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It is all about memory bandwidth!
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DDR4 modules built in Xeon 

multi-socket workstations

HBM2 stacked memory modules

attached to Tesla 

P100/V100/A100

Few hundred GB/s

a few TB of size

up to 2 TB/s

less than 80 GB (A100)



Why hashing is a good idea

Hash tables are well-suited if range queries do not matter:

GPU Hashing Data Structures and their Application in Accelerated Genomics 3

Hash Table Sorted Array Tree

insertion per element O(1) O(log n) O(log n)

query per element O(1) O(log n) O(log n)

peak memory (1 + Ů)n 2n (1 + Ů)n

final memory (1 + Ů)n n (1 + Ů)n

range queries not supported supported supported

Åout-of-place sorting usually needs O(n) auxillary memory: CUDA Unbound radix sort uses
double buffersĄ waste of valuable video memory

Åincomplete trees exhibit highly irregular data layouts and are hard to construct in parallel 
without auxillary memory



Contributions
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ÅPerformance

Åmain focus on high-throughput table operations

ÅWarpCore outperforms other state-of-the-art CPU and GPU hash tables

ÅModularity

Åbuilding blocks for constructing customized GPU hash tables

Åprobing schemes, hashers, memory layouts, etc.

ÅHost-sided and device-sided interfaces

Åhost-sided (bulk) operations provide high throughput

Ådevice-sided operations (fuse table operations with other tasks in one kernel)

ÅFully-asynchronous execution

Åallows for task overlapping and multi-GPU setups

ÅJünger, Kobus, Müller, Hundt, Xu, Liu, Schmidt: ĂWarpCore: A Library for fast Hash Tables 

on GPUsò, IEEE HiPC 2020

We propose WarpCore - a versatile library of hashing data structures



Parallel Hash Table Construction
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kkeys

values
hashtable

thread ὃwith input Ὧȟὺ
ὬὯ άέὨὧ φ

Scenario: inserting new key/value pairs into a hash table in parallel

Å determine slot index forὯ by applying a hash functionὬὯ άέὨὧ φ
Å write Ὧȟὺ to the target slot

Å subsequent retrieval of the same element works in the same fashion

c=16 slots

thread ὄwith input Ὧȟὺ ὬὯ άέὨὧ φ

Å hash collisions among keys

Å ὬὯάέὨὧ ὬὯᴂάέὨὧfor Ὧ Ὧᴂ
Å for suitable resolution strategies

see next slide

Å race conditions in a parallel setup

Å can be avoided by using atomic

operations (CAS)



Collision Resolution Startegies
Separate Chaining

Slots (buckets) store multiple colliding key-value pairs.

ÅDynamic Linked Lists 
Å allows for dynamic table growth

Å overhead due to memory allocations

Å slow pointer chasing during bucket iteration

ÅStatic Arrays 
Å memory over-provisioning

Å requires additional array iteration during probing

Open Addressing
Find the next unoccupied slot by means of a deterministic probing scheme.

ÅLinear Probing: ▼▓ȟ░ ▐▓ ░□▫▀□

Å cache efficient

Å prone to primary and secondary clustering

ÅQuadratic Probing: ▼▓ȟ░ ▐▓ ░ □▫▀□

Å leaves dense regions faster than linear probing

Å prone to secondary clustering, i.e., ίὯȟπ ίὯȟπ

ÅDouble Hashing: ▼▓ȟ░ ▐ ▓ ░z ▐ ▓ □▫▀□

Å ifά is prime and π Ὤ Ὧ ά then

Å ίὯȟπ ίὯȟπ, i.e., no secondary clustering

Å ίὯȟὭforὭ ά is cycle-free

ÅCuckoo Hashing
Å greedily swap keys between candidate positions

Å may result in infinite cycles

ÅRobinhood Hashing
Å takes from the rich and gives to the poor

Å reduces probing length variance
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Cooperative Probing Scheme
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Å exploits fast intra-warp 

communication via registers

Å intra-group linear probing

+ inter-group chaotic probing

insert(k,v,h):
cooperativegroup

h(k,[0-3]) modc h(k,[4-7]) modc

hit!

registers

coalesced
load

0 0 0 0bit-mask

group
voting

0 0 0 0bit-mask

determine
leader

0 0 1 1

0 0 1 0

0 0 1 1

0 0 0 1

atomicCASk atomicCASk
fail fail

success!
no hit!

success!

hit!

values

kkeys
global 
memory

storev

1

2

5

76

storev

3

4Considerations for multi-value scenarios:

Å probing scheme has to be cycle-free (e.g. double hashing)

Å retrieval can be done cooperatively

Å storing identical keys multiple times is memory inefficient



Bucket List Hash Table
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Open adressing hash tables lack space efficiency for highly skewed data

Alternative approach:

Å store keys only once in a single-value OA hash table

Å each key holds a handle to a list of values

Å each list consists of linked buckets of varying size

Å buckets reside inside a pre-allocated memory pool

keys

handles

hash
table

v
1

v
2

v

3

values
bucket

lists
v
4

v
5

v
6

6

k é

é

é

é

total value count

bucketlist handle
bucketheader
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Bucket List Hash Table
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10 16

kkeys

handles

hash
table

g p i n e e k nvalues
value
lists

2 o h a s h1 7 4

k1:[k,e,e,p]

free slots

k e e p

k2:[o,n]

o n

k3:[h,a,s,h,i,n,g

]

h a s h i n g

coalesce

d access

0

1

5

19

k2k1 k3

retrieve(k1):

retrieve(k2):

retrieve(k3):

in parallel

hit!hit!hit!

é
é
é

COPS 

Ÿ

4

bucketheader

index of previous bucket

4 2 7

19

index of last 

bucket

total value count

bucketlist handle
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Single-GPU Single-Value Performance
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Bulk performance 4+4 byte and (U32) and 8+8 byte (U64) key-value pairs

INSERTION RETRIEVAL



Single-GPU Multi-Value Performance
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Bulk performance with average key multiplicity of 8

INSERTION RETRIEVAL



Multi-GPU Hashing

ÅGossip communication library: 1.8 TB/s (0.5 TB/s) on 
DGX-2 (DGX-1) for All-to-Allv
ÅJünger, Hundt, Schmidt: WarpDrive: Massively Parallel 

Hashing on Multi-GPU Nodes, IPDPS 2018

ÅKobus, Jünger, Hundt, Schmidt: Gossip: Efficient 
Communication Primitives for Multi-GPU Systems, ICPP 2019 

random keys

GPU 0 17 40 35 44 56 16 26 Å

GPU 1 12 67 14 94 86 89 53 Å

GPU 2 19 20 37 74 57 73 25 Å

GPU 3 50 11 51 42 31 62 43 Å

Multi-split with p(k) = k%4

GPU 0 40 44 56 16 17 26 35 Å

GPU 1 12 89 53 14 94 86 67 Å

GPU 2 20 37 57 73 25 74 19 Å

GPU 3 50 42 62 11 51 31 43 Å

All-to-Allv

GPU 0 40 44 56 16 12 20 Å Å

GPU 1 17 89 53 37 57 73 25 Å

GPU 2 26 14 94 86 74 50 42 62

GPU 3 35 67 19 11 51 31 43 Å



Multi-GPU Single-Value Performance
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Weak scalability analysis on a DGX-1 server with 2GB of key-value pairs per GPU.

WarpCore achieves 100.8 GB/s throughput using 8 Tesla V100 at a scaling efficiency 

of 53%.
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Next-Generation Sequencing (NGS)
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May contain errors!
Illumina NovaSeq 6000

(Towards $100 per Genome)

Read length 2³150 bps

Reads per run 20 billion

Run Time <2 days


