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Outline
1. Changes in TOP500 Systems

• System Architectures
• Programming Models
• System Sizes 

2. Technology Trends & System Balances
• Computation Rates vs Data Motion Latency and Bandwidth 
• Required Concurrency to Exploit available Bandwidths



Changes in TOP500 Systems
Part 1



What is the TOP500 list?
• List of 500 fastest systems on ”High Performance Linpack” benchmark
• Only reported systems (e.g., missing “Blue Waters” at NCSA)
• Benchmark only needs to be run on one instance of any configuration
• System does not need to be used for HPC
• Early 2000’s: lots of commercial/database clusters
• Recently: lots of cloud systems (web services)

• Customers (including vendors) choose how to submit their results
• 1 big system or more smaller systems
• Heterogeneous vs homogeneous – also depends on available software



What is the TOP500 list?
• Database
• XML (without system configuration data)
• Excel (15 different combinations of column headers)

• Information about system configurations is minimal/misleading/incorrect

• Hundreds of hours spent 
• Fixing errors
• Looking up system parameters
• Reverse-engineering system configurations

• More systematic re-analysis in progress
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Huge increases in required thread counts for top 10 systems
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Technology Trends & System Balances

Part 2



What are “System Balances”?
• “Performance” can be viewed as an N-dimensional vector 

of “mostly-orthogonal” components, e.g.:
• Core performance (FLOPs)     – LINPACK
• Memory Bandwidth                  – STREAM 
• Memory Latency              – lmbench/lat_mem_rd
• Interconnect Bandwidth     – osu_bw, osu_bibw
• Interconnect Latency             – osu_latency

•System Balances are the ratios of these components



Performance Component Trends
1. Peak FLOPS per socket increasing at 50%-60% per year
2. Memory Bandwidth increasing at ~23% per year
3. Memory Latency increasing at ~4% per year
4. Interconnect Bandwidth increasing at ~20% per year
5. Interconnect Latency decreasing at ~20% per year
• These ratios suggest that processors should be increasingly 

imbalanced with respect to data motion….
• Today’s talk focuses on (1), (2), and a bit of (3)
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Historical Balance Trends: Revised to 2021-12-14

Local memory BW (FLOPS/Word)
    +15% per year, 4.0x/decade
Local memory latency (Core FLOPS*latency)
    +20% per year, 6.2x/decade
Interconnect BW (FLOPS/Word)
    +25% per year, 9.3x/decade
Interconnect latency (Core FLOPS*latency)
    +18% per year, 5.2x/decade
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What if entire package stalls on local memory latency?
Local memory BW (FLOPS/Word)
    +15% per year, 4.0x/decade
Local memory latency (Core FLOPS*latency)
    +20% per year, 6.2x/decade
Local memory latency (Pkg FLOPS*latency)
    +50% per year, 57.7x/decade
Interconnect BW (FLOPS/Word)
    +25% per year, 9.3x/decade
Interconnect latency (Core FLOPS*latency)
    +18% per year, 5.2x/decade
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What if entire package stalls on interconnect latency?
Local memory BW (FLOPS/Word)
    +15% per year, 4.0x/decade
Local memory latency (Core FLOPS*latency)
    +20% per year, 6.2x/decade
Interconnect BW (FLOPS/Word)
    +25% per year, 9.3x/decade
Interconnect latency (Core FLOPS*latency)
    +18% per year, 5.2x/decade
Interconnect latency (Package FLOPS*latency)
    +40% per year, 28.9x/decade



Why are FLOPS increasing so fast?
•Peak FLOPs per package is the product of several terms:
• Frequency
• FP operations per cycle per core
• Product of #FP units, SIMD width of each unit, and complexity of FP 

instructions (e.g., separate ADD & MUL vs FMA)
• Number of cores per package

• Low-level semiconductor technology tends to drive these 
terms at different rates…
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Why is Memory Bandwidth increasing slowly?
•Slow rate of pin speed improvements
• Emphasis has been on increasing capacity, not increasing 

bandwidth
• Shared-bus architecture (multiple DIMMs per channel) is very 

hard at high frequencies
•DRAM cell cycle time almost unchanged in 20 years
• Speed increases require increasing transfer sizes
• DDR3/DDR4 have minimum 64 Byte transfers in DIMMs

•Slow rate of increase in interface width
• Pins cost money!



Why is Memory Latency stagnant or growing?
• More levels in cache hierarchy
• Many lookups serialized to save power

• More asynchronous clock domain crossings
• Many different clock domains to save power
• Snoop (6): Core -> Ring -> QPI -> Ring -> QPI -> Ring -> Core
• Local Memory (4): Core -> Ring -> DDR -> Ring -> Core
• Remote Memory (8): 

Core -> Ring -> QPI -> Ring -> DDR -> Ring -> QPI -> Ring -> Core
• More cores to keep coherent
• Challenging even on a single mainstream server chip
• Two-socket system latency typically dominated by coherence, not data
• Manycore chips have much higher latency

• Decreasing frequencies!



Why is Interconnect Bandwidth growing slowly?
• Slow rate of pin speed improvements
• About 20%/year

• Reluctance to increase interface width
• Switch chips typically pin-limited – wider interfaces get fewer ports
• Parallel links require more switches – too expensive and does not always provide 

improved real-world bandwidth



Why is Interconnect Latency improving slowly?
• Legacy IO architecture designed around disks, not 

communications
• Control operations using un-cached loads/stores – hundreds of ns 

per operation and no concurrency
• Interrupt-driven processing requires many thousands of cycles 

per transaction
•Mismatch between SW requirements and HW capabilities



Latency, bandwidth, and 
concurrency
A different implication of these technology trends



Latency, Bandwidth, and Concurrency
• “Little’s Law” from queuing theory describes the relationship between 

latency (or occupancy), bandwidth, and concurrency.

Latency * Bandwidth = Concurrency

• Flat Latency * Increasing Bandwidth à Increasing Concurrency

• Because these are exponential trends, these are not small changes…



Time (ns) -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110

Buffer0 Request 0 Data 0

Buffer1 Request 1 Data 1

Buffer2 Request 2 Data 2

Buffer3 Request 3 Data 3

Buffer4 Request 4 Data 4

Buffer5 Request 5 Data 5

Buffer0 Request 6 Data 6

Buffer1 Request 7 Data 7

Buffer2 Request 8 Data 8

Buffer3 Request 9 Data 9

Buffer4 Request 10 Data 10

Buffer5 Request 11 Data 11

Little’s Law: illustration for 2005-era Opteron processor
60 ns latency, 6.4 GB/s (=10ns per 64B cache line)

• 60 ns * 6.4 GB/s = 384 Bytes = 6 cache lines
• To keep the pipeline full, there must always be 6 cache lines “in flight”
• Each request must be launched at least 60 ns before the data is needed
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Why is Increasing Concurrency a Problem?

•Architectures are built assuming “flat” memory model
• Location of data is invisible and uncontrollable
• Caches and prefetchers are assumed to be “good enough” to 

cover latency and bandwidth differences
• Implementations support limited L1 Data Cache misses per 

core:
• Xeon E5: 10 L1 misses (maximum)
• L2 Hardware Prefetchers help, but are also “invisible” and not 

directly controllable



Increasing Concurrency (2)

•Many cores are needed just to generate concurrency, even 
if not needed to do computing
• This costs a lot of energy in the cores!

• Large buffers and complex memory controllers are needed 
to handle the concurrent operations
• DRAM page management requires memory schedule to be 

updated frequently as new transactions appear
• DRAM open page hit rates still go down, so DRAM power 

increases too
• Design cost up, power cost up, BW utilization down



Increasing Concurrency (3)
•More cores create more concurrent memory access streams, which 

requires more DRAM banks
• Examples:
• 8-core Xeon E5 v1 with 2 streams per core needs >= 16 banks

Requires 2 ranks of DDR3 DRAM (one dual-rank DIMM)
• 12-core Xeon E5 v3 with 2 streams per core needs >= 24 banks

Requires 2 ranks of DDR4 DRAM (one dual-rank DIMM)

• Problems:
• Some codes generate many address streams per core – LBM >32
• HyperThreading can double address streams per core
• Adding more DIMMs can *decrease* performance due to rank-to-rank bus 

stalls



Power and energy
Another angle…



What about Power/Energy?
• Power density is important in processor implementations
• Frequencies can be limited by small-scale (core-sized) hot spots
• Multi-core frequencies are now limited by package cooling
• E.g., Xeon E5 v3 (Haswell) can only run DGEMM or LINPACK on ½ of the cores 

before running out of power & needing to throttle frequency

• Power is not a first-order concern in operating cost!!!
• Purchase price is $2500-$4000/socket
• Socket draws 100-150 Watts & needs 40-50 Watts for cooling
• At $0.10/kWh, this is 5%-7% of purchase price per year
• This ratio is very hard to change!!!



What about Power/Energy later?
• If much cheaper processors become available, power would become a 

first-order cost
• Example 1: “client” multicore processors
• Use the same core architecture, but at much lower price
• Typical configuration needs 25% of purchase cost per year for power
• (High performance interconnect solution not available at reasonable price)

• Example 2: “embedded” processors
• Hypothetical $5 processor using 5 Watts requires $7/year for power
• Not a problem for mobile – not credible for HPC
• Response will be sociological and bureaucratic, as well as technical
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