUTLOOK AND FUTURE WORK

We choose multiple applications to prove the relevance and
applicability of laws driven by micro-benchmarks in the
context of realistic proxy applications and to broaden the
scope of idle waves case-study towards optimization. The
study correlates the desync properties with the performance
properties of the program. It guides the performance op-
timizations though desync by considering all cases either
the program has regular static or dynamic structure or
synchronization-avoiding design or even has collectives.

Other than the natural overlap with desync, most of
the time full advantage of communication schemes trying
to overlap work with non-blocking MPI routines cannot
be achieved, since this functionality is dependent on MPI
library implementation and particular hardware as well. An
alternative choice for async computations is to perform ex-
plicit programming, such as, using thread-splitting. Though
these intricate techniques have their own disadvantages.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, X XXXX 21

Number of processes np

Pe
rf

or
m

an
ce

[G
flo

p/
s]

60 120 240 480 720 960 1160 1280
0

200

400

600
SPIN26-nb2-NON-SPLIT SPIN26-nb32-NON-SPLIT SPIN26-nb2-SPLIT-WAIT SPIN26-nb32-SPLIT-WAIT SPIN26-nb2-PIPELINE

SPIN26-nb32-PIPELINE SPIN28-nb2-NON-SPLIT SPIN28-nb32-NON-SPLIT SPIN28-nb2-SPLIT-WAIT SPIN28-nb32-SPLIT-WAIT

SPIN28-nb2-PIPELINE SPIN28-nb32-PIPELINE SPIN30-nb2-NON-SPLIT SPIN30-nb32-NON-SPLIT SPIN30-nb2-SPLIT-WAIT

SPIN30-nb32-SPLIT-WAIT SPIN30-nb2-PIPELINE SPIN30-nb32-PIPELINE

Fig. 17: Strong scaling performance of ChebFD with SPIN matrices of diverse sizes (SPIN26 in gray, SPIN28 in red, SPIN30
in green background) using various communication schemes (NON-SPLIT, SPLIT-WAIT, PIPELINE in different colors) with
block vector sizes of nb = 2 (north east hatch lines) and nb = 32 (north west hatch lines) on the Meggie system. The red
line indicates performance with a barrier in each p iteration.

5.1 Key takeaways
5.2 Future work
Understanding of network bottleneck and their perfor-
mance impact in detail.

A message passing and threading simulator is in the
process that simulates large-scale applications by taking the
socket-level properties of the application into account. It can
explore these dynamics further in an even more controlled
environment by saving resources and time.

APPENDIX A
HPCG PERFORMANCE METRICS

Tables 10, 11 and 12 address additional performance metrics
outcome of HPCG program.

ACKNOWLEDGMENTS

This work was supported by KONWIHR, the Bavarian
Competence Network for Scientific High Performance Com-
puting in Bavaria, under project name “OMI4papps.” We
are indebted to LRZ Garching for granting CPU hours on
SuperMUC-NG. We wish to thank Andreas Alvermann for
his ScaMaC library.

REFERENCES

[1] A. Pieper, M. Kreutzer, A. Alvermann, M. Galgon, H. Fehske,
G. Hager, B. Lang, and G. Wellein, “High-performance implemen-
tation of Chebyshev filter diagonalization for interior eigenvalue
computations,” Journal of Computational Physics, vol. 325, pp. 226–
243, 2016.

[2] E. C. Carson, “Communication-avoiding krylov subspace methods
in theory and practice,” Ph.D. dissertation, UC Berkeley, PZ, Italy,
2015.

[3] P. Ghysels and W. Vanroose, “Hiding global synchronization
latency in the preconditioned Conjugate Gradient algorithm,”
Parallel Computing, vol. 40, no. 7, pp. 224–238, 2014, 7th Workshop
on Parallel Matrix Algorithms and Applications. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0167819113000719

[4] A. Afzal, G. Hager, and G. Wellein, “Propagation and Decay of
Injected One-Off Delays on Clusters: A Case Study,” in Proceedings
- IEEE International Conference on Cluster Computing, ICCC, vol.
2019-September. Institute of Electrical and Electronics Engineers
Inc., 2019, cRIS-Team Scopus Importer:2019-11-29.

[5] ——, “Desynchronization and Wave Pattern Formation in MPI-
Parallel and Hybrid Memory-Bound Programs,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), P. Sadayappan, B. L.
Chamberlain, G. Juckeland, and H. Ltaief, Eds., vol. 12151 LNCS.
Cham: Springer International Publishing, 2020, pp. 391–411, cRIS-
Team Scopus Importer:2020-07-10.

[6] M. Kreutzer, A. Pieper, G. Hager, G. Wellein, A. Alvermann, and
H. Fehske, “Performance engineering of the Kernel Polynomial
Method on large-scale CPU-GPU systems,” in 2015 IEEE Interna-
tional Parallel and Distributed Processing Symposium, May 2015, pp.
417–426.

[7] M. Kreutzer, D. Ernst, A. R. Bishop, H. Fehske, G. Hager, K. Naka-
jima, and G. Wellein, “Chebyshev filter diagonalization on modern
manycore processors and GPGPUs,” in High Performance Comput-
ing, R. Yokota, M. Weiland, D. Keyes, and C. Trinitis, Eds. Cham:
Springer International Publishing, 2018, pp. 329–349.

[8] A. Afzal, G. Hager, and G. Wellein, “Analytic Modeling of Idle
Waves in Parallel Programs: Communication, Cluster Topology,
and Noise Impact,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), B. L. Chamberlain, A.-L. Varbanescu, and H. L.
andPiotr Luszczek, Eds., vol. 12728 LNCS. Springer Science and
Business Media Deutschland GmbH, 2021, pp. 351–371, cRIS-Team
Scopus Importer:2021-08-20.

[9] X. Zhao, M. Jahre, and L. Eeckhout, “Hsm: A hybrid slowdown
model for multitasking gpus,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2020, pp. 1371–1385.

[10] A. Afzal, G. Hager, and G. Wellein, “Delay flow mechanisms on
clusters,” poster at EuroMPI 2019, September 10–13, 2019, Zurich,
Switzerland. [Online]. Available: https://hpc.fau.de/files/2019/
09/EuroMPI2019_AHW-Poster.pdf

[11] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing su-
percomputer performance: Achieving optimal performance on the
8,192 processors of ASCI Q,” in Supercomputing, 2003 ACM/IEEE
Conference. IEEE, 2003, pp. 55–55.

[12] T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner, J. Fier, R. Black-
more, P. Caffrey, B. Maskell, P. Tomlinson et al., “Improving the
scalability of parallel jobs by adding parallel awareness to the
operating system,” in Supercomputing, 2003 ACM/IEEE Conference.
IEEE, 2003, pp. 10–10.

[13] P. Terry, A. Shan, and P. Huttunen, “Improving application per-
formance on HPC systems with process synchronization.” Linux
Journal, no. 127, pp. 68–71, 2004.

[14] R. Gioiosa, F. Petrini, K. Davis, and F. Lebaillif-Delamare, “Anal-
ysis of system overhead on parallel computers,” in Proceedings of
the Fourth IEEE International Symposium on Signal Processing and
Information Technology. IEEE, 2004, pp. 387–390.

[15] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “System
noise, OS clock ticks, and fine-grained parallel applications,” in

Pipeline mode better
(non-split suffer more for

more saturating case)

Better	overlap	for	decomposition	
of	slow	ide	wave	and	large	
communication	overhead

Overlapping	via	explicit	
programming	techniques	may

not	be	necessary	for	
strongly	bandwidth-saturating	

code	with	large	(but	not	dominant)	
communication	overhead	

due	to	the	presence	of		natural	
overlap	by	desynchronization	

WITH BARRIER

WITHOUT BARRIER
Non-split mode on-par with
pipeline mode or even better

for more saturating case

𝐓𝐎𝐏𝐈, 𝒏𝒃 = 𝟐

𝐓𝐎𝐏𝐈, 𝒏𝒃 = 𝟑𝟐

April 26, 2022 37Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

On-going and future work

Machine +
application
knowledge

Graphical trace visualization

DisCostiC::Indextype left, right;
DisCostiC::Datatype phi[1002][1002];
DisCostiC::Event irecv, send, wait1, wait2 comp, comp2;
// all events initialize to DisCostiC::InvalidID
for (auto rank : DisCostiC::getRange(100))
{

DisCostiC->Rank_Init(rank);
left = rank - 1;
right = rank + 1;
if (left < 0)

left = Discotic::NULLtype;
if (left > 999)

right = DisCostiC::NULLtype;
for (auto timestep : DisCostiC::getRange(10000))
{

comp = DisCostiC->Comp(”LBL: JACOBI2D", comp2);
if (rank > 0)
{
irecv = DisCostiC->Irecv(&phi[0][1], 1000, left, comp,

&req_left);
send = DisCostiC->Send(&phi[1][1], 1000, left, comp);
wait1 = DisCostiC->Wait(&req_left,&status_left);
}
else if (rank < 99)
{
irecv = DisCostiC->Irecv(&phi[999][1], 1000, right, comp,

&req_right);
send = DisCostiC->Send(&phi[998][1], 1000, right, comp);
wait2 = DisCostiC->Wait(&req_right, &status_right);
}
comp2 = DisCostiC->Comp(”LBL: COPY", wait1, wait2);

}
DisCostiC->Rank_Finalize();

}

DisCostiC:	A	DSL-based	Parallel	Simulation	Framework

Using	First-Principles	Analytic	Performance	Models

SIMULATION	
FRAMEWORK

April 26, 2022 38Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

On-going and future work

Physical	Oscillator	Model	For	

Parallel	Distributed	Computing

SIMULATION	
FRAMEWORK PHYSICAL	

OSCILLATOR	MODEL

April 26, 2022 39Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

On-going and future work

SIMULATION	
FRAMEWORK PHYSICAL	

OSCILLATOR	MODEL

MACHINE	LEARNING	
TECHNIQUES	AND	
ADVANCED	METRICS	

FOR	ANALYSIS

Machine	Learning	Techniques	And	Advanced	

Metrics	For	Analysis	Of	Parallel	Programs

April 26, 2022 40Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

On-going and future work

Threshold	Of	Applying	Scheduling	

Techniques	For	Load	Balancing

SIMULATION	
FRAMEWORK PHYSICAL	

OSCILLATOR	MODEL

MACHINE	LEARNING	
TECHNIQUES	AND	
ADVANCED	METRICS	

FOR	ANALYSIS

THRESHOLD	FOR	
LOAD	BALANCING	

April 26, 2022Ayesha Afzal <ayesha.afzal@fau.de> | NHR PerfLab Seminar 2022

The Role of Idle Waves in Modeling and
Optimization of Parallel Programs

Ayesha Afzal
ayesha.afzal@fau.de

Georg Hager, Gerhard Wellein

Title

Contact

Acknowledgement

OMI4papps

