
Modeling and tuning of SpMV and a lattice QCD

kernel on the A64FX

Christie Alappat, Jan Laukemann, Thomas Gruber, Georg Hager,

Gerhard Wellein, Nils Meyer, Tilo Wettig

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Erlangen National High Performance Computing Center (NHR@FAU)

University of Regensburg, Germany

Paper

C. Alappat, N. Meyer, J. Laukemann, T. Gruber,

G. Hager, G. Wellein, and T. Wettig:

ECM modeling and performance tuning of SpMV

and Lattice QCD on A64FX.

Concurrency and Computation: Practice and

Experience, e6512 (2021).

Available with Open Access.

DOI: 10.1002/cpe.6512

2021-08-12A64FX Symposium | Georg Hager 2

https://doi.org/10.1002/cpe.6512

Single-core analysis

ECM model

Registers

L1

L2

MEM

2021-08-12 4A64FX Symposium | Georg Hager

Single-core ECM model

Execution-Cache-Memory (ECM) model helps us to

understand and analyze the single-core performance.Registers

L1

L2

MEM

Hofmann et.al.: Bridging The Architecture Gap: Abstracting Performance-Relevant Properties Of Modern Server

Processors, https://doi.org/10.14529/jsfi200204

Machine model Application model

Traffic + time

component

predictions

Execution time

prediction

Overlap

hypothesis

http://dx.doi.org/10.14529/jsfi200204

2021-08-12 5A64FX Symposium | Georg Hager

In-core prediction

Machine knowledge

STREAM TRIAD

a[i] = b[i] + s * c[i]

.L18:
ld1d z4.d, p5/z, [x21, x9, lsl 3]
ld1d z5.d, p5/z, [x20, x9, lsl 3]
fmad z5.d, p5/m, z2.d, z4.d
st1d z5.d, p5, [x19, x9, lsl 3]
add x8, x9, 8
whilelo p5.d, w8, w7
b.any .L18

ST

LD LDFMA1 cy

2 cy
2cy / VL

Application knowledge

2021-08-12 6A64FX Symposium | Georg Hager

In-core prediction

.L18:
ld1d z4.d, p5/z, [x21, x9, lsl 3]
ld1d z5.d, p5/z, [x20, x9, lsl 3]
fmad z5.d, p5/m, z2.d, z4.d
st1d z5.d, p5, [x19, x9, lsl 3]
add x8, x9, 8
whilelo p5.d, w8, w7
b.any .L18

2cy / VL
Static analysis and prediction

of in-core contribution

Machine knowledge

STREAM TRIAD

a[i] = b[i] + s * c[i]

Application knowledge

https://github.com/RRZE-HPC/OSACA

https://github.com/RRZE-HPC/OSACA

2021-08-12 7A64FX Symposium | Georg Hager

In-core prediction

Instruction Reciprocal

Throughput

[cy]

Latency

[cy]

ld1d 0.5 11

st1d 1.0 –

fadd 0.5 9

fmad 0.5 9

faddv 11.5 49

Static analysis and prediction

of in-core contribution

https://github.com/RRZE-HPC/OSACA

2021-08-12 8A64FX Symposium | Georg Hager

Data transfer for STREAM triad

Application knowledge

STREAM triad
a[i] = b[i] + s*c[i]

ECM prediction?

STREAM triad on A64FX
Machine knowledge

(FX700)

Registers Registers Registers

128 B/cy 64 B/cy
LD

LD
ST

L1

L2

MEM

117 B/cy 64 B/cy

64 B/cy 32 B/cy

L1

L2

MEM

L1

L2

MEM

RD

RD

RD
WR

RD

RD

RD
WR

2021-08-12 9A64FX Symposium | Georg Hager

Overlap hypotheses for A64FX

Large pages

required!

2021-08-12 10A64FX Symposium | Georg Hager

Model validation (FX1000, large pages)

0

1

2

3

4

5

6

7

8

9

10
ECM validation for in-memory data sets (single-core)

ECM prediction Measured

R
u
n

ti
m

e
 [

c
y
/V

L
]

L
o
w

e
r

is
 b

e
tt

e
r

2021-08-12 11A64FX Symposium | Georg Hager

Multicore (in-memory data set)

Stencil – 2d5pt SUM reductionTRIAD

u=8u=1 ECM

fadd latency

Sufficient unrolling is crucial (but sometimes it’s not enough)

SpMV

Sparse Matrix-Vector Multiplication

= + •

2021-08-12 13A64FX Symposium | Georg Hager

SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

= + • Nr

General case:

some indirect

addressing

required!

b[:]= b[:]+ A[:,:] * x[:]

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format
Minimum code

balance:

𝐵𝑐
𝑚𝑖𝑛 = 6

byte

flop

2021-08-12 15A64FX Symposium | Georg Hager

SpMV – dRECT vs. HPCG-1283

▪ dRECT: 4000-column tall & skinny dense matrix (𝑁𝑛𝑧𝑟 = 4000)

▪ HPCG: matrix from HPCG benchmark (𝑁𝑛𝑧𝑟 = 27), 1283 rows

single-core

216 GB/s

120 GB/s

2021-08-12 16A64FX Symposium | Georg Hager

SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:
ld1sw z0.d, p0/z, [x17, x20, lsl 2]
ld1d z2.d, p0/z, [x18, x20, lsl 3]
ld1d z3.d, p0/z, [x30, z0.d, lsl 3]
add x20, x20, 8
fmla z1.d, p0/m, z3.d, z2.d
whilelo p0.d, x20, x14
b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

FMA: Update z1.d

Latency: 9 cycles

Horizontal add of

512-bit register

latency = 49 cycles

Loop length : 27

HPCG matrix

ECM model predicts

maximum bandwidth

of 100 GB/s

→ No saturation



2021-08-12 17A64FX Symposium | Georg Hager

The problem with SpMV on A64FX

We need both:

▪ SIMD vectorization

▪ Modulo Variable Expansion (MVE)

With CRS, both must be implemented in the inner loop. The

partial sums accumulation adds to the overhead.

Can we get rid of the partial sums accumulation and separate

SIMD from MVE?

CRS → SELL-C-s

Change data storage format

2021-08-12 19A64FX Symposium | Georg Hager

SELL-C-𝜎

Idea

▪ Sort rows according to length within sorting scope 𝜎

▪ Store nonzeros column-major in zero-padded blocks of height 𝐶

zero padding

“Chunk occupancy”:

𝛽 =
𝑁𝑛𝑧

σ
𝑖=0
𝑁𝑐 𝐶 ⋅ 𝑙𝑖

𝑙𝑖: width of chunk 𝑖

2021-08-12 20A64FX Symposium | Georg Hager

SELL-C-𝜎 kernel

Example 𝐶 = 4 without further unrolling → longer inner loop, but still an LCD

𝐶 = 4

2021-08-12 21A64FX Symposium | Georg Hager

How to choose the parameters?

▪ 𝐶

▪ 𝑛 × SIMD width to allow good utilization of SIMD units

▪ 𝑛 > 1 useful for hiding ADD pipeline latency

▪ 𝜎

▪ As small as possible, as large as necessary

▪ Large 𝜎 reduces zero padding (brings 𝛽 closer to 1)

▪ Sorting alters RHS access pattern → 𝛼 depends on 𝜎

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse
matrix data format for efficient general sparse matrix-vector multiplication on
modern processors with wide SIMD units. SIAM Journal on Scientific
Computing 36(5), C401–C423 (2014). DOI: 10.1137/130930352,

http://dx.doi.org/10.1137/130930352

2021-08-12 24A64FX Symposium | Georg Hager

SpMV performance with SELL-C-s (1 CMG)

▪ SELL-C-s

separates SIMD

from sum reduction

▪ C>8 allows for

reduction of fmla

latency impact

◼ GCC SELL-8-1

▲GCC SELL-16-1

● FCC SELL-16-1

● FCC CRS

HPCG-1283

2021-08-12 25A64FX Symposium | Georg Hager

SpMV performance with SELL-C-s (full chip)

foreach m in $matrices:

apply RCM reordering if helpful

try row-based vs. nonzero-based load balancing

scan 𝝈 from 1 … 4096

Domain Wall (DW) kernel

from Quantum Chromodynamics (QCD)

Context

▪ Lattice QCD simulates the strong interaction

▪ Iterative multigrid techniques on regular (4D or 5D) lattices

▪ Core component: Apply Dirac operator 𝐷 to quark-field vector

Ψ

▪ Domain Wall (DW) formulation: quark field lives on 4D

boundary of a 5D space-time volume 𝑉4 × 𝐿𝑠

2021-08-12A64FX Symposium | Georg Hager 28

2021-08-12 29A64FX Symposium | Georg Hager

DW stencil kernel (simplified)

• “Grid” lattice QCD framework

• Uses SVE intrinsics

• Data type: double complex

2021-08-12 30A64FX Symposium | Georg Hager

Complex numbers data layout choice

RIRI (standard)

RRII

2021-08-12 31A64FX Symposium | Georg Hager

Observed performance

▪ Starting point: RIRI layout, ACLE intrinsics, GCC/FCC

▪ 1320 flops/LUP (theoretical)

▪ Measured code balance: 1500 byte/LUP

▪ A64FX (FX1000): 𝐵𝑚 = 0.25
byte
flop

→ expect memory bound

𝐵𝑐 ≈ 1.14
byte

flop

2021-08-12 32A64FX Symposium | Georg Hager

Layer Conditions (LC) analysis

▪ LC determine traffic to/from different caches (𝑖) of size 𝑠𝑖
▪ 𝑤 = 2: write-allocate factor (would be 1 if WA evasion applies)

▪ RIRI (RRII) layout has 𝑑 = 1 (𝑑 = 2)

2021-08-12 33A64FX Symposium | Georg Hager

SIMD-friendly data layout

▪ One partition per SIMD lane

▪ Partition size:

𝐿𝑥 × 𝐿𝑦 ×
𝐿𝑧
2
×
𝐿𝑡
2
× 𝐿𝑠

▪ → SIMD makes LCs more

stringent (need more cache to

fulfill)

2021-08-12 34A64FX Symposium | Georg Hager

LC effect

Measurement of code balance with 𝐿_𝑠 = 8

244 × 8 lattice
LCz breaks @ L2

LCy breaks @ L2

LCy breaks @ L2

2021-08-12 35A64FX Symposium | Georg Hager

Summary of optimizations for DW

▪ Software prefetching decreases L2 data volume

▪ -O1 makes compiler obey the ordering hints in the

computational kernel (more efficient OoO execution)

▪ RRII data layout

▪ Prevents use of complex arithmetic instructions fcmla/fcadd

▪ Removes imbalance between FLA and FLB ports in the core

▪ Some register spills occur, but still better than RIRI

▪ Measurement falls short of ECM prediction by 2.3x (GCC) or 3.1x (FCC)

2021-08-12 36A64FX Symposium | Georg Hager

DW kernel optimizations and ECM model

2021-08-12 37A64FX Symposium | Georg Hager

CMG performance RIRI vs. RRII

▪ RRII saturates already at 8 cores

▪ Sharing across cores in L2 gives slight increase @ 12 cores

2021-08-12 38A64FX Symposium | Georg Hager

Comparison with other architectures

RIRI

2021-08-12 39A64FX Symposium | Georg Hager

Summary

▪ECM model constructed for single-core performance of A64FX

▪Partially overlapping memory hierarchy → high single-core memory

bandwidth (even more so with large pages)

▪ If performance is bad, the single-core performance is usually the

culprit

▪SpMV requires proper data format for efficient single-core execution

▪DW kernel benefits from prefetching and OoO improvements

▪Performance modeling is invaluable for navigating optimization

efforts

Thank You.

