
GPU Hashing Data Structures and their

Application in Accelerated Genomics

Daniel Jünger and Bertil Schmidt

NHR PerfLab Seminar

Institute of Computer Science

Johannes Gutenberg-University, Mainz, Germany

It is all about memory bandwidth!

GPU Hashing Data Structures and their Application in Accelerated Genomics 2

DDR4 modules built in Xeon

multi-socket workstations

HBM2 stacked memory modules

attached to Tesla

P100/V100/A100

Few hundred GB/s

a few TB of size

up to 2 TB/s

less than 80 GB (A100)

Why hashing is a good idea

Hash tables are well-suited if range queries do not matter:

GPU Hashing Data Structures and their Application in Accelerated Genomics 3

Hash Table Sorted Array Tree

insertion per element O(1) O(log n) O(log n)

query per element O(1) O(log n) O(log n)

peak memory (1 + Ů)n 2n (1 + Ů)n

final memory (1 + Ů)n n (1 + Ů)n

range queries not supported supported supported

Åout-of-place sorting usually needs O(n) auxillary memory: CUDA Unbound radix sort uses
double buffersĄ waste of valuable video memory

Åincomplete trees exhibit highly irregular data layouts and are hard to construct in parallel
without auxillary memory

Contributions

GPU Hashing Data Structures and their Application in Accelerated Genomics 4

ÅPerformance

Åmain focus on high-throughput table operations

ÅWarpCore outperforms other state-of-the-art CPU and GPU hash tables

ÅModularity

Åbuilding blocks for constructing customized GPU hash tables

Åprobing schemes, hashers, memory layouts, etc.

ÅHost-sided and device-sided interfaces

Åhost-sided (bulk) operations provide high throughput

Ådevice-sided operations (fuse table operations with other tasks in one kernel)

ÅFully-asynchronous execution

Åallows for task overlapping and multi-GPU setups

ÅJünger, Kobus, Müller, Hundt, Xu, Liu, Schmidt: ĂWarpCore: A Library for fast Hash Tables

on GPUsò, IEEE HiPC 2020

We propose WarpCore - a versatile library of hashing data structures

Parallel Hash Table Construction

GPU Hashing Data Structures and their Application in Accelerated Genomics 5

kkeys

values
hashtable

thread ὃwith input Ὧȟὺ
ὬὯ άέὨὧ φ

Scenario: inserting new key/value pairs into a hash table in parallel

Å determine slot index forὯ by applying a hash functionὬὯ άέὨὧ φ
Å write Ὧȟὺ to the target slot

Å subsequent retrieval of the same element works in the same fashion

c=16 slots

thread ὄwith input Ὧȟὺ ὬὯ άέὨὧ φ

Å hash collisions among keys

Å ὬὯάέὨὧ ὬὯᴂάέὨὧfor Ὧ Ὧᴂ
Å for suitable resolution strategies

see next slide

Å race conditions in a parallel setup

Å can be avoided by using atomic

operations (CAS)

Collision Resolution Startegies
Separate Chaining

Slots (buckets) store multiple colliding key-value pairs.

ÅDynamic Linked Lists
Å allows for dynamic table growth

Å overhead due to memory allocations

Å slow pointer chasing during bucket iteration

ÅStatic Arrays
Å memory over-provisioning

Å requires additional array iteration during probing

Open Addressing
Find the next unoccupied slot by means of a deterministic probing scheme.

ÅLinear Probing: ▼▓ȟ░ ▐▓ ░□▫▀□

Å cache efficient

Å prone to primary and secondary clustering

ÅQuadratic Probing: ▼▓ȟ░ ▐▓ ░ □▫▀□

Å leaves dense regions faster than linear probing

Å prone to secondary clustering, i.e., ίὯȟπ ίὯȟπ

ÅDouble Hashing: ▼▓ȟ░ ▐ ▓ ░z ▐ ▓ □▫▀□

Å ifά is prime and π Ὤ Ὧ ά then

Å ίὯȟπ ίὯȟπ, i.e., no secondary clustering

Å ίὯȟὭforὭ ά is cycle-free

ÅCuckoo Hashing
Å greedily swap keys between candidate positions

Å may result in infinite cycles

ÅRobinhood Hashing
Å takes from the rich and gives to the poor

Å reduces probing length variance

6GPU Hashing Data Structures and their Application in Accelerated Genomics

Cooperative Probing Scheme

GPU Hashing Data Structures and their Application in Accelerated Genomics 7

Å exploits fast intra-warp

communication via registers

Å intra-group linear probing

+ inter-group chaotic probing

insert(k,v,h):
cooperativegroup

h(k,[0-3]) modc h(k,[4-7]) modc

hit!

registers

coalesced
load

0 0 0 0bit-mask

group
voting

0 0 0 0bit-mask

determine
leader

0 0 1 1

0 0 1 0

0 0 1 1

0 0 0 1

atomicCASk atomicCASk
fail fail

success!
no hit!

success!

hit!

values

kkeys
global
memory

storev

1

2

5

76

storev

3

4Considerations for multi-value scenarios:

Å probing scheme has to be cycle-free (e.g. double hashing)

Å retrieval can be done cooperatively

Å storing identical keys multiple times is memory inefficient

Bucket List Hash Table

GPU Hashing Data Structures and their Application in Accelerated Genomics 8

Open adressing hash tables lack space efficiency for highly skewed data

Alternative approach:

Å store keys only once in a single-value OA hash table

Å each key holds a handle to a list of values

Å each list consists of linked buckets of varying size

Å buckets reside inside a pre-allocated memory pool

keys

handles

hash
table

v
1

v
2

v

3

values
bucket

lists
v
4

v
5

v
6

6

k é

é

é

é

total value count

bucketlist handle
bucketheader

7

Bucket List Hash Table

GPU Hashing Data Structures and their Application in Accelerated Genomics 9

10 16

kkeys

handles

hash
table

g p i n e e k nvalues
value
lists

2 o h a s h1 7 4

k1:[k,e,e,p]

free slots

k e e p

k2:[o,n]

o n

k3:[h,a,s,h,i,n,g

]

h a s h i n g

coalesce

d access

0

1

5

19

k2k1 k3

retrieve(k1):

retrieve(k2):

retrieve(k3):

in parallel

hit!hit!hit!

é
é
é

COPS

Ÿ

4

bucketheader

index of previous bucket

4 2 7

19

index of last

bucket

total value count

bucketlist handle

7

Single-GPU Single-Value Performance

GPU Hashing Data Structures and their Application in Accelerated Genomics 10

Bulk performance 4+4 byte and (U32) and 8+8 byte (U64) key-value pairs

INSERTION RETRIEVAL

Single-GPU Multi-Value Performance

GPU Hashing Data Structures and their Application in Accelerated Genomics 11

Bulk performance with average key multiplicity of 8

INSERTION RETRIEVAL

Multi-GPU Hashing

ÅGossip communication library: 1.8 TB/s (0.5 TB/s) on
DGX-2 (DGX-1) for All-to-Allv
ÅJünger, Hundt, Schmidt: WarpDrive: Massively Parallel

Hashing on Multi-GPU Nodes, IPDPS 2018

ÅKobus, Jünger, Hundt, Schmidt: Gossip: Efficient
Communication Primitives for Multi-GPU Systems, ICPP 2019

random keys

GPU 0 17 40 35 44 56 16 26 Å

GPU 1 12 67 14 94 86 89 53 Å

GPU 2 19 20 37 74 57 73 25 Å

GPU 3 50 11 51 42 31 62 43 Å

Multi-split with p(k) = k%4

GPU 0 40 44 56 16 17 26 35 Å

GPU 1 12 89 53 14 94 86 67 Å

GPU 2 20 37 57 73 25 74 19 Å

GPU 3 50 42 62 11 51 31 43 Å

All-to-Allv

GPU 0 40 44 56 16 12 20 Å Å

GPU 1 17 89 53 37 57 73 25 Å

GPU 2 26 14 94 86 74 50 42 62

GPU 3 35 67 19 11 51 31 43 Å

Multi-GPU Single-Value Performance

GPU Hashing Data Structures and their Application in Accelerated Genomics 13

Weak scalability analysis on a DGX-1 server with 2GB of key-value pairs per GPU.

WarpCore achieves 100.8 GB/s throughput using 8 Tesla V100 at a scaling efficiency

of 53%.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

20

40

60

80

100

120

140

160

180

1 2 4 8

w
e

a
k
 s

c
a

lin
g
 e

ff
ic

ie
n

c
y

ru
n

ti
m

e
 [
m

s
]

#GPUs

insert multisplit all-to-all efficiency

Next-Generation Sequencing (NGS)

R
e

a
d

-s
e

q
u

e
n

c
e

s

G
e
n
o
m

e
 s

e
q
e

u
n
c
eDNA

May contain errors!
Illumina NovaSeq 6000

(Towards $100 per Genome)

Read length 2³150 bps

Reads per run 20 billion

Run Time <2 days

