
GPU Hashing Data Structures and their

Application in Accelerated Genomics

Daniel Jünger and Bertil Schmidt

NHR PerfLab Seminar

Institute of Computer Science

Johannes Gutenberg-University, Mainz, Germany

It is all about memory bandwidth!

GPU Hashing Data Structures and their Application in Accelerated Genomics 2

DDR4 modules built in Xeon

multi-socket workstations

HBM2 stacked memory modules

attached to Tesla

P100/V100/A100

Few hundred GB/s

a few TB of size

up to 2 TB/s

less than 80 GB (A100)

Why hashing is a good idea

Hash tables are well-suited if range queries do not matter:

GPU Hashing Data Structures and their Application in Accelerated Genomics 3

Hash Table Sorted Array Tree

insertion per element O(1) O(log n) O(log n)

query per element O(1) O(log n) O(log n)

peak memory (1 + ε)n 2n (1 + ε)n

final memory (1 + ε)n n (1 + ε)n

range queries not supported supported supported

• out-of-place sorting usually needs O(n) auxillary memory: CUDA Unbound radix sort uses
double buffers waste of valuable video memory

• incomplete trees exhibit highly irregular data layouts and are hard to construct in parallel
without auxillary memory

Contributions

GPU Hashing Data Structures and their Application in Accelerated Genomics 4

• Performance

• main focus on high-throughput table operations

• WarpCore outperforms other state-of-the-art CPU and GPU hash tables

• Modularity

• building blocks for constructing customized GPU hash tables

• probing schemes, hashers, memory layouts, etc.

• Host-sided and device-sided interfaces

• host-sided (bulk) operations provide high throughput

• device-sided operations (fuse table operations with other tasks in one kernel)

• Fully-asynchronous execution

• allows for task overlapping and multi-GPU setups

• Jünger, Kobus, Müller, Hundt, Xu, Liu, Schmidt: „WarpCore: A Library for fast Hash Tables

on GPUs”, IEEE HiPC 2020

We propose WarpCore - a versatile library of hashing data structures

Parallel Hash Table Construction

GPU Hashing Data Structures and their Application in Accelerated Genomics 5

kkeys

values
hash table

thread 𝐴 with input (𝑘𝐴, 𝑣𝐴)
ℎ 𝑘𝐴 𝑚𝑜𝑑 𝑐 = 6

Scenario: inserting new key/value pairs into a hash table in parallel

• determine slot index for 𝑘𝐴 by applying a hash function ℎ 𝑘𝐴 𝑚𝑜𝑑 𝑐 = 6
• write (𝑘𝐴, 𝑣𝐴) to the target slot

• subsequent retrieval of the same element works in the same fashion

c=16 slots

thread 𝐵 with input (𝑘𝐵 , 𝑣𝐵)
ℎ 𝑘𝐵 𝑚𝑜𝑑 𝑐 = 6

• hash collisions among keys

• ℎ 𝑘 𝑚𝑜𝑑 𝑐 = ℎ 𝑘′ 𝑚𝑜𝑑 𝑐 for 𝑘 ≠ 𝑘′
• for suitable resolution strategies

see next slide

• race conditions in a parallel setup

• can be avoided by using atomic

operations (CAS)

Collision Resolution Startegies
Separate Chaining

Slots (buckets) store multiple colliding key-value pairs.

• Dynamic Linked Lists
• allows for dynamic table growth

• overhead due to memory allocations

• slow pointer chasing during bucket iteration

• Static Arrays
• memory over-provisioning

• requires additional array iteration during probing

Open Addressing
Find the next unoccupied slot by means of a deterministic probing scheme.

• Linear Probing: 𝒔 𝒌, 𝒊 = 𝒉 𝒌 + 𝒊 𝒎𝒐𝒅𝒎

• cache efficient

• prone to primary and secondary clustering

• Quadratic Probing: 𝒔 𝒌, 𝒊 = 𝒉 𝒌 + 𝒊𝟐 𝒎𝒐𝒅𝒎

• leaves dense regions faster than linear probing

• prone to secondary clustering, i.e., 𝑠 𝑘, 0 = 𝑠(𝑘′, 0)

• Double Hashing: 𝒔 𝒌, 𝒊 = 𝒉𝟏 𝒌 + 𝒊 ∗ 𝒉𝟐 𝒌 𝒎𝒐𝒅𝒎

• if 𝑚 is prime and 0 < ℎ2(𝑘) < 𝑚 then

• 𝑠 𝑘, 0 ≠ 𝑠(𝑘′, 0), i.e., no secondary clustering

• 𝑠 𝑘, 𝑖 for 𝑖 < 𝑚 is cycle-free

• Cuckoo Hashing
• greedily swap keys between candidate positions

• may result in infinite cycles

• Robinhood Hashing
• takes from the rich and gives to the poor

• reduces probing length variance

6GPU Hashing Data Structures and their Application in Accelerated Genomics

Cooperative Probing Scheme

GPU Hashing Data Structures and their Application in Accelerated Genomics 7

• exploits fast intra-warp

communication via registers

• intra-group linear probing

+ inter-group chaotic probing

insert(k,v,h):
cooperative group

h(k,[0-3]) mod c h(k,[4-7]) mod c

hit!

registers

coalesced
load

0 0 0 0bit-mask

group
voting

0 0 0 0bit-mask

determine
leader

0 0 1 1

0 0 1 0

0 0 1 1

0 0 0 1

atomicCAS k atomicCAS k
fail fail

success!
no hit!

success!

hit!

values

kkeys
global
memory

store v

1

2

5

76

store v

3

4Considerations for multi-value scenarios:

• probing scheme has to be cycle-free (e.g. double hashing)

• retrieval can be done cooperatively

• storing identical keys multiple times is memory inefficient

Bucket List Hash Table

GPU Hashing Data Structures and their Application in Accelerated Genomics 8

Open adressing hash tables lack space efficiency for highly skewed data

Alternative approach:

• store keys only once in a single-value OA hash table

• each key holds a handle to a list of values

• each list consists of linked buckets of varying size

• buckets reside inside a pre-allocated memory pool

keys

handles

hash
table

v
1

v
2

v

3

values
bucket

lists
v
4

v
5

v
6

6

k …

…

…

…

total value count

bucket list handle
bucket header

7

Bucket List Hash Table

GPU Hashing Data Structures and their Application in Accelerated Genomics 9

10 16

kkeys

handles

hash
table

g p i n e e k nvalues
value
lists

2 o h a s h1 7 4

k1:[k,e,e,p]

free slots

k e e p

k2:[o,n]

o n

k3:[h,a,s,h,i,n,g

]

h a s h i n g

coalesce

d access

0

1

5

19

k2k1 k3

retrieve(k1):

retrieve(k2):

retrieve(k3):

in parallel

hit!hit!hit!

…
…
…

COPS

→

4

bucket header

index of previous bucket

4 2 7

19

index of last

bucket

total value count

bucket list handle

7

Single-GPU Single-Value Performance

GPU Hashing Data Structures and their Application in Accelerated Genomics 10

Bulk performance 4+4 byte and (U32) and 8+8 byte (U64) key-value pairs

INSERTION RETRIEVAL

Single-GPU Multi-Value Performance

GPU Hashing Data Structures and their Application in Accelerated Genomics 11

Bulk performance with average key multiplicity of 8

INSERTION RETRIEVAL

Multi-GPU Hashing

• Gossip communication library: 1.8 TB/s (0.5 TB/s) on
DGX-2 (DGX-1) for All-to-Allv

• Jünger, Hundt, Schmidt: WarpDrive: Massively Parallel
Hashing on Multi-GPU Nodes, IPDPS 2018

• Kobus, Jünger, Hundt, Schmidt: Gossip: Efficient
Communication Primitives for Multi-GPU Systems, ICPP 2019

random keys

GPU 0 17 40 35 44 56 16 26

GPU 1 12 67 14 94 86 89 53

GPU 2 19 20 37 74 57 73 25

GPU 3 50 11 51 42 31 62 43

Multi-split with p(k) = k%4

GPU 0 40 44 56 16 17 26 35

GPU 1 12 89 53 14 94 86 67

GPU 2 20 37 57 73 25 74 19

GPU 3 50 42 62 11 51 31 43

All-to-Allv

GPU 0 40 44 56 16 12 20

GPU 1 17 89 53 37 57 73 25

GPU 2 26 14 94 86 74 50 42 62

GPU 3 35 67 19 11 51 31 43

Multi-GPU Single-Value Performance

GPU Hashing Data Structures and their Application in Accelerated Genomics 13

Weak scalability analysis on a DGX-1 server with 2GB of key-value pairs per GPU.

WarpCore achieves 100.8 GB/s throughput using 8 Tesla V100 at a scaling efficiency

of 53%.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

20

40

60

80

100

120

140

160

180

1 2 4 8

w
e

a
k
 s

c
a

lin
g
 e

ff
ic

ie
n

c
y

ru
n

ti
m

e
 [
m

s
]

#GPUs

insert multisplit all-to-all efficiency

Next-Generation Sequencing (NGS)

R
e

a
d

-s
e

q
u

e
n

c
e

s

G
e
n
o
m

e
 s

e
q
e

u
n
c
eDNA

May contain errors!
Illumina NovaSeq 6000

(Towards $100 per Genome)

Read length 2150 bps

Reads per run 20 billion

Run Time <2 days

Metagenomics

• Genomic sequences obtained directly from an environment (e.g. soil, gums, food, air, …)

• Reads stem from a mix of genomes taxonomic read assignment problem

• NGS generates vast amounts of data data set sizes and reference genome databases are
increasing rapidly

M/Billions

of reads W
h
a
t?

W
h
o
?

All-Food-Seq (AFS) Pipeline

24.11.2021 Parallel Hashing on Multi-GPU Nodes 16

• Collaboration with Prof. T. Hankeln’s group (Biology, JGU)

– Liu, Ripp, Köppel, Schmidt, Hellmann, Weber, Krombholz, Schmidt, Hankeln: AFS: identification and

quantification of species composition by metagenomic sequencing. Bioinformatics 33(9):2017

Kraken: Taxonomic Classification of Reads

• each k-mer of input read mapped to the LCA of the genomes that contain that k-mer
using a (pre-computed) k-mer index

• Advantages: Orders-of-magnitude faster than alignment, relatively simple

• Disadvantages: Huge k-mer index, random lookups,

1

3

5 1

taxonomic tree

𝒌-mer Taxon. ID

CG T A A T C A C A T T T GC GC A

CG T A A C A C A T T GC GC

G T A A T A C A T T GC GC A

T A A T C C A T T T

A A T C A A T T T G

A T C A C T T T GC

T C A C A T T GC G

Read

𝑘
-m

e
rs

MinHashing

CTAGCTTAATAT 𝐴ℎ= { }

CTAGCATAATAT 𝐵ℎ = { }

3-mer hashes:

83 229 198 128 184 79 57 188

83 229 81 90 188 79 57 188

55

55

165

165

𝐴ℎ 𝐵ℎ

• Minhashing can be used to estimate Jaccard similarity of two sets:
Pr(ℎ𝑚𝑖𝑛 𝐴 = ℎ𝑚𝑖𝑛(𝐵)) = 𝐽(𝐴, 𝐵)

• Apply hash function ℎ to all k-mers and sketch

𝑆𝑠 𝑋 = set of 𝑠 smallest hash values ℎ 𝑥 of all 𝑥 ∈ 𝑋

𝑆4 𝐴ℎ = 𝟓𝟓, 𝟓𝟕, 𝟕𝟗, 83

𝑆4 𝐵ℎ = 𝟓𝟓, 𝟓𝟕, 𝟕𝟗, 81
𝑀4 𝐴, 𝐵 =

3

5
= 0.6

𝑀𝑠 𝐴, 𝐵 =
𝑆𝑠 𝐴 ∩ 𝑆𝑠 𝐵

𝑆𝑠 𝐴 ∪ 𝑆𝑠 𝐵
≈ 𝐽 𝐴, 𝐵

MetaCache-GPU

GPU Hashing Data Structures and their Application in Accelerated Genomics 19

• Tested on sequenced “calibrator sausages”

Metache-GPU: Accuracy

Ground Truth AFS-MetaCache Estimation

MetaCache-GPU: Performance

GPU Hashing Data Structures and their Application in Accelerated Genomics 21

Comparison of metagenomic database construction times for 151 GB

of genomes using a custom WarpCore hash table on 8 GPUs.

enables “On-the-Fly” metagenomics

• Kobus, Müller, Jünger, Hundt, Schmidt: MetaCache-GPU: Ultra-Fast Metagenomic
Classification, ICPP 2021

k-mer Counting

R = {ACGTTA, ACGTTA,

ACGTTT}

k = 4

k-mer count

ACGT 3

CGTT 3

GTTA 2

GTTT 1

• k-mer counting is required by many bioinformatics tools; e.g. genome
assembly, error correction, multiple sequence alignment, repeat
detection

Cross-species contamination in NGS data

• k-mer abundance histograms could be used as indicator for contamination

• For haploid organisms: the distribution should resemble a single Gaussian + low frequency k-mers
indicating sequencing errors

WarpCount

24.11.2021 Parallel Hashing on Multi-GPU Nodes 24

GPU
CPUCPU bloom filters hash tables

retrieve all

multisplit filter countkmerize

multisplitkmerize

multisplitkmerize

filter count

filter count

all

2

all

p
a
rs

e

p
a
rs

e
e
n
c
o
d
e

e
n
c
o
d
e

GPU1

GPU0

GPU2

thread 0 thread 1

d
e
c
o
d
e

d
e
c
o
d
e

write

result

count

s
ACGT,3

GTCC,4

CCCT,2

…

thread 0 thread 1WarpCore

fasta

fastq

WarpCount: Performance Evaluation

24.11.2021 Parallel Hashing on Multi-GPU Nodes 25

352

238

91

12

260

214

91

20
0

50

100

150

200

250

300

350

400

J
e
lly

fi
s
h

 2

D
S

K
 2

K
M

C
 3

W
a

rp
C

o
u

n
t

J
e
lly

fi
s
h

 2

D
S

K
 2

K
M

C
 3

W
a

rp
C

o
u

n
t

k=15 k=31

ru
n
ti
m

e
 [
s
]

g_gallus

480
542

157

15

345

248 248

18
0

100

200

300

400

500

600

J
e
lly

fi
s
h

 2

D
S

K
 2

K
M

C
 3

W
a

rp
C

o
u

n
t

J
e
lly

fi
s
h

 2

D
S

K
 2

K
M

C
 3

W
a

rp
C

o
u

n
t

k=15 k=31

ru
n
ti
m

e
 [
s
]

m_balbisiana
3807

1892

441

34

2386

929

464

72
0

500

1000

1500

2000

2500

3000

3500

4000

J
e
lly

fi
s
h

 2

D
S

K
 2

K
M

C
 3

W
a

rp
C

o
u

n
t

J
e
lly

fi
s
h

 2

D
S

K
 2

K
M

C
 3

W
a

rp
C

o
u

n
t

k=15 k=31

ru
n
ti
m

e
 [
s
]

h_sapiens 1

• WarpCore outperforms the fastest CPU-based k-mer counting tool (KMC 3)

by a factor of up to 13x on a single V100

• The multi-GPU setup alleviates GPU memory limitations and thus makes

processing of large datasets possible

Conclusions

• a framework for high-throughput hashing-based data structures that can be tailored to fit
many use cases

• efficient implementations of single- and multi-value hash tables, hash sets, counting hash
tables, and bloom filters

• we propose a new multi-value hash table approach which provides robust throughput at high
memory densities even for highly skewed input distributions

• easily scalable over up-to 16 GPUs (DGX-2)

• Can be used for a variety of applications in bioinformatics (e.g. metagenomics, k-mer
counting)

GPU Hashing Data Structures and their Application in Accelerated Genomics 26

We have presented WarpCore - a versatile library of GPU hash

table data structures.

Thank You!

GPU Hashing Data Structures and their Application in Accelerated Genomics 27

• Daniel Jünger, Robin Kobus, André Müller, Bertil

Schmidt
• {juenger, kobus, muellan, bertil.schmidt}@uni-mainz.de

• Johannes Gutenberg University, Mainz, Germany

• Christian Hundt
• chundt@nvidia.com

• NVIDIA AI Technology Center

• Kai Xu, Weiguo Liu
• {xukai16@mail., weiguo.liu@}sdu.edu.cn

• School of Software, Shandong University, Jinan, China

• https://github.com/sleeepyjack/warpcore (Apache 2.0 License)

https://github.com/sleeepyjack/warpcore

