
Slurm - Best Practices

HPC Café, 12 April 2022

HPC Services, NHR@FAU

Slurm Basics

12 April 2022 3HPC Café | NHR@FAU | Slurm

Slurm documentation

▪ NHR@FAU

▪ General: https://hpc.fau.de/systems-services/systems-documentation-instructions/batch-

processing/

▪ Cluster-specific: https://hpc.fau.de/systems-services/systems-documentation-

instructions/clusters/

▪ Official Slurm documentation

▪ Separate documentation for every command and the available options:

https://slurm.schedmd.com/man_index.html

▪ Slurm commands and their counterparts in different batch systems:

https://slurm.schedmd.com/rosetta.pdf

▪ Slurm tutorials: https://slurm.schedmd.com/tutorials.html

https://hpc.fau.de/systems-services/systems-documentation-instructions/batch-processing/
https://hpc.fau.de/systems-services/systems-documentation-instructions/clusters/
https://slurm.schedmd.com/man_index.html
https://slurm.schedmd.com/rosetta.pdf
https://slurm.schedmd.com/tutorials.html

12 April 2022 4HPC Café | NHR@FAU | Slurm

Terminology

▪ Job: allocation of resources assigned to a user for a specified amount of time

▪ Partition: set of nodes grouped by specific property (e.g. hardware); can have

constraints on job size, time limit, permitted users, etc. → queues

▪ Task: how many instances of your command are executed; normally corresponds

to number of MPI processes

▪ Jobstep: set of tasks within a job; a job can contain multiple job steps executing

sequentially or in parallel

▪ QoS (Quality-of-Service): limits set on a per-group-basis (walltime, #GPUs, running

jobs per group,…)

▪ GRES: generic resources, here: GPUs

▪ CPU: equivalent to hyperthread if configured; otherwise equivalent to core

12 April 2022 5HPC Café | NHR@FAU | Slurm

Ways to get a job allocation

▪ sbatch: submit a job script for later execution; script will contain (srun)

commands to execute jobsteps

▪ salloc: allocate resources in real time and spawn a shell when resources are

available → interactive job

▪ srun: initiate a job step (run an application) in real time, either interactively or

within a job script; if not issued within an allocation, a new allocation will be created

automatically → interactive job

! On TinyGPU and TinyFat: use command-wrapper for all commands, e.g.
sbatch.tinygpu/sbatch.tinyfat, salloc.tinygpu/salloc.tinyfat, …!

12 April 2022 6HPC Café | NHR@FAU | Slurm

Ways to get a job allocation

-c | --cpus-per-task Number of logical CPUs (hardware threads) per task

--gres Request nodes with e.g. GPUs

-J | --job-name Name of job

--mail-user Mail address for notifications

--mail-type When to send mail notifications (BEGIN, END, FAIL, ALL)

-N | --nodes Number of compute nodes

-n | --ntasks Number of tasks (MPI processes)

--ntasks-per-node Number of tasks per node

-p | --partition Partition to be used for job

-t | --time Max. wall-clock time for job

$ sbatch [options] jobscript

$ salloc [options]

12 April 2022 7HPC Café | NHR@FAU | Slurm

Job script - general structure

#!/bin/bash -l

#

#SBATCH --nodes=2

#SBATCH --ntasks=20

#SBATCH --time=01:00:00

#SBATCH --job-name=myJob

#SBATCH --export=NONE

export SLURM_EXPORT_ENV=ALL

module load <modules>

srun ./application [options]

12 April 2022 8HPC Café | NHR@FAU | Slurm

Job script - general structure

#!/bin/bash -l

#

#SBATCH --nodes=2

#SBATCH --ntasks=20

#SBATCH --time=01:00:00

#SBATCH --job-name=myJob

#SBATCH --export=NONE

export SLURM_EXPORT_ENV=ALL

module load <modules>

srun ./application [options]

Script is interpreted as a bash script;
-l is necessary for correct module

initalization!

12 April 2022 9HPC Café | NHR@FAU | Slurm

Job script - general structure

#!/bin/bash -l

#

#SBATCH --nodes=2

#SBATCH --ntasks=20

#SBATCH --time=01:00:00

#SBATCH --job-name=myJob

#SBATCH --export=NONE

export SLURM_EXPORT_ENV=ALL

module load <modules>

srun ./application [options]

Use #SBATCH to preface options;

All #SBATCH lines have to follow

uninterrupted;
Comments start with # and do not

count as interruptions

12 April 2022 10HPC Café | NHR@FAU | Slurm

Job script - general structure

#!/bin/bash -l

#

#SBATCH --nodes=2

#SBATCH --ntasks=20

#SBATCH --time=01:00:00

#SBATCH --job-name=myJob

#SBATCH --export=NONE

export SLURM_EXPORT_ENV=ALL

module load <modules>

srun ./application [options]

Do not export environment from

submitting shell

Enable export of environment from
this script to srun;

equivalent to
unset SLURM_EXPORT_ENV

12 April 2022 11HPC Café | NHR@FAU | Slurm

Job script - general structure

#!/bin/bash -l

#

#SBATCH --nodes=2

#SBATCH --ntasks=20

#SBATCH --time=01:00:00

#SBATCH --job-name=myJob

#SBATCH --export=NONE

export SLURM_EXPORT_ENV=ALL

module load <modules>

srun ./application [options]

Load necessary modules

Execute parallel application with srun

12 April 2022 12HPC Café | NHR@FAU | Slurm

Environment export

▪ Environment of submitting shell is by default propagated via sbatch/salloc to job

→ Includes all loaded modules and other environment settings from frontend!

→ can lead to unexpected behavior of jobs/applications, which is difficult to reproduce

→ use sbatch option --export=none to prevent export

▪ Caveat: environment of job script (e.g. loaded modules) has to be propagated to

jobstep

→ use export SLURM_EXPORT_ENV=ALL inside job script to enable export again

▪ Currently only available for sbatch, not for interactive jobs via salloc!

→ take care what modules and environment are loaded in your submitting shell!

→ module purge

12 April 2022 13HPC Café | NHR@FAU | Slurm

Managing jobs

▪ squeue: information about jobs in scheduling queue (only your own jobs)

▪ sinfo: reports the state of partitions and nodes

▪ scancel: cancel a pending or running job

▪ sattach: attach standard input, output, and error plus signal capabilities to a

currently running job

▪ scontrol: mostly administrator tool, but can be used as a user for e.g. scontrol

show job=<jobId>

▪ sacct: report job accounting information about active and completed jobs of user

▪ sstat: get information about resource utilization of running jobs

12 April 2022 14HPC Café | NHR@FAU | Slurm

Converting PBS/Torque to Slurm

qsub → sbatch

qsub -I → salloc

qstat → squeue

qstat -f JOBID → scontrol show job=JOBID

qdel → scancel

$PBS_O_WORKDIR → $SLURM_SUBMIT_DIR

$PBS_JOBID → $SLURM_JOB_ID

cat $PBS_NODEFILE → scontrol show hostnames $SLURM_JOB_NODELIST

https://hpc.fau.de/2021/10/12/transition-of-rtx2080ti-and-v100-nodes-tg06x-tg07x-in-tinygpu-from-ubuntu-18-04-with-torque-to-ubuntu-20-04-with-slurm/

https://hpc.fau.de/2021/10/12/transition-of-rtx2080ti-and-v100-nodes-tg06x-tg07x-in-tinygpu-from-ubuntu-18-04-with-torque-to-ubuntu-20-04-with-slurm/

Running jobs - Best practices and examples

12 April 2022 16HPC Café | NHR@FAU | Slurm

Best practices

▪ Use interactive jobs for debugging/testing.

▪ Use batch jobs with job scripts for production work.

▪ Use #SBATCH in the jobscript instead of specifying sbatch options on command

line for better reproducibility.

▪ Be as concise as possible with resource allocation and do not over-specify.

▪ Even for exclusive nodes or automatically allocated cores, you have to specify
--ntasks, otherwise ntasks=1 by default.

12 April 2022 17HPC Café | NHR@FAU | Slurm

Node sharing

▪ Some clusters (TinyX, Alex) allow sharing of nodes among jobs; GPUs are always

exclusive to one job.

▪ User processes are confined to the respective resources via cgroups.

▪ Performance may be impacted due to shared infrastructure of node (network,

SSD,...).

▪ TinyGPU/Alex: share is based on number of GPUs that are requested; respective

share of host CPUs/memory is allocated automatically

▪ TinyFat: either request amount of main memory (--mem=… in MB) or number of

CPUs; share of other resource is allocated automatically

▪ See cluster documentation for amount of resources per GPU!

12 April 2022 18HPC Café | NHR@FAU | Slurm

Interactive jobs

▪ Use for interactive debugging or testing of your application

▪ When resources are available, this will open an interactive Shell on first node of the

allocation.

▪ Start application/jobsteps with srun and corresponding options; also a subset of

allocated resources can be used.

▪ Job will be canceled when interactive shell is closed/disconnected.

$ salloc.tinygpu --gres=gpu:1 --time=01:00:00

$ salloc --nodes=1 --time=01:00:00

! Number of concurrent interactive jobs and/or runtime of interactive jobs may be

limited on some clusters. !

Do not use --ntasks-per-socket: unpredictable behavior.

Do not use --ntasks-per-board: not functional.

12 April 2022 19HPC Café | NHR@FAU | Slurm

MPI jobs

▪ We recommend using srun and not mpirun to start the parallel application!

▪ Two ways to request resources:

▪ --ntasks: works well if you want a multiple of the available cores per node

(→ full nodes)

▪ --nodes and --ntasks-per-node: Slurm will set --ntasks automatically if

not specified; can also be used to only partially allocate nodes

! !

12 April 2022 20HPC Café | NHR@FAU | Slurm

MPI jobs - Job script

#!/bin/bash -l

#

#SBATCH --ntasks=80 # 4 full nodes on meggie

#SBATCH --time=08:00:00

#SBATCH --job-name=TestJobMPI

#SBATCH --export=NONE

export SLURM_EXPORT_ENV=ALL

module load <modules>

srun ./mpi_application [options]

12 April 2022 21HPC Café | NHR@FAU | Slurm

MPI jobs - Job script

#!/bin/bash -l

#

#SBATCH --nodes=4

#SBATCH --ntasks-per-node=72 # full node on fritz

#SBATCH --time=08:00:00

#SBATCH --job-name=TestJobMPI

#SBATCH --export=NONE

export SLURM_EXPORT_ENV=ALL

module load <modules>

srun ./mpi_application [options]

12 April 2022 22HPC Café | NHR@FAU | Slurm

MPI jobs - mpirun

▪ For pure MPI jobs, mpirun usually works without problem.

▪ Slurm instructs mpirun about number of processes and node hostnames for both

IntelMPI and OpenMPI.

Do NOT add options like -n <number_of_processes> or any other option

defining the number of processes or nodes to mpirun!

This will mess with the automatic affinity settings of the processes!! !

12 April 2022 23HPC Café | NHR@FAU | Slurm

MPI jobs - Process placement

▪ Optimal placement of MPI processes is dependent on the application. For optimal

performance, you might need to adjust the automatic binding.

▪ Automatic binding behavior can differ between type of MPI (IntelMPI vs. OpenMPI),

version of the MPI library and Slurm version.

▪ Resulting distribution of processes may differ between srun and mpirun.

▪ To check process binding use

▪ --cpu-bind=verbose for srun

▪ --report-bindings for OpenMPI-mpirun

▪ export I_MPI_DEBUG=5 for IntelMPI-mpirun

Further information: https://hpc-wiki.info/hpc/Binding/Pinning

https://hpc-wiki.info/hpc/Binding/Pinning

12 April 2022 24HPC Café | NHR@FAU | Slurm

MPI jobs - Process placement

Two cases have to be distinguished:

▪ Full nodes: all available cores are used by jobstep

→ Process binding is done correctly and automatically by srun and mpirun

▪ Partially-used nodes: some (automatically) allocated cores are not used by jobstep

→ Process binding is not done automatically by srun

→ Use srun --cpu-bind=cores ./mpi_application

12 April 2022 25HPC Café | NHR@FAU | Slurm

Shared-memory jobs

▪ Slurm is not OpenMP aware → $OMP_NUM_THREADS must be set manually

▪ For correct resource allocation in Slurm, use --cpus-per-task to define the

number of OMP threads

▪ If your application does not use OpenMP but other shared-memory parallelization,

please consult the application manual on how to specify number of threads.

12 April 2022 26HPC Café | NHR@FAU | Slurm

Shared memory/OpenMP jobs - Thread pinning

▪ Slurm will not pin (OpenMP) threads! This has to be done manually, e.g. by setting

$OMP_PLACES=cores, $OMP_PROC_BIND=spread

▪ This is a solid starting point, but optimal pinning always depends on the

application! It is good practice to perform some test runs and scaling tests!

Further information: https://hpc-wiki.info/hpc/Binding/Pinning

https://hpc-wiki.info/hpc/Binding/Pinning

12 April 2022 27HPC Café | NHR@FAU | Slurm

Shared-memory/OpenMP jobs

#!/bin/bash -l

#SBATCH --nodes=1 # always single-node jobs

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=64 # full node of TinyFat

#SBATCH --time=04:00:00

#SBATCH --job-name=TestJobMPI

#SBATCH --export=NONE

export SLURM_EXPORT_ENV=ALL

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

module load <modules>

export OMP_PLACES=…; export OMP_PROC_BIND=…

./openmp_application

12 April 2022 28HPC Café | NHR@FAU | Slurm

Hybrid MPI/OpenMP jobs

▪ Combination of shared-memory and MPI jobs as discussed previously:

▪ Specify --cpus-per-task; set $OMP_NUM_THREADS to this value

▪ Pinning of threads is necessary and not done automatically

▪ Correct binding of MPI processes is especially important for hybrid applications

▪ Binding of MPI processes needs some manual intervention:

▪ srun: option --cpu-bind=cores necessary!

▪ OpenMPI with mpirun: automatic process binding is not correct for hybrid case!

→ Use options --map-by socket:PE=${OMP_NUM_THREADS} and --bind-to core

▪ Nodes with SMT enabled (TinyFat) use hyperthreads by default for hybrid/shared-
memory applications; use #SBATCH --hint=nomultithread to prevent this

12 April 2022 29HPC Café | NHR@FAU | Slurm

Hybrid MPI/OpenMP jobs

#!/bin/bash -l

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=2

#SBATCH --cpus-per-task=10 # full node of Meggie

#SBATCH --time=04:00:00

#SBATCH --job-name=TestJobHybrid

#SBATCH --export=NONE

export SLURM_EXPORT_ENV=ALL

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

module load <modules>

export OMP_PLACES=… ; export OMP_PROC_BIND=…

srun --cpu-bind=cores./hybrid_application

12 April 2022 30HPC Café | NHR@FAU | Slurm

GPU jobs

▪ Previously discussed resource specifications are also applicable for GPU jobs

▪ Amount of host resources is determined by requested number of GPUs

▪ Share of host resources per GPU cannot be exceeded

▪ --ntasks/--cpus-per-task still have to be requested! Per default ntasks=1

▪ How to request GPUs?

▪ --gres=gpu:<number> type is not important (only on clusters with work/any partition)

▪ --gres=gpu:<type>:<number> request specific type

▪ --gres=gpu:<type>:<number> --partition=<type> for V100/A100/A40 GPUs

12 April 2022 31HPC Café | NHR@FAU | Slurm

GPU jobs

#!/bin/bash -l

#

#SBATCH --ntasks=16 #share for one GPU on Alex

#SBATCH --time=06:00:00

#SBATCH --gres=gpu:a40:1

#SBATCH --partition=a40

#SBATCH --export=NONE

export SLURM_EXPORT_ENV=ALL

module load <modules>

srun ./mpi_cuda_application

Advanced usage and other tips

12 April 2022 33HPC Café | NHR@FAU | Slurm

Why is my job not running?

▪ High workload on the cluster → check node status via sinfo

▪ You are running into a group/user resource limit → look at “Reason” in squeue

output (Resources, AssocGrpNodeLimit, AssocGrpGRES,…)

▪ You and/or your group have used many resources over the last days and your
fairshare is low → sshare -l (below 0.5 if usage > allocated share)

▪ What to do?

▪ Be patient! When there is a high load on the cluster, it might simply take a few hours for

your job to start.

▪ Check via scontrol show job=JOBID when your job is probably scheduled to start

(no guarantee!).

▪ Check job priority → sprio (depends on time spend in queue/age, fairshare and job size)

12 April 2022 34HPC Café | NHR@FAU | Slurm

Monitor your jobs

You can connect to nodes when job is running to check it interactively:

▪ CPU-only jobs:

▪ GPU jobs:

▪ Check on which node job is running with squeue.

▪ ssh <nodename>

▪ In case you have more than one job an a node, you will end up in the allocation with the

most recently started jobstep; this currently cannot be changed.

▪ (This should be obsolete with Slurm v22.05 and the above srun command should work

for all jobs.)

▪ ClusterCockpit: https://monitoring.nhr.fau.de/ (currently only emmy, meggie, woody & fritz)

$ srun --jobid=<jobID> --overlap --pty /bin/bash -l

https://monitoring.nhr.fau.de/

12 April 2022 35HPC Café | NHR@FAU | Slurm

How to group work together

▪ Many jobs that only differ by some index → Array jobs

▪ Jobs are differentiable by $SLURM_ARRAY_TASK_ID

▪ Submit with #SBATCH --array=1-10

▪ Run several jobsteps in parallel

▪ Every srun must only use subset of allocated resources, defined via options

▪ Total requested resources of job can not be exceeded

▪ Run several jobsteps sequentially via srun

▪ srun --multi-prog (see srun man page)

#SBATCH --ntasks=3

srun -n 2 ./application1 &

srun -n 1 ./application2 &

wait

12 April 2022 36HPC Café | NHR@FAU | Slurm

Job dependencies

▪ Can be useful for long-running sequences of jobs.

▪ Jobs will be set on hold until specified dependencies are satisfied.

Available types:

▪ after: job can begin execution after the specified jobs have begun execution.

▪ afterany: job can begin execution after the specified jobs have terminated.

▪ afternotok: job can begin execution after the specified jobs have terminated in

some failed state (non-zero exit code, node failure, timed out, etc).

▪ afterok: job can begin execution after the specified jobs have successfully

finished (zero exit code).

#SBATCH -d <type>:<jobID>[:<jobiD>]

THANK YOU.

NHR@FAU

https://hpc.fau.de

https://hpc.fau.de/

