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It Is all about memory bandwidth!

DDR4 modules built in Xeon HBM2 stacked memory modules
multi-socket workstations attached to Tesla

P100/V100/A100

Few hundred GB/s up to 2 TB/s
a few TB of size less than 80 GB (A100)
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Why hashing Is a good idea

Hash tables are well-suited if range queries do not matter:

| HashTable | Sorted Array

insertion per element O(1) O(log n) O(log n)
query per element O(1) O(log n) O(log n)
peak memory (1 + On 2n (1 + On
final memory (1 + On n (1 +UOn
range queries not supported supported supported

A out-of-place sorting usually needs O(n) auxillary memory: CUDA Unbound radix sort uses
double buffers A waste of valuable video memory

A incomplete trees exhibit highly irregular data layouts and are hard to construct in parallel
without auxillary memory
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Contributions

We propose WarpCore - a versatile library of hashing data structures

A Performance

A main focus on high-throughput table operations

A WarpCore outperforms other state-of-the-art CPU and GPU hash tables
A Modularity

A building blocks for constructing customized GPU hash tables

A probing schemes, hashers, memory layouts, etc.
A Host-sided and device-sided interfaces

A host-sided (bulk) operations provide high throughput

A device-sided operations (fuse table operations with other tasks in one kernel)
A Fully-asynchronous execution

A allows for task overlapping and multi-GPU setups

A Junger, Kobus, Miiller, Hundt, Xu, Li u, WarpCore: A tibraryAor fast Hash Tables
on GPUso |[EEE HiPC 2020
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Parallel Hash Table Construction

Scenario: inserting new key/value pairs into a hash table in parallel

A determine slot index for Q by applying a hash function Q) a ¢ ‘@ @
A write "Qh) to the target slot
A subsequent retrieval of the same element works in the same fashion

A

thread with input ‘0f L24LD 9 ; A hash collisions among keys
A TQaé¢ D "TQpa ¢ Ofor' Q Qee
A for suitable resolution strategies
see next slide

threadd with input Qfy L24ED@ @

key
hashtable
valu

v

A race conditions in a parallel setup
A can be avoided by using atomic
operations (CAS)

c=16slots
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Collision Resolution Startegies

Separate Chaining Open Addressing
Slots (buckets) store multiple colliding key-value pairs. Find the next unoccupied slot by means of a deterministic probing scheme.
A Dynamic Linked Lists A Linear Probing: (kp jo-™
A allows for dynamic table growth A cache efficient
A overhead due to memory allocations A prone to primary and secondary clustering
A slow pointer chasing during bucket iteration
A Static Arrays A Quadratic Probing: ( oW
A memory over-provisioning A leaves dense regions faster than linear probing
A requires additional array iteration during probing A prone to secondary clustering, i.e., i (G i Qhr

A Double Hashing: @& (|
A ifa isprimeandm Q Q & then
A i(Gm) i Qhm,i.e., nosecondary clustering

A i (@forQ & is cycle-free

A Cuckoo Hashing
A greedily swap keys between candidate positions
A may result in infinite cycles

A Robinhood Hashing

A takes from the rich and gives to the poor
A reduces probing length variance
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Cooperative Probing Scheme

nsertk.v h):h(k,[03]) modc h(k,[47]) modc

o @ lcooperativegroupl @ l

A exploits fast intra-warp 5 e ¢ ¢ s
communication via registers Jobat eys|

memory valueq
A intra-group linear probing
+ inter-group chaotic probing @ cqistersP

- COalEsced

load

group

@ bit-mask

voting

\
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¢
0

Considerations for multi-value scenarios: @b“'mas"

O |*| O |+

o |*v| o |+

\
0
¢
0

leader

A probing scheme has to be cycle-free (e.g. double hashing)

A retrieval can be done cooperatively

A storing identical keys multiple times is memory inefficient
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Bucket List Hash Table

Open adressing hash tables lack space efficiency for highly skewed data

hash keys e

table handles e

Alternative approach: {

A store keys only once in a single-value OA hash table

A each key holds a handle to a list of values

A each list consists of linked buckets of varying size

A buckets reside inside a pre-allocated memory pool

total value count IZ

W—I

bucketlist handle bucketheader
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Bucket List Hash Table

retrieve(ks): e
in parallel 4 retrieve(k,): e
retrieve(k,): e
J COPS hit! hit! hit! index of last
% | Yy 10 | bucket
¢ ¢ ¢ § ¢ 9 ¢ % 9 9 9 ueke
k total value count
0 ) —~
I bucketlist handle
free slots
value | -
lists vauelOIcl vz I |n

Ahlals |h

index of previous bucket

T T
' '
' ' '
-
O /8
~

I~ Y
34 coalesce bucketheader
“*d access

hla|s |h]i |n ng
AR ok LR AR A 7 A i 1
k,:[o,n] ks:[h,a,s,h,i,n,g
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Single-GPU Single-Value Performance

Bulk performance 4+4 byte and (U32) and 8+8 byte (U64) key-value pairs

Operations per second
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Single-GPU Multi-Value Performance

Bulk performance with average key multiplicity of 8
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Multi-GPU Hashing

random keys [ |

CPUD cPU1
GPUO | 17 35 26 A Ei i

GPul [42) 67 (14 94 (86 89 53 A
GPu2 |10 [20 37 (74 57 73 (25 A DD DD
GPU3 [50 11 51 42 31 62 43 A [ I ] |

Multi-split with p(k) = k%4

- T <)
GPU 0 17 26 35 A 1T 1 ] XX 1
cpu1 2] 89 53 14 94 86 67 A 7] Pang | | pand [ 2
cpu2 [20037 57 73 25 74 19 A t 1 I 1
GPU 3 |50 42 62 11 51 31 43 A e o
All-to-Allv A Gossip communication library: 1.8 TB/s (0.5 TB/s) on
cruo [40([42 56 16 12|20 A A DGX-2 (DGX-1) for All-to-Allv
GPU1 (17 89 53 37 57 73 25 A AJUnggr, Hundlt, S_chmidt: WarpDrive: Massively Parallel
cPu2 |26 12 94 86 74 ‘50 22 62 Hashlng?n Multi-GPU Node§, IPDPS.2018”
A Kobus, Jiinger, Hundt, Schmidt: Gossip: Efficient
GPU3 |35 67 19 11 51 31 43 A Communication Primitives for Multi-GPU Systems, ICPP 2019
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Multi-GPU Single-Value Performance

Weak scalability analysis on a DGX-1 server with 2GB of key-value pairs per GPU.
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WarpCore achieves 100.8 GB/s throughput using 8 Tesla V100 at a scaling efficiency
of 53%.
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Next-Generation Sequencing (NGS)

lllumina NovaSeq 6000
(Towards $100 per Genome)
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o ) % Read length 23150 bps
b — 5 3 Reads per run 20 billion
- W N I — .
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