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Talk Outline

1. How does a Physics-Informed Neural Network (PINN) Solver Work?
2. Optimization of PINN Solvers
3. Integrating PINN into Traditional Solvers
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1.1 Physics-Informed Neural Networks = PINN

● PINNs have many usages:
○ data assimilation 
○ uncertainty quantification 
○ solving ill-defined problems (e.g., no BC or EoS)

● In this talk, I focus on PINN for solving Partial Differential Equations (PDE)
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1.2 Neural Network for Solving 2D Poisson Equation

How would you do it?
Let’s assume you have the analytical or the numerical solution … 

4



1.3 Replace a Solver with a Neural Network
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1.4 Training with Analytical Solution
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1.5 Training with a Numerical Solution
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It works if we the numerical solution
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1.6 Prediction with the Surrogate Model = PDE Solver
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1.7 Entering PINNs!

● PINNs are neural networks that encode the partial differential equations into a 
part of neural network, exclusively to calculate the loss function

○ We still use the surrogate to evaluate the solution!

● Two major innovations:
1. Add a part of the network / graph to calculate the residual. 

1. This part encodes the PDE into the NN.
2. Leverage automatic differentiation to calculate the derivatives on the network. 
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Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and 
inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 378, 686-707.
https://github.com/maziarraissi/PINNs

https://github.com/maziarraissi/PINNs
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1.8  Adding a Residual Network to Calculate a Residual
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No need for prior data 
(solutions )

à unsupervised training

Loss function

1.9 PINN does not Need Solutions for Training
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1.10 How do we Calculate the Derivative on the Network? 

● We use a critical ML technology 
used in backpropagation

○ Automatic differentiation
○ Available in the TensorFlow and 

PyTorch

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. 
M. (2018). Automatic differentiation in machine learning: a 
survey. Journal of Marchine Learning Research, 18, 1-43.



1.11 PINN Training Iteration

1. We train network first via 
iterations / epochs

2. We make a prediction/inference 
step on a grid or any point of 
interest

○ Remember that PINN are 
gridless
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1.12 PINN As an Iterative Solver – Convergence / Stability

● For stability and convergence studies, we need to study how error changes
● Possible to define errors (generalization, training, …) and do an analytical 

study
● It has shown that PINNs requires sufficiently smooth activation functions for 

convergence: 
○ PINNs with ReLU, ELU and SELU do not converge
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Mishra, S., & Molinaro, R. (2022). Estimates on the generalization error of physics-informed neural networks for approximating PDEs. IMA 
Journal of Numerical Analysis.

Shin, Y., Darbon, J., & Karniadakis, G. E. (2020). On the convergence of physics informed neural networks for linear second-order elliptic 
and parabolic type PDEs. arXiv preprint arXiv:2004.01806.



1.13 What is the Performance of a Simple PINN?

● Python and 
DeepXDE

● Fully Connected 
● 4 layers 
● 50 units per layer
● tanh act. function 
● 10,000 coll. points
● Adam + L-BFGS.B 

Optimizers
● PETSc CG took 92 

seconds for full 
convergence on 
128x128 grid!
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2.1 Optimization of PINN Solvers

1. Activation functions / Adaptive Functions
2. Optimizers
3. Transfer-Learning
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2.2 PINN Optimization – Activation Functions

● Activation functions 
largely impacts the 
performance

● Best activation 
function depends on 
the problem

● LAAF activation 
functions introducing 
adaptive local 
scaling are best

○ Deal better with 
BCs
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2.3 PINN Optimization – BFGS Optimizer

● In PINN two optimizers in succession
1. Adam optimizer 
2. Broyden- Fletcher-Goldfarb-Shanno (BFGS) optimizer 

■ Higher-order: BFGS uses the Hessian matrix (curvature in highly dimensional space)
■ Without using the Adam optimizer can rapidly converge to a local minimum!

● For this reason, the Adam optimizer is used first to avoid local minima, and then 
the solution is refined by BFGS. 

● BFGS is currently the most critical technology for PINNs as it provides much 
higher accuracy than available DL optimizers.

○ L-BFGS-B from in SciPy. Not available on GPUs.
○ New L-BFGS-B available in Google’s Tensorflow Probability Framework

■ Built on the top of TensorFlow
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2.4 PINN Optimization – Transfer Learning 

The transfer learning 
technique = training a 
network solving the 
Poisson equation with a 
different source term. 

○ Initialize the PINN 
network we intend to 
solve with the first 
fully trained network 
weights and biases à
first PINN transfers 
the learned 
information
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3.1 Integration of PINNs into Traditional Solvers

● Even after these optimizations, PINN performance is not as good as 
traditional iterative solvers!

○ Especially when it comes to accuracy

● Idea: combine two approaches to get the best from the two world
○ What PINNs are good at?
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3.2 DLN F-principle: Convergence of PINN on Large Scale Structures First!

Frequency-principle (F-principle): DNNs often fit target functions from low to high frequencies during 
the training process 

The F-principle implies that in PINNs, the low frequency/large scale features of the solution emerge first, 
while it will take several training epochs to recover high frequency/small-scale features. 

21Xu, Z. Q. J., Zhang, Y., Luo, T., Xiao, Y., & Ma, Z. (2019). Frequency principle: Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523.



3.3 Traditional Jacobi and GS Solvers: Convergence on Small Scales First! 

● Both the Jacobi and Gauss-Seidel methods show 
fast convergence for small-scale features

○ Update of unknown values involves only the values of 
the neighbor points

● Between two different iterations, the information 
can only propagate to neighbour cells
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Jacobi Iteration



3.4 Combining Low Frequency and High Frequency Solvers in a Multigrid Solver

Basic Idea: optimized 
PINN for a coarse grid 
then use a MG solvers
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3.5 Combining Low Frequency and High Frequency Solvers in a Multigrid Solver
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3.6 Hybrid Solver - Accuracy

25

Direct PINN Error 

Hybrid DL-solver

Markidis, S. (2021). The old and the new: Can physics-informed deep-learning replace traditional linear solvers? Frontiers in big Data, 92.



3.7 Hybrid Solver – Computational Performance

● Different resolutions, 
tolerances for hybrid, 
pure GS and PETSc CG

● Python implementations 
(CG step developed in 
Cython)
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Conclusions

1. PINN are neural networks encoding PDEs in the network and they can be 
used for solving PDEs in an unsupervised fashion

2. The PINN performance (both computational and accuracy) is still far from 
performance of traditional approaches, but optimization are possible: 
activation function tuning, high-order optimizers and transfer learning

3. Combine traditional and PINN solver technology is a realistic approach for 
developing the next-generation Solvers

○ We are still in the infancy of these method: lot of work to do!
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