
HPC Café

Howto on using the Cx services based on the RRZE Gitlab instances

2020-10-15 22021-10-19 | Cx in Practice | HPC@RRZE

Recap: What is Cx?
§ Continuous Integration (CI) is the practice of automatically integrating code

changes into a software project. It relies on a code repository that supports
automated building and testing. Often, CI also involves setting up a build system
from scratch, including all dependencies.

§ Continuous Testing (CT) is the practice of executing automated tests as an integral
part of the software development process. It tries to make sure that no functionality
is lost and no errors are introduced during development.

§ Continuous Benchmarking (CB) can be seen as a variant of CT, where not only
functionality but also performance is tested in order to avoid regressions, i.e.,
unwanted performance degradation due to code changes.

§ Continuous Deploying (CD) is the automatic deployment of the software coming
out of the other Cx processes. This can be the installation on a particular system,
rolling out a revision within a whole organization, pushing installation packages to
public repositories, etc.

32021-10-19 | Cx in Practice | HPC@RRZE

Recap: Why Cx?
§ Build: Does it compile?
§ Unit Tests: Produces correct results?
§ Coverage: Are more tests needed?
§ Lint: Is code “well written”?
§ Deploy to production § It’s “free”

§ Find bugs earlier
§ Encourages test-driven development

(write test before code and fore every bug found)
§ Find regressions

(reintroduction of already fixed bugs)
§ Helps contributors get engaged
§ (Standardized environment)

2020-10-15 42021-10-19 | Cx in Practice | HPC@RRZE

Prerequisites using NHR@FAU Cx services
§ Project must be hosted on one of the two RRZE Gitlab instances

§ gitlab.rrze with Enterprise features for FAU-internal projects
§ gitos.rrze for projects in the German/European research community

(attached to DFN-AAI)
§ A valid HPC user account at HPC4FAU and/or NHR@FAU
§ Create an SSH-key (no passphrase)
$ ssh-keygen -t ed25519 -f id_ssh_ed25519_gitlab
$ ls
id_ssh_ed25519_gitlab id_ssh_ed25519_gitlab.pub

Public keyPrivate key

https://www.rrze.fau.de/serverdienste/infrastruktur/gitlab/
https://gitlab.rrze.fau.de/users/sign_in
https://gitos.rrze.fau.de/users/sign_in
https://hpc.fau.de/systems-services/systems-documentation-instructions/ssh-secure-shell-access-to-hpc-systems/

2020-10-15 52021-10-19 | Cx in Practice | HPC@RRZE

Sync remote repository to local Gitlab
§ Development repository already at a remote hoster (Github, Gitlab.com)
§ Create a synced repository at local Gitlab
§ For Github use gitlab.rrze.fau.de

§ New project/repository → Run CI/CD pipelines for external repositories
§ Generate Personal Access Token at Github and copy to Gitlab
§ Select remote repository and local group/name
§ Syncs repo and configures bi-directional integration

Handle local repo as read-
only copy. No changes!

Also possible with gitos.rrze
but much more manual work

https://gitlab.rrze.fau.de/
https://github.com/settings/tokens
https://gitos.rrze.fau.de/

2020-10-15 62021-10-19 | Cx in Practice | HPC@RRZE

Request NHR@FAU Cx service for a repository
§ Send email to hpc-support@fau.de with

§ Repository URL
§ HPC account name
§ Public SSH key (should be a key used only for Cx)

§ In the repository (Settings → CI/CD)
§ Runners: Activate shared HPC runner
§ Variables:

§ Create AUTH_USER with HPC account name
§ Create AUTH_KEY with private SSH key (just copy&paste)

§ Create .gitlab-ci.yml from scratch or use the CI editor

SSH-Key pair
(no passphrase)

All MAINTAINERS in the
repo can read variables!

If you use your common SSH
key, others might be able to
login with your credentials

mailto:hpc-support@fau.de

2020-10-15 72021-10-19 | Cx in Practice | HPC@RRZE

NHR@FAU Cx topology

gitlab.rrze gitos.rrze phinally

ivyep1

hasep1

broadep1

skylakesp2

casclakesp2

rome1

medusa

testfront

testjob:
tags:
- testcluster

variables:
SLURM_NODELIST: medusa

Runner
.gitlab-ci.yml

2020-10-15 82021-10-19 | Cx in Practice | HPC@RRZE

The .gitlab-ci.yml file
§ Central management file for Gitlab CI
§ MUST be in the root of the repository
§ Contents:

§ Define & run scripts
(manually triggered and/or automatically)

§ Include other (gitlab-ci.yml compatible) YAML files
§ Control serial and/or parallel execution of CI jobs
§ Configure deployment

Stage build Stage test

Pipeline 1

Pipeline 2

Job1.1 Job1.2 Job1.3

Job2.1 Job2.2 Job2.3

https://docs.gitlab.com/ee/ci/yaml/gitlab_ci_yaml.html

2020-10-15 92021-10-19 | Cx in Practice | HPC@RRZE

My first .gitlab-ci.yml
variables:
SLURM_NODELIST: phinally
SLURM_TIMELIMIT: 120

job1:
tags:
- testcluster
script:
- make
- ./runtests

Global variables
(overwritten by job-specific variables)

Runs make && ./runtests using
NHR@FAU Cx services

→ Runs on host phinally for maximal 2h

Official Gitlab CI/CD documentation

For starters: Use Gitlab CI
editor, it does syntax checks

https://docs.gitlab.com/ee/ci/

2020-10-15 102021-10-19 | Cx in Practice | HPC@RRZE

What about the build system?
§ NHR@FAU Cx services run on bare-metal hardware

(BIOS and OS settings might change without notice!)

§ The job is submitted with the given HPC account
→ Job script can access the user‘s data ($HOME, $WORK, …)

§ All modules are usable inside jobs (module use X)
§ Dependency installation only into user‘s directories
$ pip install --user X

§ Best Practice: Install everything below $CI_PROJECT_DIR
OR cleanup all installed files in after_script section

In the future: Spack package

manager for user-local
installations

https://spack.io/

2020-10-15 112021-10-19 | Cx in Practice | HPC@RRZE

My second .gitlab-ci.yml

job-intel-AVX512:
variables:
SLURM_NODELIST: skylakesp2
tags:
- testcluster
script:
- module load intel64
- icc –O3 –xAVX512 tests.c
- ./a.out out.log
- ./verify_result_avx512.sh

job-gcc-AVX:
variables:
SLURM_NODELIST: broadep2
tags:
- testcluster
script:
- module load gcc
- gcc –O3 –mavx tests.c
- ./a.out out.log
- ./verify_result_avx.sh

Two jobs that build and test the code on two nodes with different compilers and
vectorization.

2020-10-15 122021-10-19 | Cx in Practice | HPC@RRZE

Recap: Cx stages in Gitlab

§ CI Pipelines consist of multiple stages
§ Stages and their order can be self defined with stages keyword
§ My stages:

§ .pre : Do basic checks like input file formats (JSONlint, YAMLlint, …)
§ build : Setup build system, build application, store as artifact, cleanup
§ test : Get artifact, setup runtime(!) system, run application tests
§ (deploy : push to package indices like PyPI)

.pre build test .postdeploy

132021-10-19 | Cx in Practice | HPC@RRZE

Storing intermediate results as artifacts
§ All outcome of a Cx job can be stored as artifact at the Gitlab server
§ Reuse artifact by job needs or depends

§ Recommendation: Use expire_in with reasonable length

run-intel-AVX512:
stage: test
variables:
SLURM_NODELIST: skylakesp2
tags:
- testcluster
needs:
job: build-intel-AVX512
pipeline: $CI_PIPELINE_ID
script:
- ./a.out out.log
- ./verify_result_avx512.sh

build-intel-AVX512:
stage: build
variables:
SLURM_NODELIST: skylakesp2
tags:
- testcluster
script:
- module load intel64
- icc –xAVX512 tests.c
artifacts:
paths:
- a.out

expire_in: 1 week

2020-10-15 142021-10-19 | Cx in Practice | HPC@RRZE

Do I need a job for each X (X={system, cuda, intel64})
§ Tedious to write a job for each X and keep it up-to-date
§ How to dynamically create jobs?
.gitlab-ci.yml
Main pipeline

gen_pipeline_for X start_pipeline_for_X

pipeX.yml
Pipeline for X

arch-gen:
stage: build
tags:
- testcluster

variables:
NO_SLURM_SUBMIT: 1

script:
- .ci/gen_arch_jobs.sh > arch-pipe.yml

artifacts:
paths:
- arch-pipe.yml

arch-pipe:
stage: test
trigger:
include:
- artifact: arch-pipe.yml

job: arch-gen
strategy: depend

variables:
PARENT_PIPELINE_ID: $CI_PIPELINE_ID

Do not submit to job scheduler
→ runs on Testcluster frontend

Required to use artifacts from parent pipeline

152021-10-19 | Cx in Practice | HPC@RRZE

Do I need a job for each X (X={system, cuda, intel64})

arch-gen:
stage: build
tags:
- testcluster

variables:
NO_SLURM_SUBMIT: 1

script:
- .ci/gen_arch_jobs.sh > arch-pipe.yml

artifacts:
paths:
- arch-pipe.yml

2020-10-15 162021-10-19 | Cx in Practice | HPC@RRZE

Do I need a job for each X
§ For each node:

§ For each „cuda“ module:

for HOST in $(sinfo -h –p work -o "%n"); do
cat << EOF
jobs-$HOST:
variables:
SLURM_NODELIST: $HOST
[…]
EOF
done

for MOD in $(module av -t cuda 2>&1 | grep -E "^cuda" | cut -d ' ' -f 1); do
PMOD=${MOD/\//-} # replace / in module name with - => cuda-X.Y
cat << EOF
job-$PMOD:
script:
- module load $MOD
[…]
EOF
done

2020-10-15 172021-10-19 | Cx in Practice | HPC@RRZE

Continuous Benchmarking (Work in progress)
§ Benchmarks different parts of the waLBerla software framework

developed at the chair for system simulation
§ I.e. Particle dynamics, LBM fluid simulation with generated kernels

§ Data persisted in InfluxDB database
§ Visualization using Grafana

waLBerla

https://www.walberla.net/
https://www.influxdata.com/products/influxdb/
https://grafana.com/

2020-10-15 182021-10-19 | Cx in Practice | HPC@RRZE

Continuous Deployment
§ For releases

§ upload the tested version to a registry
§ install to local server system
§ …

§ Check Gitlab documentation:
https://docs.gitlab.com/ee/user/packages/package_registry/

§ Recommendation:
Put all account names and keys as variables in the CI/CD configuration

https://docs.gitlab.com/ee/user/packages/package_registry/

2020-10-15 192021-10-19 | Cx in Practice | HPC@RRZE

Summary
§ NHR@FAU provides Cx infrastructure for HPC-relevant CI
§ Usable from gitlab.rrze and gitos.rrze Gitlab instances
§ Test codes that require specific hardware features

§ After syncing also available for external repositories
§ BUT no virtualized environments

Install below $CI_PROJECT_DIR or cleanup in after_script
§ Use artifacts to reuse job results

Happy testing!

https://gitlab.rrze.fau.de/
https://gitos.rrze.fau.de/

2020-10-15 202021-10-19 | Cx in Practice | HPC@RRZE

Probable use-cases
§ Architecture-specific software projects

§ Use hardware features
§ Run shared-memory codes
§ Do performance tests
§ Build/Test accelerator code

§ Build (simple) LaTeX projects (pdflatex is installed)

§ Maybe in the future: Gitlab runner for MPI jobs

LIKWID with NHR@FAU Cx
• Synced from Github
• Uses parent-child pipelines

https://gitlab.rrze.fau.de/hpc/likwid

