

Discontinuous Galerkin Shallow-Water Simulations on FPGAs

Tobias Kenter

Adesh Shambhu, Sara Faghih-Naini, Vadym Aizinger

Paderborn University, Germany, Paderborn Center for Parallel Computing

NHR PerfLab Seminar, 19 October 2021

Paderborn Center for Parallel Computing (PC²)

- HPC operations and research
- Noctua System since 2018
 - Cray CS500 Cluster System
 - 256 CPU nodes, 2 x Intel Xeon Skylake Gold
 6148, 2 x 20 Cores, 2.4GHz, 192 GB RAM
 - 100 Gbps Intel Omni-Path network
- 16 FPGA nodes
 - 2 x Intel Stratix 10 GX2800 per node (BittWare 520N boards, PCIe 3.0 x8)
 - 4 x 8GB DDR4 channels per board
 - 4 QSFP28 ports per board
 - configurable point-to-point topologies

srun -N4 --fpgalink="ringO"

• Successor system 2022

FPGA Plattform

- Intel Stratix 10 GX 2800
 - 5760 DSP blocks (1 single precision FMA/cycle each)
 - 11,721 M20K RAM blocks (20Kb each)
 - 933,120 ALMs: control, addresses, all non-FP arithmetic
 - 3,732,480 registers: form pipeline stages

- Bittware 520N card
 - PCIe Gen3 x8 (x16)
 - 4 * 8GB DDR4

- Intel FPGA SDK for OpenCL
- Intel FPGA Add-on for oneAPI Base Toolkit

This work: Discontinuous Galerkin Shallow-Water Model on FPGA

- Shallow-Water Code
 - Discontinuous Galerkin discretization
 - unstructured mesh
 - polynomial orders 0, 1, 2 viable
- Performance challenges
 - not well-suited for vectorization
 - small inner loops, e.g. 3, 6, 9 iterations
 - indirect and irregular memory access
 - strong scaling, simulation of long time scales
- How can FPGAs help?

[T. Kenter, A. Shambhu, S. Faghih-Naini, V. Aizinger. *Algorithm-Hardware Co-design of a Discontinuous Galerkin Shallow-Water Model for a Dataflow Architecture on FPGA.* PASC'21.]

Mapping Code to FPGA Ressources

Shallow Water DG Code

Shallow Water Equations

ξ

 $h_{\rm b}$

bottom sea bed

• 2D shallow water equations (SWE) (derived from the Navier-Stokes equations)

•
$$\partial_t \xi + \nabla \cdot \mathbf{u} = 0$$

•
$$\partial_t \mathbf{u} + \nabla \cdot \left(\frac{\mathbf{u} \otimes \mathbf{u}}{\mathbf{H}}\right) + \tau_{bf} \mathbf{u} + f_c \mathbf{k} \times \mathbf{u} + g \mathbf{H} \nabla \xi = \mathbf{F}$$

with unknowns

 ξ : elevation of free water surface, $\mathbf{u} = (U, V)^T$: depth integrated horizontal velocity field

and parameters

- h_b : bathymetric depth, $H = h_b + \xi$: total fluid depth, τ_{bf} : bottom friction coefficient
- f_c : Coriolis coefficient, k: unit vertical vector, g: gravitational acceleration
- F : forcing term from wind and atmospheric pressure gradient

DG Formulation

Uses Discontinuous Galerkin method on unstructured triangular meshes

$$\int_{\Omega_{i}} \partial_{t} \mathbf{c}_{\Delta} \boldsymbol{\varphi} \, dx + \int_{\partial \Omega_{i}} \widehat{A}(\mathbf{c}_{\Delta}, \mathbf{c}_{\Delta}^{+}, \mathbf{n}) \, \boldsymbol{\varphi} \, ds - \int_{\Omega_{i}} A(\mathbf{c}_{\Delta}) \cdot \nabla \varphi \, dx = \int_{\Omega_{i}} \mathbf{r}(\mathbf{c}_{\Delta}) \, \boldsymbol{\varphi} \, dx$$

Edge kernel Element kernel

where

 $\mathbf{c}_{\Delta} = (\boldsymbol{\xi}_{\Delta}, \boldsymbol{U}_{\Delta}, \boldsymbol{V}_{\Delta})^{T}$: the discrete vector of unknowns restricted to Ω_{i} ,

 \mathbf{c}_{Δ}^{+} : the discrete vector of unknowns restricted to the edge-neighbour of Ω_{i} ,

- *n* : the exterior unit normal to $\partial \Omega_i$, φ : test function
- \widehat{A} : numerical flux from Riemann solver (Lax-Friedrichs)

UTBEST Overview

- I/O and grid management: FORTRAN
- DG scheme + computationally intensive parts: C
 - works in single precision
- 3 polynomial DG discretizations
 - piecewise constant (PC), 1 basis function (= cell-centered finite volumes)
 - piecewise linear (PL), 3 basis functions
 - piecewise quadratic (PQ), 6 basis functions
- Integration kernels
 - elements: 1, 4, 9 quadrature points
 - edges: 1, 2, 3 quadrature points
 - Lax-Friedrichs Riemann solver
- Corresponding time discretization
 - Runge-Kutta orders 1, 2, 3

$$\int_{\Omega_i} \partial_t \mathbf{c}_{\Delta} \boldsymbol{\varphi} \, dx + \int_{\partial \Omega_i} \widehat{A}(\mathbf{c}_{\Delta}, \mathbf{c}_{\Delta}^+, \mathbf{n}) \, \boldsymbol{\varphi} \, ds - \int_{\Omega_i} A(\mathbf{c}_{\Delta}) \cdot \nabla \varphi \, dx = \int_{\Omega_i} \mathbf{r}(\mathbf{c}_{\Delta}) \, \boldsymbol{\varphi}$$

Edge kernel

Element kernel

dx

Benchmark Scenario

- Bahamas (Bight of Abaco)
 - unstructured mesh
 - 1696 elements
 - tidal forcing at open sea boundary,
 - benchmark runs
 - simulated 1 day
 - time step 5s
 - 17280 steps
 - outputs
 - elevation snapshots
 - full time series at observation stations

bathymetry + observation stations

UTBEST Structure + Execution

1:	1: while $t < t_1$ do							
2:	: Loop over Runge–Kutta stages:							
3:	for all stages of the Runge–Kutta method do							
4:		Element loop:						
5:		for all element indices $e \in \{1, \ldots, E\}$ do						
6:		calculate element integrals						
7:		end for						
8:		Loops over edges of different types:						
9:		for all interior edges do						
10:		calculate interior edge integrals						
11:		end for						
12:		for all land edges do						
13:		calculate land edge integrals						
14:		end for						
15:		for all open sea edges do						
16:		calculate open sea edge integrals						
17:	end for							
18:		calculate c_{Δ} for the next Runge–Kutta stage						
19:		perform minimum depth control on $oldsymbol{c}_\Delta$						
20:	D: end for							
21:	t	$\leftarrow t + \Delta t$						
22:	2: end while							

Kernel	Exe	ecution t	Perf. [GFLOPs]			
	PC	PL	PQ	PC	PL	PQ
Element	26.9%	38.0%	47.9%	2.27	3.76	4.97
Interior Edge	62.3%	53.2%	44.5%	1.51	2.27	2.97
Land Edge	2.4%	1.8%	1.4%	1.65	2.28	2.85
Sea Edge	2.2%	1.1%	0.6%	0.67	1.30	2.06
Accumulator	2.3%	3.3%	3.9%	2.98	3.92	4.32
Min. Depth	3.8%	2.5%	1.7%	1.40	2.41	3.38
Kernel sum, avg	5.02s	25.8s	84.4s	1.73	2.88	3.98

Profiled on 1 core of Skylake Xeon Gold 6148

FPGA Design Process

Overview of FPGA Optimization Process

• five main design iterations

FPGA Dataflow Idea 1/2

- $C \rightarrow OpenCL \rightarrow hardware description$
 - create block on FPGA for each kernel
 - pipelining: e.g. process one element per cycle
 - parallel hardware by unrolling of inner loops
 - provide all unknowns from local buffers (prefetching)
- Stream unknowns and updates through kernels
 - task level parallelism
 - keep all unknowns in local buffers

FPGA Dataflow Idea 2/2

UTBEST Data Layout

- 3 * [1, 3, 6] depending on polynomial order

• Unknowns c_{Λ} associated to elements

for all element indices $e \in \{1, ..., E\}$ do 2 5 9 3 4 11 10

- Further structure by references
 - edges to elements
 - "random" access into element array
 - elements to edges
 - ...
- Geometry, bathymetry

for all interior edges do

Initial Dataflow around Edge Kernel

Projection Approach

Run edge kernel in order of elements (each edge twice)

3

- **Reduce redundant computation**
 - 3 edge integrals per element, each
 - 2 projections to edge <----</p>
 - I Riemann flux
 - perform projections already with element kernel

FPGA Results

Parallelism and Synthesis Results

FLOPs per element or edge

- Parallel and pipelined operations
 - 1 element integral + projections per cycle
 - 3 edge integrals per cycle
 - accumulation + min. depth 1 element / cycle

- DSPs (and logic) for arithmetic
- Fit data into block RAMs (8953 available)
 - edge kernel: multiple copies for projection
 - larger mesh requires more space
 - higher order requires more space

Order	elements j	pro- ection	edges	accum.	min. depth	sum	
PC	106	27	3 · 87	15	3	412	
PL	634	162	$3 \cdot 210$	90	9	1525	
PQ	2295	486	3 · 396	270	18	4256	
PQ CPU	2286	3/2 · 873		162	54	3811.5	
	Synthesis Results						
Orden	max.	Logic	Bloc	k DCD	Freq	uency	
Order	elements	Slices	RAM	ls DSPS	5 [M	[MHz]	
	2048	23%	192	3 457	7 354	4.17	
DC	4096	24%	280	5 457	7 34	1.66	
PC	8192	25%	456	9 457	7 312	2.50	
	16384	26%	808	3 457	7 284	4.38	
	2048	36%	303	7 1194	4 32	0.00	
PL	4096	37%	469	4 1194	a 30	9.37	
	8192	39%	799	4 1194	1 28	5.00	
DO	2048	59%	492	4 2773	3 21	6.67	
٢Ų	4096	61%	806	3 2773	3 20	8.33	

Performance Model + Example

- Cycles per iteration = #elements + Latency + #external edges
 - e.g. 1696 + 562 + 156 = 2414 cycles for Bahamas benchmark
 - 2414 cycles @ 354.17 MHz = 6.8µs
 - 146715 time steps / s
 - @5s time steps = 8.5 simulated days / s

Illustration ~ 1/2 Bahamas, 848 elements

Performance Model vs. Measurements

- cycles per iteration = #elements + Latency + #external edges
- occupancy = #elements / cycles per iteration
- FLOPS = Occupancy * peak FLOPS

Ord.	Ε	D _{ext}	L	model <i>occ</i> .	model GFLOPs	measured GFLOPs	power [W]
	1696	156	562	70.3%	102.5	102.4	74.0
DC	3392	192	562	81.8%	115.2	114.9	74.5
PC	6784	312	562	88.6%	114.1	113.9	76.0
_	13568	384	562	93.5%	109.5	109.3	77.9
	1696	156	569	70.1%	341.9	341.8	76.9
PL	3392	192	569	81.7%	385.3	384.8	78.5
_	6784	312	569	88.5%	384.7	384.1	80.3
DO	1696	156	592	69.4%	639.9	637.9	77.7
٢Ų	3392	192	592	81.2%	720.2	717.7	78.9

Recap FPGA Optimization Process

• five main design iterations

- Time series and elevation maps
 - only minor numeric differences (due to reordering, rounding)

Validation

Ongoing and Future Work

- Scaling
 - multiple pipelines per FPGA for PC, PL
 - multiple FPGAs
 - larger meshes with HBM2 and / or temporal blocking
- Further Co-Design
 - block-structured meshes
- Abstractions
 - separation between algorithm and architecture?
- Hybrid execution modes
 - coupling with other models

Summary

- Dataflow architecture on FPGA
 - all kernels in element sequence
 - co-design: projection
- Performance
 - hundreds to thousands operations per cycle
 - up to 720 GFLOPs measured
 - up to 144x speedup over 1 CPU core
 - on small problems

