
Using File Systems Properly

HPC Cafe, 2022-01-18

HPC Services, RRZE / NHR@FAU

Working with data

https://hpc.fau.de/systems-services/systems-documentation-instructions/hpc-storage/

https://hpc.fau.de/systems-services/systems-documentation-instructions/hpc-storage/

File systems

▪ File system == directory structure that can store files

▪ Several file systems can be “mounted” at a compute node

▪ Similar to drive letters in Windows (C:, D:, …)

▪ Mount points can be anywhere in the root file system

▪ Available file systems differ in size, redundancy and how they should be

used

2022-01-18 | HPC Cafe | NHR@FAU 3

RRZE file systems overview

Mount point Access Purpose Technology Backup
Snap-

shots
Data lifetime Quota

/home/hpc $HOME
Source, input,

important results

NFS on

central

servers, small

YES YES
@30 min

Account

lifetime
50 GB

/home/vault $HPCVAULT
Mid-/long-term

storage

Central

servers
YES YES

@1/day

Account

lifetime
500 GB

/home/woody

/home/saturn

/home/titan

$WORK

Short-/mid-term

storage,

General-purpose

Central NFS

server
(NO) NO

Account

lifetime
500 GB

/lxfs

$FASTTMP

(only within

meggie)

High performance

parallel I/O

Lustre parallel

FS via

InfiniBand

NO NO
High

watermark
Only inodes

/??? $TMPDIR Node-local dir
HDD/SSD/

ramdisk
NO NO Job runtime NO

2022-01-18 | HPC Cafe | NHR@FAU 4

Caveats:
▪ $TMPDIR varies significantly in size across clusters (emmy/meggie: 32 GB RAMdisk only), but generally > 1TB

▪ $TMPDIR is not always job specific

Problem

Main Problem with NFS (and parallel FS)

▪ In a job, avoid accessing large numbers of files
$HOME, $HPCVAULT, $WORK, $SATURNHOME

▪ Expensive operations on NFS (and also parallel file systems):

▪ Access file stats like creation/modification time, permissions…

▪ Opening/closing files

▪ These cause high load on servers

▪ This slows down your job and impacts all other users

▪ Use instead

▪ if supported by application: HDF5, file-based databases

▪ pack files into an archive (e.g. tar + optional compression) and use node-local

SSDs (huge amounts of file opens are no problem there)

Do not unpack archive to:

$HOME/$HPCVAULT/$WORK

Unpack files to node-local SSDs only and

use them from there

72022-01-11 | HPC Cafe | NHR@FAU

Working with Archives and Node-Local SSDs

archive

$HPCVAULT

$WORK

$SATURNHOME

Optionally: if original archive must be altered

▪ unpack it to node local SSD (interactive job)

▪ optionally change files

▪ repack files and copy back to NFS

For simulation, training, …

▪ unpack archive to node local SSD

▪ perform simulation/training

▪ see later slides for details

tinygpu /

alex node
SSD

$TMPDIR

high I/O
CPUs

GPUs
bandwidth

tinygpu /

alexnode
SSD

$TMPDIR

high I/O
CPUs

GPUs
bandwidth

82022-01-11 | HPC Cafe | NHR@FAU

Example: Repack Archive with an Interactive Job on tinygpu

request interactive job on tinygpu from woody

$ salloc.tinygpu –t hh:mm:ss --gres=gpu:1

$ WORKDIR="$TMPDIR/$SLURM_JOBID"

$ mkdir "$WORKDIR"

$ cd "$WORKDIR"

unpack into current directory

$ tar xf $WORK/archive.tar

process files …

pack all files from the current directory

into a new archive on $WORK

$ tar cf $WORK/new-archive.tar *

clean up

$ cd ; rm –r "$WORKDIR"

Unpacking depending on extension:

.tar.bz2: tar xjf $WORK/archive.tar.bz2

.tar.gz: tar xzf $WORK/archive.tar.gz

.tar.xz: tar xJf $WORK/archive.tar.xz

Packing + compression depending on extension:

.tar.bz2: tar cjf $WORK/archive.tar.bz2 *

.tar.gz: tar czf $WORK/archive.tar.gz *

.tar.xz: tar cJf $WORK/archive.tar.xz *

Here, tar is just used an example,

use whatever you see fit best

If compression does not save any space, using

tar without compression is also an option

Some benchmark data

Using local file systems for vast amounts of files

Benchmark structure

▪ lz4 uncompress

▪ gunzip

cd $TMPDIR

f=$SATURNHOME/inputfile.tar.lz4

time (lz4 -d $f | tar xf -)

cd $TMPDIR

f=$SATURNHOME/inputfile.tar.gz

time tar xzf $f

▪ Plain untar

▪ Data was hardly

compressible (random

numbers, images)

▪ Every run was a new job to

minimize impact of FS

caching

cd $TMPDIR

f=$SATURNHOME/inputfile.tar

time tar xf $f

112022-01-18 | HPC Cafe | NHR@FAU

Unpacking to a local disk

Case 1: NFS → local NVMe-SSD ($TMPDIR)

0

50

100

150

200

250

300

350

400

450

5 GB @ 50,000 x 100 kB 50 GB @ 500,000 x 100 kB 50 GB @ 5,000,000 x 10 kB

R
u
n
ti
m

e
 [
s
]

src: /home/titan
dst: NVMe-SSD
Alex

untar only untar + unlz4 untar + gunzip plain cp

Uncompress is

major part of

runtime
lz4

advantage

122022-01-18 | HPC Cafe | NHR@FAU

Unpacking to a local disk

Case 2: NFS → local ramdisk (/dev/shm)

0

50

100

150

200

250

300

350

400

450

5 GB @ 50,000 x 100 kB 50 GB @ 500,000 x 100 kB 50 GB @ 5,000,000 x 10 kB

R
u
n
ti
m

e
 [
s
]

src: /home/titan
dst: /dev/shm
Alex

untar only untar + unlz4 untar + gunzip plain cp

Caveats:

▪ /dev/shm is actually

system RAM

▪ Cuts away at your

available RAM

▪ Available space is

divided among

GPUs in tinyGPU

and Alex

132022-01-18 | HPC Cafe | NHR@FAU

Parallel uncompress?

▪ If compression is effective, it should be used (if data transfer

time can be reduced significantly)

▪ Several solutions

▪ Actual concurrent untar/gunzip processes on different archives

▪ mpiFileUtils (https://hpc.github.io/mpifileutils/)

▪ (un)compress tools with

built-in threading

▪ Poor (wo)man’s solution

cd $TMPDIR

f1=${SATURNHOME}/arch1.tar.gz

f2=${SATURNHOME}/arch2.tar.gz

(mkdir 1; cd 1; tar xzf $f1) &

(mkdir 2; cd 2; tar xzf $f2) &

wait

https://hpc.github.io/mpifileutils/

142022-01-18 | HPC Cafe | NHR@FAU

Caveats

▪ Observed FS performance can fluctuate wildly

▪ Caching (on server and client), server load, network load

▪ Servers are connected with different wirespeeds

▪ 100 GBE vs. 25 GBE vs. 10 GBE

▪ Servers have different disk technologies (HDD, SSD)

▪ If (un)compression is required, it may take a long time

▪ Consider parallel uncompress (call if you need help)

▪ Still, the general guidelines are always the same

▪ We will support you with benchmarking if required

Some solutions implemented by customers

162022-01-18 | HPC Cafe | NHR@FAU

Many files, frequent accesses

▪ Training data set with many separate files

▪ /home/vault

▪ Many accesses per second to the data set

Remedy

▪ Load complete data set into RAM at job start

172022-01-18 | HPC Cafe | NHR@FAU

Frequent checkpoints

▪ Regular checkpoints to /home/woody every 2-5 minutes,

10-200 MB in size

▪ Should not be a problem

▪ Still, even 5-minute checkpoints are unnecessarily frequent

182022-01-18 | HPC Cafe | NHR@FAU

Frequent metadata accesses

▪ “Many” files

▪ Frequent accesses to small files or sections of them

Remedy

▪ Put files into ZIP/tar archive (better copy performance)

▪ Unpack to node-local

temp directory and work

from there

▪ Cleanup may be automatic

$ WORK_DIR=`mktemp.exe -d -p $TMPDIR`

$ cd $WORK_DIR

$ unzip $WOODYHOME/foo.zip

$ # ... Now work with data in $WORK_DIR

$ # Clean up at the end:

$ cd

$ rm -rf $WORK_DIR

192022-01-18 | HPC Cafe | NHR@FAU

Frequent metadata accesses

▪ Many small files on $HOME

▪ 100-500 kB

▪ ~ 50 accesses per second

Remedy

▪ Pre-package files to one HDF5 file

▪ Load to internal data structure in RAM upon startup

202022-01-18 | HPC Cafe | NHR@FAU

Many files, too large to fit in memory

▪ Many files in /home/woody

▪ Frequent reads necessary since whole data set does not fit

into RAM

▪ Repeated accesses to every file

Remedy (a)

▪ Pack files into ZIP/tar archive, unpack to $TMPDIR at job start

Remedy (b)

▪ Try to open each file from $TMPDIR, copy from archive if not

present (caching)

Questions? Suggestions?

