
Exascale simulations via the
submatrix matrix method
R. Schade, T. Kenter, M. Lass, C. Plessl & T. D. Kühne

Department of Chemistry
Dynamics of Condensed Matter

Paderborn Center for Parallel Computing

K. G. Wilson, Nucl. Phys. B 17, 82 (1990)

82

AB I NI TI OQUANTUMCHEMI STRY:
ASOURCEOF I DEASFORLATTI CEGAUGETHEORI STS

Kennet hG. WI LSON

TheOhi o St at e Uni ver si t y, Depar t ment of Physi cs, 174W. 18t h Avenue, Col umbus, OH43210 USA

Ab i ni t i o quant umchemi st r y i s an emer gi ng comput at i onal ar ea t hat i s f i f t y year s ahead of l at t i ce gauge
t heor y, a pr i nci pal compet i t or f or super comput er t i me, and a r i ch sour ce of newi deas and newappr oaches
t o t he comput at i on of many f ermi on syst ems. An over vi ew of t he hi st or y, cur r ent pr ospect s and f ut ur e
f r ont i er s of quant umchemi st r y i s gi ven, wi t h speci al emphasi s on l essons f or l at t i ce gauge t heor y. Par t i cul ar
r ef er ence i s gi ven t o t he r ol e of Gaussi an basi s f unct i ons (i n pl ace of gr i ds) and anal yt i c (as opposed t o
Mont e Car l o) met hods. The mai n r ecommendat i on t o l at t i ce gauge t heor i st s i s f or gr eat er emphasi s on
i nf i ni t e moment umf r ame st udi es, usi ng Gaussi an basi s f unct i ons.

1. I NTRODUCTI ON
i have, f or t he t i me bei ng, swi t ched my f i el d of

r esear ch t o ab i ni t i o comput at i onal quant umchem-
i st r y. Ther e ar e a number of r easons f or t hi s, one
bei ng ancest r al . 1 Anot her r eason i s t hat over t he
l ast ei ght year s of my r esear ch i n l at t i ce gauge t he-
or y, not one of my i deas l ed anywher e, and I needed
a newsour ce of i nspi r at i on . Thi s does not mean
I have st opped t hi nki ng about l at t i ce gauge t heor y
al t oget her . Quant umchemi st r y shar es wi t h l at t i ce
gauge t heor y a concer n wi t h many f ermi on syst ems
i nt er act i ng vi a l ong r ange bar e f or ces. Al r eady I am
abl e t o r epor t her e some usef ul l essons and hi nt s f or
l at t i ce gauge t heor y comi ng out of quant umchem-
i st r y r esear ch . I amst i l l t r yi ng t o r each t he cent er
of t he act i on i n quant umchemi st r y and have yet
t o publ i sh much on t he subj ect . Never t hel ess, I be-
l i eve a subset of l at t i ce gauge t heor i st s shoul d al so
become pr of i ci ent i n quant umchemi st r y ; I hope t o
use my exper i ence t o make i t easi er and qui cker f or
ot her s t o f ol l ow. 2

The t opi cs I wi l l di scuss ar e as f ol l ows. Fi r st
comes t he l ong r ange r esear ch oppor t uni t y i n com-
put at i onal chemi st r y, whi ch i s ext r aor di nar y. Sec
ondl y, I wi l l r evi ew br i ef l y some hi st or y. Compu-
t at i onal quant umchemi st r y as a di sci pl i ne i s f i f t y
year s AHEADof l at t i ce gauge t heor y and t her e ar e
l essons about comput i ng power , al gor i t hnn devel op-
ment and i nt er act i ons wi t h exper i ment i n t hi s hi s-
t or y . As par t of t hi s hi st or y, quant umchemi st r y co-

0920- 5632/ 90/ $3. 50©El sevi er Sci ence Publ i sher s B. V.
Nor t h-Hol l and

Nucl ear Physi cs B(Pr oc. 3uppl .) 17 (1990) 82- 92
Nor t h-Hol l and

al esced ar ound Gaussi an basi s f unct i ons (r at her t han
gr i ds) i n t he 1950' s . I wi l l expl ai n t he benef i t s of t hi s
t r ansi t i on and consi der i mpl i çat i ons f or gauge t heor y .
Thi r dl y, i n quant umchemi st r y, Mont e Car l o met h-
ods ar esubsi di ar y t omor e anal yt i c appr oaches based
on t he Har t r ee- Fock appr oxi mat i on; I wi l l descr i be
why t hi s i s so. Four t hl y, I wi l l descr i be f i ve di st i nct
appr oaches t o quant umchemi st r y and one possi bl e
anal ogue f or gauge t heor y - hadr oni c Lagr angi ans
f or nucl ear physi cs. Fi f t hl y, I wi l l di scuss some cur -
r ent r esear ch i ssues i n quant umchemi st r y. Fi nal l y I
wi l l come t o pr ogr ammi ngi ssues: t he huge quant um
chemi st r y codes such as Gaussi an 8x, and t hest at us
of my ef f or t s t o ease t he pr ogr ammi ng bur den usi ng
t heC++ pr ogr ammi ng l anguage.

Ther e ar e r oughl y t en mi l l i on cl assi f i ed chemi -
cal compounds at t he pr esent t i me. Each i ndi vi dual
mol ecul e has many pr oper t i es t o comput e and/ or
measur e: bi ndi ng ener gy, el ect r on densi t y, at omi c
st r uct ur e, spect r a (vi br at i onal , r ot at i onal and el ec-
t r oni c) , r eact i on r at es, el ect r on and mol ecul ar scat -
t er i ng cr oss sect i ons . However , t he spect acul ar op-
por t uni t y f or t he f ut ur e l i es i n compounds not yet
synt hesi zed or cl assi f i ed . The number of unexpl or ed
f orms of mat t er whi ch can f i t i nt o a smal l box one
cent i met er on a si de i s

F-92-0023)
These unexpl or ed f orms of mat t er cont ai n i nnu-

Why Quantum Chemistry?

Mother of HPC Problems
3O^KJ�6XKIOYOUT LUX 3URKI[RGX *_TGSOIY

+WUJQVM ITT 4M^MT[WN \PM +WUX]\MZ <MKPVWTWOa ;\IKS"

Application

Algorithm

Libraries

Computer
Architecture

Semiconductor
Technology

Non-orthogonal local submatrix (NOLSM) method
compensation of numerical noise

CP2K: quantum chemistry and solid-state theory program

NVIDIA cuBLAS with streams and CUDA graphs

Third generation NVIDIA tensor cores
with mixed FP16/FP32 support

NVIDIA A100 Tensor-core GPU (TSMC 7 nm FinFET)

....

XK��LM�OW�UQTTQWVI\WU[�

Computational Microscope

Schrödinger Equation

„The fundamental laws necessary for
the mathematical treatment of large
parts of physics and the whole of

chemistry are thus fully known ...“

H(r,R)Ψ(r,R) = EΨ(r,R)

Schrödinger Equation

„... the difficulty lies only in the
fact that application of these laws

leads to equations that are too
complex to be solved.“

Schrödinger Equation

„... hence it would be desirable to develop
practical approximation schemes for the

application of quantum mechanics“

Schrödinger Equation

Molecular Dynamics
(MD)

Ab-Initio MD
(AIMD)

Path-Integral MD
(PIMD)

Ab-Initio PIMD
(PI-AIMD)

Classical Quantum Mechanical

C
lassical

Q
uantum

 M
ech.

Electrons
N

uc
le

i

Born-Oppenheimer

Molecular Dynamics
(MD)

Ab-Initio MD
(AIMD)

Path-Integral MD
(PIMD)

Ab-Initio PIMD
(AI-PIMD)

Classical Quantum Mechanical

C
lassical

Q
uantum

 M
ech.

Electrons

N
uc

le
i

MIR̈I = −∇RI
[ε(R) + VKK(R)]

He(r;R)ψ(r;R) = ε(R)ψ(r;R)

CP2K: Overview
• Static Calculations

Energy & Structure Optimization
Transition Paths (String, NEB)
Properties: NMR, EPR & XAS

• Sampling Techniques
MC, MD & Path-Integral Methods
RT-TDDFT/Ehrenfest Dynamics
Accelerated FES: Metadynamics

• Energy & Force Methods
All-Electron Calculations (GAPW)
Quickstep: PP Calculations (GPW)
Post-HF Methods (RPA, MP2, GW)
DFT/HF Methods (HFX, CDFT)
Behler-type NN Potentials
Semiempirical QC & TB Methods
Classical Molecular Mechanics
Embedding Methods (IS, QM/MM)

T. D. Kühne et al., JCP 152, 194103 (2020)

http://www.cp2k.org

CP2K: Overview
• Static Calculations

Energy & Structure Optimization
Transition Paths (String, NEB)
Properties: NMR, EPR & XAS

• Sampling Techniques
MC, MD & Path-Integral Methods
RT-TDDFT/Ehrenfest Dynamics
Accelerated FES: Metadynamics

• Energy & Force Methods
All-Electron Calculations (GAPW)
Quickstep: PP Calculations (GPW)
Post-HF Methods (RPA, MP2, GW)
DFT/HF Methods (HFX, CDFT)
Behler-type NN Potentials
Semiempirical QC & TB Methods
Classical Molecular Mechanics
Embedding Methods (IS, QM/MM)

http://www.cp2k.org

CP2K: Recent Development
• Large Scale Computational Kernels

PW-based DFT (SIRIUS)
Hybrid DFT, MP2 & RPA
Linear Scaling Algorithms

• Approximate Molecular Dynamics
2nd Generation Car-Parrinello MD
Approximate Computing

• Massive Parallelism
Mixed MPI / OpenMP
GPU / FPGA support

• Sparse Matrix Algebra
Distributed Block CSR
Cannon‘s Algorithm & SMM

• Open Source
1.5 mio. lines of code
> 6500 regression tests

Schrödinger Equation

H[C]C = "SC

O(N3)

D. Richters and T. D. Kühne, J. Chem. Phys. 140, 134109 (2014)

E =
NeX

i=1

"i � Vdc = Tr
⇥
C

T
HC

⇤
� Vdc

= min
P

Tr [PH]
���
PSP=P

� Vdc

Linear Scaling Self Consistent Field

Guess initial density ⇢

Calculate matrix H from ⇢

Costs: O(N), but dominates for small systems

Calculate

eigenvectors i of H

Costs: O(N
3
)

Calculate new density

⇢ =
P

i | i|
2

Calculate ⇢ directly as

matrix function of H

Costs: O(N)

Calculate energy from ⇢

S
C
F
I
t
e
r
a
t
io
n

Dense linear algebra

Sparse linear algebra Density P as matrix function of P :

P =


1 + exp

✓
H � µ

kT

◆��1

=
1

2
[1� sign (H � µ)]

Evaluate sign() as polynomial series:

X0 = A · ||A||
�1

Xn+1 =
1

2
Xn(3 � X

2
n)

sign(A) = X1

LS-SCF entirely based on sparse linear algebra.

limit of small kT (ground state)

ole.schuett@mat.ethz.ch 3 / 17

Self-Consistent Field

The Sign Method9UR[ZOUT UL ZNK +RKIZXUTOI�9ZX[IZ[XK 6XUHRKS
*KTYOZ_�SGZXO^�HGYKJ GVVXUGIN]OZN SGZXO^�YOMT L[TIZOUT
>IVLM>WVLMTM� *WZ[\VQS� IVL 0]\\MZ C����E

,MTMK = <Z(.0*) _Q\P * =
1

2
(/− [QOV(9−1.0 − µ/))9−1

UI\ZQ` [QOV N]VK\QWV IVL QV^MZ[QWV KIV JM M^IT]I\ML Q\MZI\Q^MTa

[QOV(_) = _
|_| =

_√
_2

[QOV(') = ' · ('2)−1/2

>0 = '

>P+1 =
1

2
>P · (3/− >2

P)

[QOV(') = TQU
P→∞

>P
TQVMIZ�[KITQVO IXXZWIKP O(5)
WVTa S[RZOVROIGZOUTY WN LQ[\ZQJ]\ML [XIZ[M UI\ZQKM[IZM ZMY]QZML
J]\][]ITTa JW]VL Ja QV\MZ�VWLM KWUU]VQKI\QWV	

XK��LM�OW�UQTTQWVI\WU[

<latexit sha1_base64="VOWU3O5oe3Yic582/NUqKmmDHAw=">AAADU3ichVNNT9tAEB0nhQLlI1BuVZHVCAkORDZChQsSAlrRA1KqNoCEAa2dtbOKv7TeIKjlO3+QQ/sj+AP00OfFgQJCbLSZ2Tdv3s7syG4aikxZ1m+jVn8zMvp2bHzi3eTU9Exjdu4gSwbS4x0vCRN55LKMhyLmHSVUyI9SyVnkhvzQ7e+U8cNzLjORxD/VZcpPIhbEwhceU4DOGldOxFTP9fN2sen4knm5XeSrhemE3FdL5jD6rTBXTEfxC5VnIoiLJ+EfxWm+Yhf35z1Njwb/5ztSBD21/GAf5541mlbL0st87tiV06RqtZPGH3KoSwl5NKCIOMWk4IfEKMPvmGyyKAV2QjkwCU/oOKeCJpA7AIuDwYD28R/gdFyhMc6lZqazPdwSYktkmrSI/VUrumCXt3L4Gexf7F8aC168IdfKZYWXsC4Ux7XiPnBFPTBey4wq5rCW1zPLrhT5tKG7Eagv1UjZp3evs4uIBNbXEZO+aGYADVefz/ECMWwHFZSvPFQwdcddWKYt1ypxpcigJ2HL10c9GLP9dKjPnYPVlv25tfZ9rbm1XQ18jD7QJ1rCVNdpi/aojTo8ujHmjY/GQu26dlvHV3JHrRlVznt6tOpT/wAHYMAB</latexit>

P =
1

2

�
I� sign

�
S
�1

H� µI
��

S
�1

M. Lass, S. Mohr, H. Wiebeler, TDK & C. Plessl, ACM Proc. of PASC 7, 1 (2018)

The Sign Method

M. Lass, S. Mohr, H. Wiebeler, TDK & C. Plessl, ACM Proc. of PASC 7, 1 (2018)

T. D. Kühne et al., J. Chem. Phys. 152, 194103 (2021)

The DBCSR Library
• Distributed

MPI parallelization based on Cannon, 2.5D, Carma, or Cosma algorithm
On node parallelization via OpenMP

• Block Compressed Sparse Row
Block-sparse, where block corresponds to atoms

• Small matrix-matrix multiplication library on multicore CPUs & GPUs
libxsmm, libcusmm, libsmm_acc

T. D. Kühne et al., J. Chem. Phys. 152, 194103 (2021)

DBCSR Software Structure

24/06/2020 The DBCSR Library ʹ Shoshana Jakobovits 14

The DBCSR Library

http://dbcsr.cp2k.org

T. D. Kühne et al., J. Chem. Phys. 152, 194103 (2021)

The DBCSR Library
Distribution and Decomposition

1. Random permutation of row and column block indices to
achieve a good load balance
• Each processor holding approximately the same amount of data, with

roughly the same amount of Flops

2. 2D grid decomposition over 𝑃 processes

Î Use optimized dense matrix-matrix multiplication algorithm
05/03/2018 Alfio Lazzaro (alfio.lazzaro@chem.uzh.ch) 9

1 2

• 1. Random permutation of row and column block indices to balance load
Each processor is approximately holding the same amount of data, with
roughly the same amount of Flops

• 2. 2D grid decomposition over P processors
Block-sparse, where block corresponds to atoms

T. D. Kühne et al., J. Chem. Phys. 152, 194103 (2021)

The DBCSR Library

DBCSR = Distributed Block Compressed Sparse Row

Working horse of CP2K’s linear scaling DFT code

Non-zero elements are small dense blocks e.g. 13⇥ 13

Each block corresponds to interaction between two atoms

Additions are local operations

Multiplications are more elaborate...

neglect
distant
atom pairs

exploit
symmetry

ole.schuett@mat.ethz.ch 4 / 17

• DBCSR is based on blocked structure
Non-zero elements are small dense blocks, typically 5x5, 13x13, 23x23, …
Take full advantage of the block structured sparse nature of the matrices
Each block corresponds to the interaction between two atoms

• Dense limit is as important as the sparse limit
• Provide good scalability for a large number of processors

The DBCSR Library

T. D. Kühne et al., J. Chem. Phys. 152, 194103 (2021)

SMM Libraries
• Optimized libraries were developed that outperform vendor BLAS for SMM

LIBXSMM for Intel-based CPU/KNL systems
LIBCUSMM for Nvidia GPUs using CUDA
LIBSMM_ACC for Nvidia/AMD GPUs using CUDA and HIP

• LIBXSMM generates executable code just-in-time (JIT) by assembling the
instructions in-memory

All flavors of AVX extensions are supported
Avg. speed-up of approx. 3 for LIBXSMM over MKL-DGEMM on KNL

• LIBCUSMM employs a double-buffering technique, based on CUDA
streams, to maximize occupancy of the GPU and hide data transfer latency
• LIBSMM_ACC GPU kernels are JIT compiled at runtime
• LICUSMM & LIBSMM_ACC includes an auto-tuning framework to find
the best parameters for every (m,n,k)-kernel out of > 100k combinations

T. D. Kühne et al., J. Chem. Phys. 152, 194103 (2021)

SMM Libraries

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 13. Schema of the DBCSR library for the matrix–matrix multiplication (see text
for description).

CUDA and HIP, respectively. A schema of the library is shown in
Fig. 13.

A. Message passing interface parallelization
At the top level, we have the MPI parallelization. The data-

layout exchange is implemented with two different algorithms,
depending on the sizes of the involved matrices in the multiplica-
tions:

● for general matrices (any size), we use the Cannon algo-
rithm, where the amount of communicated data by each
process scales asO(1�√P),114,395 and● only for “tall-and-skinny” matrices (one large dimension),
we use an optimized algorithm, where the amount of com-
municated data by each process scales asO(1).396

The communications are implemented with asynchronous point-to-
point MPI calls. The local multiplication will start as soon as all the
data have arrived at the destination process, and it is possible to over-
lap the local computation with the communication if the network
allows that.

B. Local multiplication
The local computation consists of pairwise multiplications of

small dense matrix blocks, with dimensions (m × k) for A blocks
and (k × n) for B blocks. It employs a cache-oblivious matrix traver-
sal to fix the order in which matrix blocks need to be computed,
to improve memory locality (Traversal phase in Fig. 13). First,
the algorithm loops over A matrix row-blocks and then, for each
row-block, over B matrix column-blocks. Then, the correspond-
ing multiplications are organized in batches (Generation phase in
Fig. 13), where each batch consists of maximum 30 000 multiplica-
tions. During the Scheduler phase, a static assignment of batches
with a given Amatrix row-block to OpenMP threads is employed to
avoid data-race conditions. Finally, batches assigned to each thread

can be computed in parallel on the CPU and/or executed on a GPU.
For the GPU execution, batches are organized in such a way that
the transfers between the host and the GPU are minimized. The
multiplication kernels take full advantage of the opportunities
for coalesced memory operations and asynchronous operations.
Moreover, a double-buffering technique, based on CUDA streams
and events, is used to maximize the occupancy of the GPU
and to hide the data transfer latency.393 When the GPU is fully
loaded, the computation may be simultaneously done on the CPU.
Multi-GPU execution on the same node is made possible by
distributing the cards to multiple MPI ranks via a round-robin
assignment.

C. Batched execution
Processing batches of small-matrix-multiplications (SMMs)

have to be highly efficient. For this reason, specific libraries
were developed that outperform vendor BLAS libraries, namely,
LIBSMM_ACC (previously called LIBCUSMM, which is part of DBCSR)
for GPUs,396 as well as LIBXSMM for CPUs.397,398

In LIBSMM_ACC, GPU kernels are just-in-time (JIT) compiled
at runtime. This allows us to reduce DBCSR’s compile time by more
than half and its library’s size by a factor of 6 compared to gener-
ating and compiling kernels ahead-of-time. Figure 14 illustrates the
performance gain that can be observed since the introduction of the
JIT framework: because including a new (m,n,k)-kernel to the library
incurs no additional compile time, nor does it bloat the library size,
all available (m,n,k) batched-multiplications can be run on GPUs,
leading to important speed-ups.

LIBSMM_ACC’s GPU kernels are parametrized over seven
parameters, affecting the memory usages and patterns of the mul-
tiplication algorithms, the amount of work and number of threads
per CUDA block, the number of matrix elements computed by each

FIG. 14. Comparison of DBCSR dense multiplication of square matrices of size
10 000, dominated by different sub-matrix block sizes. With the JIT framework in
place, these blocks are batch-multiplied on a GPU using LIBSMM_ACC, instead
of on the CPU using LIBXSMM. Multiplications were run on a heterogeneous Piz
Daint CRAY XC50 node containing a 12 core Intel Haswell CPU and on a NVIDIA
V100 GPU.

J. Chem. Phys. 152, 194103 (2020); doi: 10.1063/5.0007045 152, 194103-36

© Author(s) 2020

GPU back end performance

24/06/2020 19

AMD Mi50: Peak FP64 Perf: 6.6 Tflop/s

NV V100: Peak FP64 Perf: 7 Tflop/s

NV P100: Peak FP64 Perf: 4.7 Tflop/s

Additional factor 5 speed-up, when using LIBSMM_ACC instead of LIBXSMM
on CRAY XC50 node with 12 core Intel Haswell CPU and Nvidia V100 GPU

FPGA-based Noctua@PC2

Figure 2. Convergence behavior when using custom-precision floating-point
for (a) all arithmetic operations and (b) only for storage of intermediate results.

This approach allows a very flexible and fast implemen-
tation of simulators for different approximation techniques.
Besides the mentioned floating-point and fixed-point data
types, influences like noise or random bitflips can be easily
implemented and adjusted. This flexibility comes at the cost
of a performance penalty as each arithmetic operation now
implies doing a function call, performing the necessary sim-
ulation steps and instantiating a return object. We deal with
this performance degradation by implementing all classes in
Cython [14], producing statically typed C-code which executes
orders of magnitude faster than interpreted Python code, and
distributing the simulations over many machines of a large
compute cluster.

C. Results

1) Overall Error Resiliency: To assess the overall error
resiliency of the algorithm, we initially choose an overlap
matrix of dimension N = 768 and set p = 2 to calculate
the inverse square root for these matrices, which is one step
of solving the generalized eigenvalue problem as described in
Section IV-A. With simulation, we determine the convergence
of the algorithm, depending on the given precision. The
iterative algorithm shows to be rather resilient to low precision,
both for storage of intermediate matrices as well as for all used
arithmetic operations.

Figure 2 shows the error between the intermediate solutions
obtained from the algorithm using floating-point with custom
mantissa widths and a solution that was precomputed using
double-precision. As error metric we use the Frobenius norm

���Ck � S�1/p
���
F
:=

vuut
NX

i=1

NX

j=1

|�ij � �ij |2 (4)

where �ij are the elements of Ck and �ij those of S�1/p.
The observed convergence of the algorithm can be split into

two phases: First, the error steadily decreases according to the
algorithm’s quadratic order of convergence. [5] In the second
phase, being limited by the given precision of the data type,
the algorithm does not converge further but oscillations may
be observed.

This shows that the convergence in the first phase is barely
influenced by the introduced errors. Only for less than 10 man-

Figure 3. Convergence behavior when using custom-precision fixed-point for
(a) all arithmetic operations and (b) only for storage of intermediate results.

tissa bits the algorithm does not converge at all. Consequently,
half-precision floating-point arithmetic is sufficient to retain
convergence. Approximation does however increase the lower
bound for the error. Therefore, the second phase of conversion
starts earlier for lower precision. Increasing the precision in
later iterations allows the algorithm to further converge against
a lower error, opening the possibility for dynamic precision
scaling. Observing the changes introduced in each iteration,
the necessity of increased precision can be detected at runtime.
Note that the use of low precision arithmetic in the first
iterations does not increase the overall number of iterations,
even when using higher precision in later iterations to achieve
more precise results. This opens up gains in performance or
energy-efficiency as soon as a single iteration can be executed
more efficiently using approximation techniques.

Approximating only the storage of intermediate results
allows significantly stronger approximation while achieving
similar precision in the output. E.g., storing only 10 mantissa
bits allows a similar error as doing all calculation using 18
mantissa bits. In our use case the algorithm still converges if
only two mantissa bits are used for all stored values.

Figure 3 shows similar behavior when using fixed-point
arithmetic with low precision. To retain convergence, 18
fractional bits are required for arithmetic operations. Again,
restricting the approximation to stored intermediate results
permits stronger approximation. In our evaluation, storing
only four fractional bits showed to be sufficient to retain
convergence.

2) Influence of the Matrix Size: Most of the results pre-
sented before apply directly to larger matrices from our prob-
lem set, in particular when only approximating the storage of
intermediate results. Approximating all arithmetic operations
using low-precision fixed-point arithmetic however exhibits
a limitation. As shown in Figure 4, using 18 fractional bits
is sufficient to retain convergence for N = 768 but for
N = 1536 the error eventually increases. The reason for
this behavior is that larger matrices from our set are more
sparse (see Section IV-A) and therefore their inverse contain
smaller values which cannot be represented appropriately with
the given number of fractional bits.

For floating-point this effect is not relevant, as depicted in
Figure 4. The slightly larger final error for N = 1536 can be

Figure 4. Convergence behavior using custom-precision floating-point (FP)
and fixed-point (FxP) for different matrix sizes.

Figure 5. Convergence behavior for different p using custom-precision
floating-point with 22 mantissa bits.

explained by the use of the Frobenius norm as error metric
since it adds up the quadratic errors of all matrix elements.

3) Influence of p: Calculating the inverse p-th root for
p 6= 2 shows similar behavior as for p = 2, as shown in
Figure 5 for custom-precision floating-point arithmetic and
storage. With increasing p the algorithm in general needs an
increasing number of iterations to converge. This effect is
independent of the applied approximation.

4) Influence of the Matrix Condition: The condition of
the overlap matrices S depends on the system, in particular
the element, that is simulated. The matrices for systems of
H2O molecules used in our evaluation have condition numbers
around  = 1.5. Calculating the inverse p-th root of matrices
with larger condition numbers requires overall more iterations,
as discussed by Richters et al. [7]. Additionally, the resulting
matrix is expected to be full so that exploiting sparsity of
the matrix becomes more difficult. Investigating a relationship
between the condition number of the input matrix and the error
resiliency of the algorithm remains subject of future work.

V. CONCLUSION

The presented results show the resiliency of the examined
algorithm against errors introduced due to low precision arith-
metic and storage. While a certain precision has to be provided
to retain convergence of the algorithm, further precision is only
required in final iterations if a precise result is desired.

It stands out that the number of iterations required to reach
a certain precision does not significantly increase with the

amount of approximation. This sets the examined algorithm
apart from other iterative methods like the preconditioned
conjugate gradient method which was modified to run on
approximate hardware by Schöll et al. [4] and showed to
require additional iterations when using approximation.

This opens up great opportunities for the acceleration of
applications in the scientific computing domain requiring the
calculation of inverse p-th roots: Using half-precision floating-
point in the first iterations can lead to a 2⇥ speedup for these
iterations on suitable GPUs. Resource requirements on FPGAs
can be reduced by half and for custom CMOS designs, power
consumption of the multipliers can be reduced by a factor of
4⇥. Moreover, the overhead required for data exchange when
using GPUs or custom hardware can be significantly reduced
as data can be represented using low precision data types.

If a precise solution for A�1/p is required for the application,
results obtained using approximation can be refined into a
precise solution in very few additional iterations. In a scenario
using approximate hardware accelerators, this can be done in
software while leaving the main part of the work to the external
accelerators.

REFERENCES

[1] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and Characterization of Inherent Application Resilience for Approximate
Computing,” in Des Aut Con. ACM, 2013.

[2] P. Klavı́k, A. C. I. Malossi, C. Bekas, and A. Curioni, “Changing
Computing Paradigms Towards Power Efficiency,” Philos T Roy Soc

A, vol. 372, no. 2018, 2014.
[3] A. Schöll, C. Braun, M. A. Kochte, and H. J. Wunderlich, “Low-

overhead fault-tolerance for the preconditioned conjugate gradient
solver,” in IEEE Int Symp Defect, Oct. 2015, pp. 60–65.

[4] A. Schöll, C. Braun, and H. J. Wunderlich, “Applying efficient fault
tolerance to enable the preconditioned conjugate gradient solver on
approximate computing hardware,” in IEEE Int Symp Defect, Sep. 2016,
pp. 21–26.

[5] D. A. Bini, N. J. Higham, and B. Meini, “Algorithms for the matrix pth
root,” Numer Algorithms, vol. 39, no. 4, pp. 349–378, 2005.

[6] G. Schulz, “Iterative Berechung der reziproken Matrix,” ZAMM-Z Angew

Math Me, vol. 13, no. 1, pp. 57–59, 1933.
[7] D. Richters, M. Lass, C. Plessl, and T. D. Kühne, “A general

algorithm to calculate the inverse principal p-th root of symmetric
positive definite matrices,” Preprint, Mar. 2017. [Online]. Available:
http://arxiv.org/abs/1703.02456

[8] NVIDIA Corporation, “Tesla P100 data sheet,” Oct. 2016. [Online].
Available: http://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-
datasheet.pdf

[9] T. K. Callaway and E. E. Swartzlander, “Power-delay characteristics of
cmos multipliers,” in P S Comp Arithm, 1997, pp. 26–32.

[10] M. Ceriotti, T. D. Kühne, and M. Parrinello, “An efficient and accurate
decomposition of the Fermi operator,” J Chem Phys, vol. 129, no. 2, p.
024707, 2008.

[11] D. Richters and T. D. Kühne, “Self-consistent field theory based molec-
ular dynamics with linear system-size scaling,” J Chem Phys, vol. 140,
no. 13, p. 134109, 2014.

[12] E. Prodan and W. Kohn, “Nearsightedness of electronic matter,” Proc

Natl Acad Sci U S A, vol. 102, no. 33, pp. 11 635–11 638, 2005.
[13] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific

tools for Python,” 2001. [Online]. Available: http://www.scipy.org/
[14] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Seljebotn, and K. Smith,

“Cython: The best of both worlds,” Comput Sci Eng, vol. 13, no. 2, pp.
31–39, 2011.

M. Lass, T. D. Kühne and C. Plessl, IEEE Embedded Systems Letters PP, 1 (2017)

11

This is exactly the matrix iteration in Eq. (2.1) that has been discussed in the work of
Bini et al. [5]. In both cases, Prop. 3.1 shows that our condition Eq. (3.3) on R0 is equiva-
lent to the condition kR0k<1 used for the convergence analysis of these methods in the
corresponding original papers [2, 5].

We now proceed by dealing with the iteration formula in the case p = 1 and show
that it converges faster for higher orders (q>2). For that purpose, we take Eq. (3.2) and
calculate for p=1

Bk+1=
1
p

h
(p�1)Bk�

�
(I�B

p

k
A)q� I

�
B

1�p

k
A
�1
i

p=1
= [I�(I�Bk A)q]A�1.

We now prove that this is convergent of order q in the sense of Definition 2.4.
���Bk+1�A

�1
���

2
=
���(I�(I�Bk A)q)A

�1�A
�1
���

2

=
���(I�Bk A)q

A
�1
���

2

=
���(I�Bk A)q

A
�1

A
�q

A
q

���
2

kAkq�1
2 ·

���(I�Bk A)q(A
�1)q

���
2

kAkq�1
2 ·

���A
�1�Bk

���
q

2
.

Next, we show why the iteration function in Eq. (3.2) coincides for p= 1 with Altman’s
work on the hyperpower method [41]. We have already shown oin the proof of Theo. 3.1
that

Bk+1=
1
p

Bk

h
(p�1)+(R

q�1
k

+R
q�2
k

+ . . .+Rk+ I)
i
=

1
p

Bk

"
pI+

q�1

Â
j=1

R
j

k

!#
. (3.8)

Altman, however, proved convergence of any order for the iteration scheme in Eq. (2.2),
i.e.,

Bk+1=Bk(I+Rk+R
2
k
+ . . .+R

q�1
k

), B02V

when calculating the inverse of a given linear, bounded and invertible operator A2V. If
we take Rn⇥n for the Banach space V, this is identical to Eq. (3.8) with p=1. Once more,
Prop. 3.1 shows that our condition Eq. (3.3) is equivalent to the one used by Altman
in [41].

4 Numerical Results

Even if the mathematical analysis of our iteration function results in the awareness that,
except for p=1, larger q do not lead to a higher order of convergence, we conduct numer-
ical tests by varying p and q. Concerning the matrix A, whose inverse p-th root should

D. Richters, M. Lass, A. Walter, C. Plessl & T. D. Kühne, Comm. Comp. Phys. 25, 564 (2019)

FPGA-based Inversion

Approximate Computing

MIR̈I = FBO

I +⌅N
I| {z }� �NMIṘI

= FFPGA

I � �NMIṘI

T. D. Kühne, F. R. Mohamed, M. Krack & M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007)
V. Rengaraj M. Lass, C. Plessl and T. D. Kühne, Computation 8, 39 (2020)

Approximate Computing

V. Rengaraj M. Lass, C. Plessl and T. D. Kühne, Computation 8, 39 (2020)

Computation 2020, 8, 39 6 of 11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

g(
r)

r [nm]

Reference
Floating-point error (10-0)
Floating-point error (10-1)
Floating-point error (10-2)

 2.5

 2.7

 0.24 0.25

Figure 2. Partial pair correlation function for liquid Si at 3000 K with noisy forces introduced by
floating-point errors of magnitude 10�2 (blue), 10�1 (green), and 10�0 (red). For comparison, the results,
as obtained by our reference calculations without noise, are shown in black.

Figure 3. Kinetic energy distribution of liquid Si at 3000 K, as obtained by our simulations using noisy
forces (circles). For comparison, the analytic Maxwell distribution is also shown (line).

To further assess the accuracy of the present method, we expanded the autocorrelation of the
noisy forces, i.e.,

D
FN

I
(0) FN

I
(t)

E
(10a)

=
D⇣

FI (0) + XN

I
(0)

⌘ ⇣
FI (t) + XN

I
(t)

⌘E
(10b)

= hFI (0) FI (t)i+
D

FI (0)XN

I
(t)

E
(10c)

+
D

FI (t)XN

I
(0)

E
+

D
XN

I
(0)XN

I
(t)

E
.

Since the cross-correlation terms between the exact force and the additive white noise were
vanishing due to Equation (4), comparing the autocorrelation of the noisy forces hFN

I
(0)FN

I
(t)i with

Approximate Computing

V. Rengaraj M. Lass, C. Plessl and T. D. Kühne, Computation 8, 39 (2020)

Computation 2020, 8, 39 7 of 11

the autocorrelation of the exact forces hFI(0)FI(t)i permitted assessing the localization of the last
term of Equation (10c). The fact that hFN

I
(0)FN

I
(t)i was essentially identical to hFI(0)FI(t)i, as can

be seen in Figure 4, implied that hXN

I
(0)XN

I
(t)i was very close to a d-function as required by the

fluctuation-dissipation theorem in order to ensure an accurate canonical sampling of the Boltzmann
distribution. In other words, from this, it followed that our initial assumption underlying Equation (7),
to model the noise due to a low precision calculation as an additive white noise channel, was justified.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C f
f(t

)

Time t [fs]

Autocorrelation of exact forces
Autocorrelation of noisy forces

 0.2

 0.22

 0.24

 60 64 68 72

Figure 4. The autocorrelation of the noisy forces
⌦
FN

I
(0) FN

I
(t)

↵
(line), which are compared to the

autocorrelation of the exact forces hFI (0) FI (t)i(circles).

6. Conclusions

We conclude by noting that the presented method was recently implemented in the universal force
engine i-PI [68], which can be generally applied to all sorts of forces affected by stochastic noise such
as those computed by GPUs or other hardware accelerators [15–21], and potentially even quantum
computing devices [69–72]. The possibility to apply similar ideas to N-body simulations [73,74]
and to combine them with further algorithmic approximations [75] is to be underlined and will be
presented elsewhere.

Author Contributions: V.R. wrote the code and conducted the calculations, V.R. and M.L. analyzed the data,
M.L., C.P. and T.D.K. interpreted the results, M.L., V.R. and T.D.K. wrote the paper, C.P. and T.D.K. conceived the
study and directed the project. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Paderborn Center for Parallel Computing (PC2) for computing
time on OCULUS and FPGA-based supercomputer NOCTUA. Funding from Paderborn University’s research
award for “Green IT” is kindly acknowledged. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement
No. 716142) and from the German Research Foundation (DFG) under the project PerficienCC (grant agreement
No PL 595/2-1).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alder, B.J.; Wainwright, T.E. Phase Transition for a Hard Sphere System. J. Chem. Phys. 1957, 27, 1208–1209.
[CrossRef]

2. Rahman, A. Correlations in the Motion of Atoms in Liquid Argon. Phys. Rev. 1964, 136, A405–A411.
[CrossRef]

3. Car, R.; Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett.

1985, 55, 2471–2474. [CrossRef] [PubMed]

Submatrix Method
9[HSGZXO^ 3KZNUJ -KTKXGR /JKG

8]ZXW[M" -[\QUI\M UI\ZQ` N]VK\QWV �M�O� [QOV WZ QV^MZ[QWV� WN I TIZOM [XIZ[M UI\ZQ`

4I[[� 5WPZ� ?QMJMTMZ� 3ÃPVM� IVL 8TM[[T C��� E
4I[[� ;KPILM� 3ÃPVM� IVL 8TM[[T C����E

XK��LM�OW�UQTTQWVI\WU[��M. Lass, S. Mohr, H. Wiebeler, TDK & C. Plessl, ACM Proc. of PASC 7, 1 (2018)
M. Lass, R. Schade, T. D. Kühne & C. Plessl, IEEE Proc. of SC20 1, 80 (2020)

Submatrix Method
9[HSGZXO^ 3KZNUJ -KTKXGR /JKG

;\MX �" 1LMV\QNa VWVbMZW ^IT]M[QV M^MZa KWT]UV

4I[[� 5WPZ� ?QMJMTMZ� 3ÃPVM� IVL 8TM[[T C��� E
4I[[� ;KPILM� 3ÃPVM� IVL 8TM[[T C����E

XK��LM�OW�UQTTQWVI\WU[��M. Lass, S. Mohr, H. Wiebeler, TDK & C. Plessl, ACM Proc. of PASC 7, 1 (2018)
M. Lass, R. Schade, T. D. Kühne & C. Plessl, IEEE Proc. of SC20 1, 80 (2020)

Submatrix Method
9[HSGZXO^ 3KZNUJ -KTKXGR /JKG

;\MX �" *]QTL []JUI\ZQ` TP(') NWZ M^MZa KWT]UV P _Q\P WVTa \PM ZW_[\PI\ PI^M
VWV�bMZW MTMUMV\[

4I[[� 5WPZ� ?QMJMTMZ� 3ÃPVM� IVL 8TM[[T C��� E
4I[[� ;KPILM� 3ÃPVM� IVL 8TM[[T C����EXK��LM�OW�UQTTQWVI\WU[��

M. Lass, S. Mohr, H. Wiebeler, TDK & C. Plessl, ACM Proc. of PASC 7, 1 (2018)
M. Lass, R. Schade, T. D. Kühne & C. Plessl, IEEE Proc. of SC20 1, 80 (2020)

Submatrix Method
9[HSGZXO^ 3KZNUJ -KTKXGR /JKG

;\MX �")XXTa UI\ZQ` N]VK\QWV M \W []JUI\ZQKM[TP(')

4I[[� 5WPZ� ?QMJMTMZ� 3ÃPVM� IVL 8TM[[T C��� E
4I[[� ;KPILM� 3ÃPVM� IVL 8TM[[T C����EXK��LM�OW�UQTTQWVI\WU[��

M. Lass, S. Mohr, H. Wiebeler, TDK & C. Plessl, ACM Proc. of PASC 7, 1 (2018)
M. Lass, R. Schade, T. D. Kühne & C. Plessl, IEEE Proc. of SC20 1, 80 (2020)

Submatrix Method

M. Lass, S. Mohr, H. Wiebeler, TDK & C. Plessl, ACM Proc. of PASC 7, 1 (2018)
M. Lass, R. Schade, T. D. Kühne & C. Plessl, IEEE Proc. of SC20 1, 80 (2020)

9[HSGZXO^ 3KZNUJ -KTKXGR /JKG
;\MX �" KWXa ZM[]T\QVO KWT]UV[\W ZM[]T\ UI\ZQ`

4I[[� 5WPZ� ?QMJMTMZ� 3ÃPVM� IVL 8TM[[T C��� E
4I[[� ;KPILM� 3ÃPVM� IVL 8TM[[T C����EXK��LM�OW�UQTTQWVI\WU[��

Submatrix Method

M. Lass, S. Mohr, H. Wiebeler, TDK & C. Plessl, ACM Proc. of PASC 7, 1 (2018)
M. Lass, R. Schade, T. D. Kühne & C. Plessl, IEEE Proc. of SC20 1, 80 (2020)

9[HSGZXO^ 3KZNUJ -KTKXGR /JKG

8ZWXMZ\QM[WN \PM ;]JUI\ZQ` UM\PWL"
TIZOM LQ[\ZQJ]\ML [XIZ[M UI\ZQ` ⇒
UIVa [UITT LMV[M UI\ZQKM[
[]Q\IJTM NWZ LMV[M TQVMIZ ITOMJZI
UI[[Q^MTa XIZITTMT
TQVMIZ�[KITQVO IXXZWIKP

4I[[� 5WPZ� ?QMJMTMZ� 3ÃPVM� IVL 8TM[[T C��� E
4I[[� ;KPILM� 3ÃPVM� IVL 8TM[[T C����E

XK��LM�OW�UQTTQWVI\WU[��

Non-Orthogonal Local SM

R. Schade, T. Kenter, H. Elgabarty, M. Lass, …, TDK & C. Plessl, arXiv:2104.08245 (2021)

4UT�5XZNUMUTGR 2UIGR 9[HSGZXO^ 3KZNUJ �45293�

1UXTMUMV\I\QWV _Q\P /8=["

⇒ UQVQUIT KWUU]VQKI\QWV JM_MMV VWLM[IVL +8=�\W�/8=

;KPILM� 3MV\MZ� -TOIJIZ\a� 4I[[� ;KPÃ\\� 4IbbIZW� 8IJ[\� 5WPZ� 0]\\MZ� 3ÃPVM� IVL 8TM[[T C����E

XK��LM�OW�UQTTQWVI\WU[�

Non-Orthogonal Local SM
3GZXO^�/ZKXGZOUTY UT 4</*/' '��� OT ,6���,6��

0

50

100

150

200

250

300

350

256 1024 2048 3072

P
er

fo
rm

an
ce

of
on

e
G

P
U

(T
F
L
O

P
/s

)

Matrix size

theoretical peak
hgemm, single stream

hgemm, 4 streams
hgemm, 4 streams, with graphs

sign iteration, 4 streams, with graphs

)[YZUSO`KJ ڠHGZINOTMڠ LUX
SGZXO^ OZKXGZOUTY

1KXTKR LXUS I[(2'9

�);*' YZXKGSY
\W TWIL \PM N]TT /8=

�);*' MXGVNY
ZML]KM SMZVMT TI]VKP TI\MVKa

⇒ NWZ QV\MZUMLQI\M [QbML UI\ZQKM[�≥ 1000� IJW]\ ��
� �
 WN XMIS KIV JM ZMIKPML

XK��LM�OW�UQTTQWVI\WU[��

R. Schade, T. Kenter, H. Elgabarty, M. Lass, …, TDK & C. Plessl, arXiv:2104.08245 (2021)

Pre-Exascale Simulation
0;=+29 (UUYZKX GZ 09)

!�� /8=�VWLM[_Q\P MIKP"
• +8=" �`)5, -8A+ ����
• 5MUWZa" ��� /* ,,:������ :)5
• /8=" � � 6>1,1))���� �� /*� 6>4QVS�
• 6M_WZS" � � 5MTTIVW` 0,:���
1VߨVQ*IVL +WVVMK\@ � ���� /JQ\�[MIKP�

8MIS <+ 8MZNWZUIVKM"
• .8��" �� 8.478�[
• .8���.8��" ���� 8.478�[

2=?-4; *WW[\MZ I\ 2;+� 8PW\W" .WZ[KP]VO[bMV\Z]U 2ÃTQKP �

?QTPMTU�8M\MZ ;KPVMQLMZ

XK��LM�OW�UQTTQWVI\WU[��

R. Schade, T. Kenter, H. Elgabarty, M. Lass, …, TDK & C. Plessl, arXiv:2104.08245 (2021)

Table I
PERFORMANCE OF PREVIOUSLY CONDUCTED ELECTRONIC STRUCTURE-BASED STRUCTURE RELAXATION OR AIMD SIMULATIONS. THEREIN, METHOD
AND BASIS DENOTES THE EMPLOYED ELECTRONIC STRUCTURE METHOD AND THE CORRESPONDING BASIS SET TO REPRESENT THE SINGLE-PARTICLE

ORBITALS. THE FORMER ...

Code, Year Method Basis System # Atoms # Cores Machine
Peak

Performance
Efficiency

CPMD [22] 2005 DFT PW bulk SiC 1k 1.2k CPU IBM p690 1.087 TFlop/s ⇡ 20%
Qbox [23] 2006 DFT PW bulk Mo 8*1k 128k CPU IBM BlueGene/L 207.3 TFlop/s 56.5%
LS3DF [24] 2009 DFT PW bulk ZnTeO 36k 147k CPU Cray Jaguar 442 TFlop/s ⇡ 33%
CP2K [25] 2012 LS-DFT GPW bulk H2 1m 47k CPU Cray XT5

ONETEP [26] 2014 LS-DFT NGWF amyloid fibril
trimer 42k 115k CPU IBM BlueGene/Q

RSDFT [27] 2014 DFT RS-FD Si nanowire 107k 664k CPU K-Computer 5.48 PFlop/s 51.67%
LDC-DFT [28] 2014 SS-DFT RMG-PW bulk SiC 6.3m 786k CPU IBM Blue Gene/Q 5.08 PFlop/s 50.5%
OpenAtom [29] 2016 DFT PW periodic MOF 32*424 262k CPU IBM BlueGene/Q ⇡ 52%
MGmol [30] 2016 LS-DFT FD bulk H2O 1.2m 1.6m CPU IBM BlueGene/Q ⇡ 39%

DFT-FE [31] 2019 DFT FEM Mg cluster 10.5k 159k CPU
+ 22.8k GPU IBM Summit 46 PFlop/s 27.8%

CONQUEST [32] 2020 LS-DFT PAO bulk Si 1m 200k CPU K-Computer

V. INNOVATIONS REALIZED (2P MAX)
A. Summary of contributions

The central innovation of the new schema is the approximate
mapping of a matrix function of very large sparse matrix
to a series of matrix functions of much smaller but dense
matrices while avoiding inter-node communication. This leads
to a favorable scaling. The evaluation of the matrix functions
for the small dense matrices, dimension of ⇠ 500 to ⇠ 4000

for the applications in this work, are computed with iterative
schemes and mixed-precision arithmetic on tensor cores of
GPUs. The resulting noise from approximations is compen-
sated in the spirit of approximate computing by making
use of the dissipation-fluctuation theorem so that the desired
thermodynamic expectation values can be obtained accurately.

B. Algorithmic Innovations
1) Approximate Computing: The ideas of approximate

computing (FIXME) can be applied to the field of electronic
structure-based molecular dynamics simulations by recogniz-
ing that algorithmic or numerical approximations cause noise
� in the computed total energy E

N of the system and in
consequence noise ~⌅i in the forces ~Fi on the atoms. Thus, the
computed noisy forces ~F

N
i can be written as

~F
N
i = �

@E
N

@ ~Ri

= ~Fi +
~⌅i (1)

where ~Fi denote the exact forces. All quantities depend on
the position of the atoms ~R1, ...,

~Rn. We assume ~⌅i to be an
unbiased noise and fulfills the fluctuation-dissipation-theorem
FIXME

h~⌅i(t = 0)~⌅i(t)iT u 2�NMikBT �(t), (2)

where h...iT denotes the Boltzmann-weighted ensemble aver-
age at the temperature T , kB the Boltzmann constant, Mi the
atomic masses and �N a friction coefficient. Then, a Langevin-
type equation, (FIXME)

Mi
~̈Ri =

~Fi +
~⌅i � �NMi

~̇Ri, (3)

Pre-Exascale Simulation

R. Schade, T. Kenter, H. Elgabarty, M. Lass, …, TDK & C. Plessl, arXiv:2104.08245 (2021)

9[HSGZXO^ 3KZNUJ 45293�9IGROTM
9ZXUTM YIGROTM UL H[RQ]GZKX]OZN ��� SORROUT GZUSY

0

50

100

150

200

250

300

350

128 192 256 384
0.9

1.0

1.1

T
N
O
L
S
M

(s
)

P
ar

al
le

l
E

ffi
ci

en
cy

Number of nodes

Wall time
Parallel efficiency

_ITT \QUM

MߪKQMVKa

⇒ VMIZ XMZNMK\ [\ZWVO [KITQVO

XK��LM�OW�UQTTQWVI\WU[��

Pre-Exascale Simulation

R. Schade, T. Kenter, H. Elgabarty, M. Lass, …, TDK & C. Plessl, arXiv:2104.08245 (2021)

9[HSGZXO^ 3KZNUJ)USHOTGZOUT UL 9[HSGZXOIKY

9ZXUTM YIGROTM UL H[RQ]GZKX]OZN ��� SORROUT GZUSY

0

100

200

300

400

500

128 192 256 384

P
F
L
O

P
/s

Number of nodes

performance of NOLSM for bulk water
Peak multiply performance (312 TFLOP/s/GPU)

8MIS

674;5

⇒ ≈ ��
 WN XMIS ZMIKPML

I^MZIOM []JUI\ZQ` LQUMV[QWV ≈ ���

0

50

100

150

200

250

300

350

256 1024 2048 3072

P
er

fo
rm

an
ce

of
on

e
G

P
U

(T
F
L
O

P
/s

)
Matrix size

theoretical peak
hgemm, single stream

hgemm, 4 streams
hgemm, 4 streams, with graphs

sign iteration, 4 streams, with graphs

⇒ [UITT UI\ZQ` [QbM[TQUQ\ IKPQM^IJTM XMZNWZUIVKM

XK��LM�OW�UQTTQWVI\WU[�

Combination of Submatrices

R. Schade, T. Kenter, H. Elgabarty, M. Lass, …, TDK & C. Plessl, arXiv:2104.08245 (2021)

9[HSGZXO^ 3KZNUJ)USHOTGZOUT UL 9[HSGZXOIKY
1LMI"][M M`QJQTQ\aߩ WN []JUI\ZQ` UM\PWL IVL KWUJQVM []JUI\ZQKM[_Q\P [QUQTIZ
KWT]UV[

⇒ NM_MZ J]\ TIZOMZ []JUI\ZQKM[
XK��LM�OW�UQTTQWVI\WU[�!

Combination of Submatrices

R. Schade, T. Kenter, H. Elgabarty, M. Lass, …, TDK & C. Plessl, arXiv:2104.08245 (2021)

9[HSGZXO^ 3KZNUJ)USHOTGZOUT UL 9[HSGZXOIKY

01>�� KIX[QL QV IY]MW][[WT]\QWV _Q\P ��

UQTTQWV I\WU[

I^MZIOM []JUI\ZQ` LQUMV[QWV ��� → ����
GTJ ZML]K\QWV WN \WI\QVO�XWQVߩ WXMZI\QWV[Ja NIK\WZ ����	

XK��LM�OW�UQTTQWVI\WU[��

R. Schade, T. Kenter, H. Elgabarty, M. Lass, …, TDK & C. Plessl, arXiv:2104.08245 (2021)

9[HSGZXO^ 3KZNUJ)USHOTGZOUT UL 9[HSGZXOIKY
9ZXUTM YIGROTM UL ./<��]OZN ���� SORROUT GZUSY

0

100

200

300

400

500

64 96 192 384

P
N
O
L
S
M

(P
F
L
O

P
/s

)

Number of nodes

Performance for HIV-1 (62M)
Peak Performance

8MIS

674;5
⇒ ≈ �
 WN XMIS ZMIKPML

I^MZIOM []JUI\ZQ` LQUMV[QWV ≈ ����

0

50

100

150

200

250

300

350

256 1024 2048 3072

P
er

fo
rm

an
ce

of
on

e
G

P
U

(T
F
L
O

P
/s

)
Matrix size

theoretical peak
hgemm, single stream

hgemm, 4 streams
hgemm, 4 streams, with graphs

sign iteration, 4 streams, with graphs

⇒ ��� 8.TWX[.8���.8�� NWZ � � VWLM[��
 WN <+ 8MIS�
XK��LM�OW�UQTTQWVI\WU[��

Combination of Submatrices

Summary & Outlook

R. Schade, T. Kenter, H. Elgabarty, M. Lass, …, TDK & C. Plessl, arXiv:2104.08245 (2021)

9[SSGX_ 45293 SKZNUJ
M`\MVLML MTMK\ZWVQK�[\Z]K\]ZM JI[ML UWTMK]TIZ
LaVIUQK[[QU]TI\QWV[\W UWZM \PIV ��� UQTTQWV I\WU[

• ��� UQTTQWV I\WU[NWZ J]TS _I\MZ
• �� UQTTQWV I\WU[NWZ 01>�� KIX[QL

6WV�WZ\PWOWVIT TWKIT []JUI\ZQ` �674;5� UM\PWL"
• NWZ UI\ZQ` N]VK\QWV[WN RGXMK YVGXYK SGZXOIKY
• UI[[Q^MTa XIZITTMT IUSS[TOIGZOUT�G\UOJOTM UM\PWL
• /8=�IKKMTMZI\ML NWZ 6>1,1) /8=[

• UQVQUIT \ZIV[NMZ JM_MMV PW[\ IVL /8=[
• UI\ZQ` KWV[\Z]K\QWV WV /8=[
• UQ`ML�XZMKQ[QWV WV 4</*/' ZKTYUX IUXKY

• KWUXMV[I\QWV [KPMUI NWZ V]UMZQKIT VWQ[M
• KIVLQLI\M NWZ WVM WN \PM \]Zߨ [KQMV\QߨK
.8���.8���M`IߩWX [QU]TI\QWV[

01>�� KIX[QL QV IY]MW][[WT]\QWV _Q\P ��

UQTTQWV I\WU[

XK��LM�OW�UQTTQWVI\WU[��

Acknowledgements

T. D. Kühne et al., J. Chem. Phys. 152, 194103 (2021)

• Robert Schade, PC2: NOLSM
• Michael Lass, PC2: Submatrix Method
• Tobias Kenter, PC2: Combination of Submatrices
• Christian Plessl, PC2: AC, FPGA
• Ole Schütt, Google: LIBCUSMM
• Valery Weber, IBM ZRL: DBCSR
• Alfio Lazzaro, Cray EMEA Research Lab: DBCSR
• Hans Pabst, Intel Extreme Computing: LIBXSMM
• Joost VandeVondele, CSCS: COSMA, LIBSMM_ACC
• Stephan Mohr, BSC: Submatrix Method
• Matthias Krack, PSI: CP2K
• Jürg Hutter, UZH: CP2K

