
Memory Bandwidth and System Balance in HPC
Systems: 2021 Update

John D. McCalpin, PhD

mccalpin@tacc.utexas.edu

Outline
1. Changes in TOP500 Systems

• System Architectures
• Programming Models
• System Sizes

2. Technology Trends & System Balances
• Computation Rates vs Data Motion Latency and Bandwidth
• Required Concurrency to Exploit available Bandwidths

Changes in TOP500 Systems
Part 1

What is the TOP500 list?
• List of 500 fastest systems on ”High Performance Linpack” benchmark
• Only reported systems (e.g., missing “Blue Waters” at NCSA)
• Benchmark only needs to be run on one instance of any configuration
• System does not need to be used for HPC
• Early 2000’s: lots of commercial/database clusters
• Recently: lots of cloud systems (web services)

• Customers (including vendors) choose how to submit their results
• 1 big system or more smaller systems
• Heterogeneous vs homogeneous – also depends on available software

What is the TOP500 list?
• Database
• XML (without system configuration data)
• Excel (15 different combinations of column headers)

• Information about system configurations is minimal/misleading/incorrect

• Hundreds of hours spent
• Fixing errors
• Looking up system parameters
• Reverse-engineering system configurations

• More systematic re-analysis in progress

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
TOP500 RMax Contributions by System Architecture

1995 2000 2005 2010 2015 2020
Note: a portion of the “Accelerated” systems Rmax
is from x86 and other microprocessors

VECTOR

RISC

x86

Specialized/MPP

Accelerated

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
New #1 System often makes big impact on distribution

1995 2000 2005 2010 2015 2020

TaihuLight

ASCI Red

Earth
Simulator

Blue Gene

Roadrunner

Tianhe-1A

Tianhe-2

Summit

Fugaku

VECTOR

RISC
x86

Specialized

Accelerated

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Huge increases in required thread counts for top 10 systems

1995 2000 2005 2010 2015 2020

VECTOR
4 16 32 5120

RISC
512

3000

7000

x86

20K

120K

200K 500K

Specialized
500K 7.6M

Accelerated
200K >100M ???

$100

$1,000

$10,000

$100,000

$1,000,000

$10,000,000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

Price per "Processor" over time

Vector

RISC

x86 single-core

x86 multi-core ($/socket)

x86 multi-core ($/core)

0.01

0.1

1

10

100

1000

$100

$1,000

$10,000

$100,000

$1,000,000

$10,000,000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025

How many cores for $50K US?

Vector

RISC

x86 single-core

x86 multi-core ($/socket)

x86 multi-core ($/core)

Cores/budget

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 128 256 512

RM
ax

 re
la

tiv
e

to
 to

 #
1

in
 li

st

Rank on List

TOP500 Scaled RMax by Rank (averaged by half-decade)

1990-1994

1995-1999

2000-2004

2005-2009

2010-2014

2015-2019

2020-2024

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1990 1995 2000 2005 2010 2015 2020 2025

Fr
ac

tio
n

of
 su

m
 o

f R
M

ax
 fo

r f
ul

l l
ist

Year

The TOP500 list is becoming increasingly top-heavy

Fraction in top 10 systems
Fraction in top system

Tianhe-2

Earth
Simulator

Fugaku

Technology Trends & System Balances

Part 2

What are “System Balances”?
• “Performance” can be viewed as an N-dimensional vector

of “mostly-orthogonal” components, e.g.:
• Core performance (FLOPs) – LINPACK
• Memory Bandwidth – STREAM
• Memory Latency – lmbench/lat_mem_rd
• Interconnect Bandwidth – osu_bw, osu_bibw
• Interconnect Latency – osu_latency

•System Balances are the ratios of these components

Performance Component Trends
1. Peak FLOPS per socket increasing at 50%-60% per year
2. Memory Bandwidth increasing at ~23% per year
3. Memory Latency increasing at ~4% per year
4. Interconnect Bandwidth increasing at ~20% per year
5. Interconnect Latency decreasing at ~20% per year
• These ratios suggest that processors should be increasingly

imbalanced with respect to data motion….
• Today’s talk focuses on (1), (2), and a bit of (3)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1990 1995 2000 2005 2010 2015 2020 2025

Historical Balance Trends: Revised to 2021-12-14

Local memory BW (FLOPS/Word)
 +15% per year, 4.0x/decade
Local memory latency (Core FLOPS*latency)
 +20% per year, 6.2x/decade
Interconnect BW (FLOPS/Word)
 +25% per year, 9.3x/decade
Interconnect latency (Core FLOPS*latency)
 +18% per year, 5.2x/decade

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1990 1995 2000 2005 2010 2015 2020 2025

What if entire package stalls on local memory latency?
Local memory BW (FLOPS/Word)
 +15% per year, 4.0x/decade
Local memory latency (Core FLOPS*latency)
 +20% per year, 6.2x/decade
Local memory latency (Pkg FLOPS*latency)
 +50% per year, 57.7x/decade
Interconnect BW (FLOPS/Word)
 +25% per year, 9.3x/decade
Interconnect latency (Core FLOPS*latency)
 +18% per year, 5.2x/decade

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1990 1995 2000 2005 2010 2015 2020 2025

What if entire package stalls on interconnect latency?
Local memory BW (FLOPS/Word)
 +15% per year, 4.0x/decade
Local memory latency (Core FLOPS*latency)
 +20% per year, 6.2x/decade
Interconnect BW (FLOPS/Word)
 +25% per year, 9.3x/decade
Interconnect latency (Core FLOPS*latency)
 +18% per year, 5.2x/decade
Interconnect latency (Package FLOPS*latency)
 +40% per year, 28.9x/decade

Why are FLOPS increasing so fast?
•Peak FLOPs per package is the product of several terms:
• Frequency
• FP operations per cycle per core
• Product of #FP units, SIMD width of each unit, and complexity of FP

instructions (e.g., separate ADD & MUL vs FMA)
• Number of cores per package

• Low-level semiconductor technology tends to drive these
terms at different rates…

0.0

1.0

2.0

3.0

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Ba
se

 1
0

lo
g

of
 G

FL
O

PS
 c

on
tr

ib
ut

io
n

Intel Processor GFLOPS/Package Contributions over time

log10(GHz)

log10(Cores/Socket)

log10(FP/Hz)

Pentium 4

Core 2

Nehalem/
Westmere

Sandy
Bridge /

Ivy Bridge

Haswell /
Broadwell

Skylake
Xeon

2 2 2 2

4 4
4 4

4 4
8 8

16 16 16
32 32

2 2
2 4 6 6 8 10 12 12 14 ~20 ~24

2.8 3.1 3.2 2.53.3 2.5 3.0 3.0 3.1 3.3 3.0 2.9 2.1 2.1 2.1 ~1.9 ~1.8

0.0

1.0

2.0

3.0

4.0

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2021 2022

Ba
se

 1
0

lo
g

of
 G

FL
O

PS
 c

on
tr

ib
ut

io
n

Intel Processor GFLOPS/Package Contributions over time

log10(GHz)

log10(Cores/Socket)

log10(FP/Hz)

Why is Memory Bandwidth increasing slowly?
•Slow rate of pin speed improvements
• Emphasis has been on increasing capacity, not increasing

bandwidth
• Shared-bus architecture (multiple DIMMs per channel) is very

hard at high frequencies
•DRAM cell cycle time almost unchanged in 20 years
• Speed increases require increasing transfer sizes
• DDR3/DDR4 have minimum 64 Byte transfers in DIMMs

•Slow rate of increase in interface width
• Pins cost money!

Why is Memory Latency stagnant or growing?
• More levels in cache hierarchy
• Many lookups serialized to save power

• More asynchronous clock domain crossings
• Many different clock domains to save power
• Snoop (6): Core -> Ring -> QPI -> Ring -> QPI -> Ring -> Core
• Local Memory (4): Core -> Ring -> DDR -> Ring -> Core
• Remote Memory (8):

Core -> Ring -> QPI -> Ring -> DDR -> Ring -> QPI -> Ring -> Core
• More cores to keep coherent
• Challenging even on a single mainstream server chip
• Two-socket system latency typically dominated by coherence, not data
• Manycore chips have much higher latency

• Decreasing frequencies!

Why is Interconnect Bandwidth growing slowly?
• Slow rate of pin speed improvements
• About 20%/year

• Reluctance to increase interface width
• Switch chips typically pin-limited – wider interfaces get fewer ports
• Parallel links require more switches – too expensive and does not always provide

improved real-world bandwidth

Why is Interconnect Latency improving slowly?
• Legacy IO architecture designed around disks, not

communications
• Control operations using un-cached loads/stores – hundreds of ns

per operation and no concurrency
• Interrupt-driven processing requires many thousands of cycles

per transaction
•Mismatch between SW requirements and HW capabilities

Latency, bandwidth, and
concurrency
A different implication of these technology trends

Latency, Bandwidth, and Concurrency
• “Little’s Law” from queuing theory describes the relationship between

latency (or occupancy), bandwidth, and concurrency.

Latency * Bandwidth = Concurrency

• Flat Latency * Increasing Bandwidth à Increasing Concurrency

• Because these are exponential trends, these are not small changes…

Time (ns) -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110

Buffer0 Request 0 Data 0

Buffer1 Request 1 Data 1

Buffer2 Request 2 Data 2

Buffer3 Request 3 Data 3

Buffer4 Request 4 Data 4

Buffer5 Request 5 Data 5

Buffer0 Request 6 Data 6

Buffer1 Request 7 Data 7

Buffer2 Request 8 Data 8

Buffer3 Request 9 Data 9

Buffer4 Request 10 Data 10

Buffer5 Request 11 Data 11

Little’s Law: illustration for 2005-era Opteron processor
60 ns latency, 6.4 GB/s (=10ns per 64B cache line)

• 60 ns * 6.4 GB/s = 384 Bytes = 6 cache lines
• To keep the pipeline full, there must always be 6 cache lines “in flight”
• Each request must be launched at least 60 ns before the data is needed

1

10

100

1,000

10,000

1995.00 2000.00 2005.00 2010.00 2015.00 2020.00 2025.00

Latency-Bandwidth Products per Package (64B units)

NVIDIA GPU
Mainstream Processors
Intel ManyCore
+33%/year

Why is Increasing Concurrency a Problem?

•Architectures are built assuming “flat” memory model
• Location of data is invisible and uncontrollable
• Caches and prefetchers are assumed to be “good enough” to

cover latency and bandwidth differences
• Implementations support limited L1 Data Cache misses per

core:
• Xeon E5: 10 L1 misses (maximum)
• L2 Hardware Prefetchers help, but are also “invisible” and not

directly controllable

Increasing Concurrency (2)

•Many cores are needed just to generate concurrency, even
if not needed to do computing
• This costs a lot of energy in the cores!

• Large buffers and complex memory controllers are needed
to handle the concurrent operations
• DRAM page management requires memory schedule to be

updated frequently as new transactions appear
• DRAM open page hit rates still go down, so DRAM power

increases too
• Design cost up, power cost up, BW utilization down

Increasing Concurrency (3)
•More cores create more concurrent memory access streams, which

requires more DRAM banks
• Examples:
• 8-core Xeon E5 v1 with 2 streams per core needs >= 16 banks

Requires 2 ranks of DDR3 DRAM (one dual-rank DIMM)
• 12-core Xeon E5 v3 with 2 streams per core needs >= 24 banks

Requires 2 ranks of DDR4 DRAM (one dual-rank DIMM)

• Problems:
• Some codes generate many address streams per core – LBM >32
• HyperThreading can double address streams per core
• Adding more DIMMs can *decrease* performance due to rank-to-rank bus

stalls

Power and energy
Another angle…

What about Power/Energy?
• Power density is important in processor implementations
• Frequencies can be limited by small-scale (core-sized) hot spots
• Multi-core frequencies are now limited by package cooling
• E.g., Xeon E5 v3 (Haswell) can only run DGEMM or LINPACK on ½ of the cores

before running out of power & needing to throttle frequency

• Power is not a first-order concern in operating cost!!!
• Purchase price is $2500-$4000/socket
• Socket draws 100-150 Watts & needs 40-50 Watts for cooling
• At $0.10/kWh, this is 5%-7% of purchase price per year
• This ratio is very hard to change!!!

What about Power/Energy later?
• If much cheaper processors become available, power would become a

first-order cost
• Example 1: “client” multicore processors
• Use the same core architecture, but at much lower price
• Typical configuration needs 25% of purchase cost per year for power
• (High performance interconnect solution not available at reasonable price)

• Example 2: “embedded” processors
• Hypothetical $5 processor using 5 Watts requires $7/year for power
• Not a problem for mobile – not credible for HPC
• Response will be sociological and bureaucratic, as well as technical

For more information:
www.tacc.utexas.edu

John D. McCalpin, PhD
mccalpin@tacc.utexas.edu

512-232-3754

http://www.tacc.utexas.edu
mailto:mccalpin@tacc.utexas.edu

