JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

GPU Hashing Data Structures and their Application in Accelerated Genomics

Daniel Jünger and Bertil Schmidt

Institute of Computer Science Johannes Gutenberg-University, Mainz, Germany

NHR PerfLab Seminar

### It is all about memory bandwidth!

DDR4 modules built in Xeon multi-socket workstations



HBM2 stacked memory modules attached to Tesla P100/V100/A100



### Few hundred GB/s a few TB of size

up to 2 TB/s less than 80 GB (A100)



# Why hashing is a good idea

Hash tables are well-suited if range queries do not matter:

|                       | Hash Table         | Sorted Array | Tree                 |
|-----------------------|--------------------|--------------|----------------------|
| insertion per element | O(1)               | O(log n)     | O(log n)             |
| query per element     | O(1)               | O(log n)     | O(log n)             |
| peak memory           | $(1+\varepsilon)n$ | 2n           | $(1 + \varepsilon)n$ |
| final memory          | (1 + ε)n           | п            | $(1 + \varepsilon)n$ |
| range queries         | not supported      | supported    | supported            |

- out-of-place sorting usually needs O(n) auxillary memory: CUDA Unbound radix sort uses double buffers → waste of valuable video memory
- incomplete trees exhibit highly irregular data layouts and are hard to construct in parallel without auxillary memory



## Contributions

### We propose WarpCore - a versatile library of hashing data structures

### • Performance

- main focus on high-throughput table operations
- WarpCore outperforms other state-of-the-art CPU and GPU hash tables

### • Modularity

- building blocks for constructing customized GPU hash tables
- probing schemes, hashers, memory layouts, etc.
- Host-sided and device-sided interfaces
  - host-sided (bulk) operations provide high throughput
  - device-sided operations (fuse table operations with other tasks in one kernel)
- Fully-asynchronous execution
  - allows for task overlapping and multi-GPU setups
- Jünger, Kobus, Müller, Hundt, Xu, Liu, Schmidt: "WarpCore: A Library for fast Hash Tables on GPUs", IEEE HiPC 2020



## Parallel Hash Table Construction

### Scenario: inserting new key/value pairs into a hash table in parallel

- determine slot index for  $k_A$  by applying a hash function  $h(k_A) \mod c = 6$
- write  $(k_A, v_A)$  to the target slot
- subsequent retrieval of the same element works in the same fashion





- hash collisions among keys
  - $h(k) \mod c = h(k') \mod c$  for  $k \neq k'$
  - for suitable resolution strategies see next slide
- race conditions in a parallel setup
  - can be avoided by using atomic operations (CAS)



### **Collision Resolution Startegies**

### **Separate Chaining**

Slots (buckets) store multiple colliding key-value pairs.

### **Open Addressing**

Find the next unoccupied slot by means of a deterministic probing scheme.

- Dynamic Linked Lists
  - allows for dynamic table growth
  - overhead due to memory allocations
  - slow pointer chasing during bucket iteration
- Static Arrays
  - memory over-provisioning
  - requires additional array iteration during probing

- Linear Probing:  $s(k, i) = (h(k) + i) \mod m$ 
  - cache efficient
  - prone to primary and secondary clustering
- Quadratic Probing:  $s(k, i) = (h(k) + i^2) \mod m$ 
  - leaves dense regions faster than linear probing
  - prone to secondary clustering, i.e., s(k, 0) = s(k', 0)
- **Double Hashing:**  $s(k, i) = (h_1(k) + i * h_2(k)) \mod m$ 
  - if *m* is prime and  $0 < h_2(k) < m$  then
    - $s(k, 0) \neq s(k', 0)$ , i.e., no secondary clustering
    - s(k,i) for i < m is cycle-free
- Cuckoo Hashing
  - greedily swap keys between candidate positions
  - may result in infinite cycles

### Robinhood Hashing

- · takes from the rich and gives to the poor
- reduces probing length variance

## **Cooperative Probing Scheme**

- exploits fast intra-warp communication via registers
- intra-group linear probing
   + inter-group chaotic probing

**Considerations for multi-value scenarios:** 

- probing scheme has to be cycle-free (e.g. double hashing)
- retrieval can be done cooperatively
- storing identical keys multiple times is memory inefficient



### **Bucket List Hash Table**

### Open adressing hash tables lack space efficiency for highly skewed data

### Alternative approach:

- store keys only once in a single-value OA hash table
- each key holds a handle to a list of values
- each list consists of linked buckets of varying size
- buckets reside inside a pre-allocated memory pool



### **Bucket List Hash Table**





# Single-GPU Single-Value Performance

### Bulk performance 4+4 byte and (U32) and 8+8 byte (U64) key-value pairs



GPU Hashing Data Structures and their Application in Accelerated Genomics

## Single-GPU Multi-Value Performance

### Bulk performance with average key multiplicity of 8





GPU Hashing Data Structures and their Application in Accelerated Genomics

## Multi-GPU Hashing



### GPU 0 35 26 40 44 56 16 Ø GPU 1 67 86 89 53 12 14 94 Ø GPU 2 19 20 37 57 73 25 74 Ø GPU 3 50 11 51 42 31 62 43

random keys

Ø

|       | Multi-split with <i>p</i> ( <i>k</i> ) = <i>k</i> %4 |    |    |    |    |    |    |   |
|-------|------------------------------------------------------|----|----|----|----|----|----|---|
| GPU 0 | 40                                                   | 44 | 56 | 16 | 17 | 26 | 35 | Ø |
| GPU 1 | 12                                                   | 89 | 53 | 14 | 94 | 86 | 67 | Ø |
| GPU 2 | 20                                                   | 37 | 57 | 73 | 25 | 74 | 19 | Ø |
| GPU 3 | 50                                                   | 42 | 62 | 11 | 51 | 31 | 43 | Ø |

|       | All-to-Allv |    |    |    |    |    |    |    |
|-------|-------------|----|----|----|----|----|----|----|
| GPU 0 | 40          | 44 | 56 | 16 | 12 | 20 | Ø  | Ø  |
| GPU 1 | 17          | 89 | 53 | 37 | 57 | 73 | 25 | Ø  |
| GPU 2 | 26          | 14 | 94 | 86 | 74 | 50 | 42 | 62 |
| GPU 3 | 35          | 67 | 19 | 11 | 51 | 31 | 43 | Ø  |

**IGU** 

- Gossip communication library: 1.8 TB/s (0.5 TB/s) on • DGX-2 (DGX-1) for All-to-Allv
  - Jünger, Hundt, Schmidt: WarpDrive: Massively Parallel Hashing on Multi-GPU Nodes, IPDPS 2018
  - Kobus, Jünger, Hundt, Schmidt: Gossip: Efficient Communication Primitives for Multi-GPU Systems, ICPP 2019

### Multi-GPU Single-Value Performance

Weak scalability analysis on a DGX-1 server with 2GB of key-value pairs per GPU.



WarpCore achieves 100.8 GB/s throughput using 8 Tesla V100 at a scaling efficiency of 53%.



# Next-Generation Sequencing (NGS)



# Metagenomics



- Genomic sequences obtained directly from an environment (e.g. soil, gums, food, air, ...)
- Reads stem from a mix of genomes  $\Rightarrow$  taxonomic read assignment problem
- NGS generates vast amounts of data ⇒ data set sizes and reference genome databases are increasing rapidly



# All-Food-Seq (AFS) Pipeline



- Collaboration with Prof. T. Hankeln's group (Biology, JGU)
  - Liu, Ripp, Köppel, Schmidt, Hellmann, Weber, Krombholz, <u>Schmidt</u>, Hankeln: AFS: identification and quantification of species composition by metagenomic sequencing. Bioinformatics 33(9):2017

# Kraken: Taxonomic Classification of Reads



- each k-mer of input read mapped to the LCA of the genomes that contain that k-mer using a (pre-computed) k-mer index
- Advantages: Orders-of-magnitude faster than alignment, relatively simple
- **Disadvantages:** *Huge k*-mer index, random lookups,

JGU

# MinHashing

- Minhashing can be used to estimate Jaccard similarity of two sets:  $Pr(h_{min}(A) = h_{min}(B)) = J(A, B)$
- Apply hash function *h* to all *k*-mers and **sketch**

 $S_s(X) = \text{set of } s \text{ smallest hash values } h(x) \text{ of all } x \in X$ 

CTAGCTTAATAT  $A_h = \{ 83 \ 229 \ 55 \ 198 \ 128 \ 184 \ 79 \ 57 \ 188 \ 165 \ \}$ CTAGCATAATAT  $B_h = \{ 83 \ 229 \ 55 \ 81 \ 90 \ 188 \ 79 \ 57 \ 188 \ 165 \ \}$   $M_s(A, B) = \frac{|S_s(A) \ \cap \ S_s(B)|}{|S_s(A) \ \cup \ S_s(B)|} \approx J(A, B)$   $S_4(A_h) = \{ 55, 57, 79, 83 \}$  $M_4(A, B) = \frac{3}{5} = 0.6$   $A_h \bigcirc B_h$ 

### 3-mer hashes:

### MetaCache-GPU





### Metache-GPU: Accuracy



Tested on sequenced "calibrator sausages"

JGU

### MetaCache-GPU: Performance

Comparison of metagenomic database construction times for **151 GB** of genomes using a custom WarpCore hash table on 8 GPUs.  $\Rightarrow$ enables "On-the-Fly" metagenomics



 Kobus, Müller, Jünger, Hundt, Schmidt: MetaCache-GPU: Ultra-Fast Metagenomic Classification, ICPP 2021

# k-mer Counting



 k-mer counting is required by many bioinformatics tools; e.g. genome assembly, error correction, multiple sequence alignment, repeat detection



### Cross-species contamination in NGS data



JGU

### Unexpected cross-species contamination in genome sequencing projects

Samier Merchant<sup>1,2</sup>, Derrick E. Wood<sup>1,3</sup> and Steven L. Salzberg<sup>1,3,4</sup>

<sup>1</sup> Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA

<sup>2</sup> Department of Computer Science, Brown University, Providence, RI, USA

<sup>3</sup> Department of Computer Science, Johns Hopkins University, USA

<sup>4</sup> Department of Biomedical Engineering, Johns Hopkins University, USA



- *k*-mer abundance histograms could be used as indicator for contamination
- For haploid organisms: the distribution should resemble a single Gaussian + low frequency k-mers
  indicating sequencing errors

## WarpCount



## WarpCount: Performance Evaluation



- WarpCore outperforms the fastest CPU-based k-mer counting tool (KMC 3) by a factor of up to 13x on a single V100
- The multi-GPU setup alleviates GPU memory limitations and thus makes
   processing of large datasets possible

### Conclusions

# We have presented WarpCore - a versatile library of GPU hash table data structures.

- a framework for high-throughput hashing-based data structures that can be tailored to fit many use cases
- efficient implementations of single- and multi-value hash tables, hash sets, counting hash tables, and bloom filters
- we propose a new multi-value hash table approach which provides robust throughput at high memory densities even for highly skewed input distributions
- easily scalable over up-to 16 GPUs (DGX-2)
- Can be used for a variety of applications in bioinformatics (e.g. metagenomics, k-mer counting)



# Thank You!



- Daniel Jünger, Robin Kobus, André Müller, Bertil Schmidt
  - {juenger, kobus, muellan, bertil.schmidt}@uni-mainz.de
  - Johannes Gutenberg University, Mainz, Germany



- Christian Hundt
  - chundt@nvidia.com
  - NVIDIA AI Technology Center



- Kai Xu, Weiguo Liu
  - {xukai16@mail., weiguo.liu@}sdu.edu.cn
  - School of Software, Shandong University, Jinan, China



<u>https://github.com/sleeepyjack/warpcore</u> (Apache 2.0 License)