»

JG‘U 7 -/?n

GPU Hashing Data Structures and their
Application in Accelerated Genomics

Daniel Junger and Bertil Schmidt

Institute of Computer Science
Johannes Gutenberg-University, Mainz, Germany

NHR PerfLab Seminar

It Is all about memory bandwidth!

DDR4 modules built in Xeon HBM2 stacked memory modules
multi-socket workstations attached to Tesla

P100/V100/A100

Few hundred GB/s up to 2 TB/s
a few TB of size less than 80 GB (A100)

GPU Hashing Data Structures and their Application in Accelerated Genomics

Why hashing Is a good idea

Hash tables are well-suited if range queries do not matter:

| HashTable | Sorted Array

insertion per element O(1) O(log n) O(log n)
query per element O(1) O(log n) O(log n)
peak memory (1 + On 2n (1 + On
final memory (1 + On n (1 +UOn
range queries not supported supported supported

A out-of-place sorting usually needs O(n) auxillary memory: CUDA Unbound radix sort uses
double buffers A waste of valuable video memory

A incomplete trees exhibit highly irregular data layouts and are hard to construct in parallel
without auxillary memory

GPU Hashing Data Structures and their Application in Accelerated Genomics

Contributions

We propose WarpCore - a versatile library of hashing data structures

A Performance

A main focus on high-throughput table operations

A WarpCore outperforms other state-of-the-art CPU and GPU hash tables
A Modularity

A building blocks for constructing customized GPU hash tables

A probing schemes, hashers, memory layouts, etc.
A Host-sided and device-sided interfaces

A host-sided (bulk) operations provide high throughput

A device-sided operations (fuse table operations with other tasks in one kernel)
A Fully-asynchronous execution

A allows for task overlapping and multi-GPU setups

A Junger, Kobus, Miiller, Hundt, Xu, Li u, WarpCore: A tibraryAor fast Hash Tables
on GPUso |[EEE HiPC 2020

GPU Hashing Data Structures and their Application in Accelerated Genomics 4

Parallel Hash Table Construction

Scenario: inserting new key/value pairs into a hash table in parallel

A determine slot index for Q by applying a hash function Q) a ¢ ‘@ @
A write "Qh) to the target slot
A subsequent retrieval of the same element works in the same fashion

A

thread with input ‘0f L24LD 9 ; A hash collisions among keys
A TQaé¢ D "TQpa ¢ Ofor' Q Qee
A for suitable resolution strategies
see next slide

threadd with input Qfy L24ED@ @

key
hashtable
valu

v

A race conditions in a parallel setup
A can be avoided by using atomic
operations (CAS)

c=16slots

GPU Hashing Data Structures and their Application in Accelerated Genomics 5

Collision Resolution Startegies

Separate Chaining Open Addressing
Slots (buckets) store multiple colliding key-value pairs. Find the next unoccupied slot by means of a deterministic probing scheme.
A Dynamic Linked Lists A Linear Probing: (kp jo-™
A allows for dynamic table growth A cache efficient
A overhead due to memory allocations A prone to primary and secondary clustering
A slow pointer chasing during bucket iteration
A Static Arrays A Quadratic Probing: (oW
A memory over-provisioning A leaves dense regions faster than linear probing
A requires additional array iteration during probing A prone to secondary clustering, i.e., i (G i Qhr

A Double Hashing: @& (|
A ifa isprimeandm Q Q & then
A i(Gm) i Qhm,i.e., nosecondary clustering

A i (@forQ & is cycle-free

A Cuckoo Hashing
A greedily swap keys between candidate positions
A may result in infinite cycles

A Robinhood Hashing

A takes from the rich and gives to the poor
A reduces probing length variance

GPU Hashing Data Structures and their Application in Accelerated Genomics

Cooperative Probing Scheme

nsertk.v h):h(k,[03]) modc h(k,[47]) modc

o @ lcooperativegroupl @ l

A exploits fast intra-warp 5 e ¢ ¢ s
communication via registers Jobat eys|

memory valueq
A intra-group linear probing
+ inter-group chaotic probing @ cqistersP

- COalEsced

load

group

@ bit-mask

voting

\
0
¢
0

Considerations for multi-value scenarios: @b“'mas"

O |*| O |+

o |*v| o |+

\
0
¢
0

leader

A probing scheme has to be cycle-free (e.g. double hashing)

A retrieval can be done cooperatively

A storing identical keys multiple times is memory inefficient

JG|U

determine

¢ ¢ ¢

q
§ ¢ ghtg hit!
O1011]1 O1x]11
§ ¢ ¢ 9 § 9.3
0l]0}]1]}0 01011
q g
@ atomicCAXK @ atomicCAXK
| }
succesbk success!
stoerev storev

GPU Hashing Data Structures and their Application in Accelerated Genomics

Bucket List Hash Table

Open adressing hash tables lack space efficiency for highly skewed data

hash keys e

table handles e

Alternative approach: {

A store keys only once in a single-value OA hash table

A each key holds a handle to a list of values

A each list consists of linked buckets of varying size

A buckets reside inside a pre-allocated memory pool

total value count IZ

W—I

bucketlist handle bucketheader

GPU Hashing Data Structures and their Application in Accelerated Genomics 8

Bucket List Hash Table

retrieve(ks): e
in parallel 4 retrieve(k,): e
retrieve(k,): e
J COPS hit! hit! hit! index of last
% | Yy 10 | bucket
¢ ¢ ¢ § ¢ 9 ¢ % 9 9 9 ueke
k total value count
0) —~
I bucketlist handle
free slots
value | -
lists vauelOIcl vz I |n

Ahlals |h

index of previous bucket

T T
' '
' ' '
-
O /8
~

I~ Y
34 coalesce bucketheader
“*d access

hla|s |h]i |n ng
AR ok LR AR A 7 A i 1
k,:[o,n] ks:[h,a,s,h,i,n,g

GPU Hashing Data Structures and their Application in Accelerated Genomics

Single-GPU Single-Value Performance

Bulk performance 4+4 byte and (U32) and 8+8 byte (U64) key-value pairs

Operations per second

o
U
o

o
~J
Ul

1e9

 INSERTION |

. RETRIEVAL |

U32

U64 oo U32 U64

—

| = WCCG=4

N

W

Operations per second
N

(a) Tesla V100 (System 1)

-e- WC CG=8 1
—a— CUDF
| —— sH |
| | | | 01+— | 1 | .
0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8
Occupancy Occupancy

(a) Tesla V100 (System 1)

GPU Hashing Data Structures and their Application in Accelerated Genomics

10

Single-GPU Multi-Value Performance

Bulk performance with average key multiplicity of 8

1.5

Operations per second

0.0-

_ INSERTION |

1e9 U32 ue4
1 - = .
- . ‘ -t
\\.\ “.“__‘. .
] *\.\
®
1 == WC CG=4
-e- WC CG=8
—a— CUDF
—¥— WC BLHT ‘—/
0.6 0.8 0.6 0.8
Occupancy

(a) Tesla V100 (System 1)

Operations per second

=
ul

-
o

o
8

. RETRIEVAL

U32

1e9

*-—-0--0-_g _
S

m—

ue4

0.6 0.8

Ry

e

06 0.8

Occupancy

(a) Tesla V100 (System 1)

GPU Hashing Data Structures and their Application in Accelerated Genomics

Multi-GPU Hashing

random keys [|

CPUD cPU1
GPUO | 17 35 26 A Ei i

GPul [42) 67 (14 94 (86 89 53 A
GPu2 |10 [20 37 (74 57 73 (25 A DD DD
GPU3 [50 11 51 42 31 62 43 A [I] |

Multi-split with p(k) = k%4

- T <)
GPU 0 17 26 35 A 1T 1] XX 1
cpu1 2] 89 53 14 94 86 67 A 7] Pang | | pand [2
cpu2 [20037 57 73 25 74 19 A t 1 I 1
GPU 3 |50 42 62 11 51 31 43 A e o
All-to-Allv A Gossip communication library: 1.8 TB/s (0.5 TB/s) on
cruo [40([42 56 16 12|20 A A DGX-2 (DGX-1) for All-to-Allv
GPU1 (17 89 53 37 57 73 25 A AJUnggr, Hundlt, S_chmidt: WarpDrive: Massively Parallel
cPu2 |26 12 94 86 74 ‘50 22 62 Hashlng?n Multi-GPU Node§, IPDPS.2018”
A Kobus, Jiinger, Hundt, Schmidt: Gossip: Efficient
GPU3 |35 67 19 11 51 31 43 A Communication Primitives for Multi-GPU Systems, ICPP 2019

JG|U

Multi-GPU Single-Value Performance

Weak scalability analysis on a DGX-1 server with 2GB of key-value pairs per GPU.

180
160
140
120
100

80

60

100%
90%
80%
70%
60%
50%
40%
30%
40 20%
20 10%

0 0%
1 2 4 8
#GPUs

-

runtime [ms]
weak scaling efficiency

Cdinsert E@multisplit EJall-to-all —@=—efficiency

WarpCore achieves 100.8 GB/s throughput using 8 Tesla V100 at a scaling efficiency
of 53%.

JG|U

GPU Hashing Data Structures and their Application in Accelerated Genomics 13

Next-Generation Sequencing (NGS)

lllumina NovaSeq 6000
(Towards $100 per Genome)

Q)
py
o) % Read length 23150 bps
b — 5 3 Reads per run 20 billion
- W N I — .
%’ —— 2 ' 3 Run Time <2 days
O — < 2
v‘:\"’o,..‘ 44 - 2 -
® >
@ 5

Cost per Genome

XKy
Vol

OO .r XX
RGN niainin

20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

