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Single-core ECM model

Execution-Cache-Memory (ECM) model helps us to 

understand and analyze the single-core performance.Registers

L1

L2

MEM

Hofmann et.al.: Bridging The Architecture Gap: Abstracting Performance-Relevant Properties Of Modern Server 

Processors, https://doi.org/10.14529/jsfi200204

Machine model Application model

Traffic + time 

component  

predictions

Execution time 

prediction

Overlap 

hypothesis

http://dx.doi.org/10.14529/jsfi200204
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In-core prediction

Machine knowledge

STREAM TRIAD

a[i] = b[i] + s * c[i]

.L18:
ld1d z4.d, p5/z, [x21, x9, lsl 3]
ld1d z5.d, p5/z, [x20, x9, lsl 3]
fmad z5.d, p5/m, z2.d, z4.d
st1d z5.d, p5, [x19, x9, lsl 3]
add x8, x9, 8
whilelo p5.d, w8, w7
b.any .L18

ST

LD LDFMA1 cy

2 cy
2cy / VL

Application knowledge
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In-core prediction

.L18:
ld1d z4.d, p5/z, [x21, x9, lsl 3]
ld1d z5.d, p5/z, [x20, x9, lsl 3]
fmad z5.d, p5/m, z2.d, z4.d
st1d z5.d, p5, [x19, x9, lsl 3]
add x8, x9, 8
whilelo p5.d, w8, w7
b.any .L18

2cy / VL
Static analysis and prediction 

of in-core contribution

Machine knowledge

STREAM TRIAD

a[i] = b[i] + s * c[i]

Application knowledge

https://github.com/RRZE-HPC/OSACA

https://github.com/RRZE-HPC/OSACA
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In-core prediction

Instruction Reciprocal 

Throughput 

[cy]

Latency 

[cy]

ld1d 0.5 11

st1d 1.0 –

fadd 0.5 9

fmad 0.5 9

faddv 11.5 49

Static analysis and prediction 

of in-core contribution

https://github.com/RRZE-HPC/OSACA



2021-08-12 8A64FX Symposium   |    Georg Hager

Data transfer for STREAM triad

Application knowledge

STREAM triad
a[i] = b[i] + s*c[i]

ECM prediction?

STREAM triad on A64FX
Machine knowledge

(FX700)

Registers Registers Registers

128 B/cy 64 B/cy
LD

LD
ST

L1

L2

MEM

117 B/cy 64 B/cy

64 B/cy 32 B/cy

L1

L2

MEM

L1

L2

MEM

RD

RD

RD
WR

RD

RD

RD
WR
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Overlap hypotheses for A64FX

Large pages 

required!
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Model validation (FX1000, large pages)

0

1

2

3

4

5

6

7

8

9

10
ECM validation for in-memory data sets (single-core)

ECM prediction Measured
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Multicore (in-memory data set)

Stencil – 2d5pt SUM reductionTRIAD

u=8u=1 ECM

fadd latency

Sufficient unrolling is crucial (but sometimes it’s not enough)



SpMV

Sparse Matrix-Vector Multiplication

= + •
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SpMV

Sparse Matrix-Vector Multiplication (SpMV) :  b=Ax

= + • Nr

General case: 

some indirect

addressing

required!

b[:]= b[:]+ A[:,:]       * x[:]

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]] 

In Compressed Row Storage (CRS) format
Minimum code 

balance: 

𝐵𝑐
𝑚𝑖𝑛 = 6

byte

flop
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SpMV – dRECT vs. HPCG-1283

▪ dRECT: 4000-column tall & skinny dense matrix (𝑁𝑛𝑧𝑟 = 4000)

▪ HPCG: matrix from HPCG benchmark (𝑁𝑛𝑧𝑟 = 27), 1283 rows

single-core

216 GB/s

120 GB/s
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SpMV

for i = 0:nrows-1 //Long outer loop

for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner loop

b[i] = b[i] + A[j] * x[col_idx[j]] 

In Compressed Row Storage (CRS) format

.L6:
ld1sw z0.d, p0/z, [x17, x20, lsl 2]
ld1d z2.d, p0/z, [x18, x20, lsl 3]
ld1d z3.d, p0/z, [x30, z0.d, lsl 3]
add x20, x20, 8
fmla z1.d, p0/m, z3.d, z2.d
whilelo p0.d, x20, x14
b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

FMA: Update z1.d

Latency: 9 cycles

Horizontal add of

512-bit register

latency = 49 cycles

Loop length : 27

HPCG matrix

ECM model predicts 

maximum bandwidth 

of 100 GB/s

→ No saturation


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The problem with SpMV on A64FX

We need both:

▪ SIMD vectorization

▪ Modulo Variable Expansion (MVE)

With CRS, both must be implemented in the inner loop. The 

partial sums accumulation adds to the overhead. 

Can we get rid of the partial sums accumulation and separate 

SIMD from MVE?



CRS → SELL-C-s

Change data storage format
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SELL-C-𝜎

Idea

▪ Sort rows according to length within sorting scope 𝜎

▪ Store nonzeros column-major in zero-padded blocks of height 𝐶

zero padding

“Chunk occupancy”:

𝛽 =
𝑁𝑛𝑧

σ
𝑖=0
𝑁𝑐 𝐶 ⋅ 𝑙𝑖

𝑙𝑖: width of chunk 𝑖
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SELL-C-𝜎 kernel

Example 𝐶 = 4 without further unrolling → longer inner loop, but still an LCD

𝐶 = 4
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How to choose the parameters?

▪ 𝐶

▪ 𝑛 × SIMD width to allow good utilization of SIMD units

▪ 𝑛 > 1 useful for hiding ADD pipeline latency

▪ 𝜎

▪ As small as possible, as large as necessary

▪ Large 𝜎 reduces zero padding (brings 𝛽 closer to 1)

▪ Sorting alters RHS access pattern → 𝛼 depends on 𝜎

M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop: A unified sparse
matrix data format for efficient general sparse matrix-vector multiplication on 
modern processors with wide SIMD units. SIAM Journal on Scientific 
Computing 36(5), C401–C423 (2014). DOI: 10.1137/130930352,

http://dx.doi.org/10.1137/130930352
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SpMV performance with SELL-C-s (1 CMG)

▪ SELL-C-s

separates SIMD 

from sum reduction

▪ C>8 allows for 

reduction of fmla

latency impact

◼ GCC SELL-8-1

▲GCC SELL-16-1

● FCC SELL-16-1

● FCC CRS

HPCG-1283
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SpMV performance with SELL-C-s (full chip)

foreach m in $matrices:

apply RCM reordering if helpful

try row-based vs. nonzero-based load balancing

scan 𝝈 from 1 … 4096



Domain Wall (DW) kernel

from Quantum Chromodynamics (QCD)



Context

▪ Lattice QCD simulates the strong interaction 

▪ Iterative multigrid techniques on regular (4D or 5D) lattices

▪ Core component: Apply Dirac operator 𝐷 to quark-field vector 

Ψ

▪ Domain Wall (DW) formulation: quark field lives on 4D 

boundary of a 5D space-time volume 𝑉4 × 𝐿𝑠

2021-08-12A64FX Symposium   |    Georg Hager 28
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DW stencil kernel (simplified)

• “Grid” lattice QCD framework

• Uses SVE intrinsics

• Data type: double complex
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Complex numbers data layout choice

RIRI (standard)

RRII
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Observed performance 

▪ Starting point: RIRI layout, ACLE intrinsics, GCC/FCC

▪ 1320 flops/LUP (theoretical)

▪ Measured code balance: 1500 byte/LUP

▪ A64FX (FX1000): 𝐵𝑚 = 0.25
byte
flop

→ expect memory bound

𝐵𝑐 ≈ 1.14
byte

flop
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Layer Conditions (LC) analysis

▪ LC determine traffic to/from different caches (𝑖) of size 𝑠𝑖
▪ 𝑤 = 2: write-allocate factor (would be 1 if WA evasion applies)

▪ RIRI (RRII) layout has 𝑑 = 1 (𝑑 = 2)
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SIMD-friendly data layout

▪ One partition per SIMD lane

▪ Partition size:

𝐿𝑥 × 𝐿𝑦 ×
𝐿𝑧
2
×
𝐿𝑡
2
× 𝐿𝑠

▪ → SIMD makes LCs more 

stringent (need more cache to 

fulfill)



2021-08-12 34A64FX Symposium   |    Georg Hager

LC effect

Measurement of code balance with 𝐿_𝑠 = 8

244 × 8 lattice
LCz breaks @ L2

LCy breaks @ L2

LCy breaks @ L2
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Summary of optimizations for DW

▪ Software prefetching decreases L2 data volume

▪ -O1 makes compiler obey the ordering hints in the 

computational kernel (more efficient OoO execution)

▪ RRII data layout

▪ Prevents use of complex arithmetic instructions fcmla/fcadd

▪ Removes imbalance between FLA and FLB ports in the core

▪ Some register spills occur, but still better than RIRI

▪ Measurement falls short of ECM prediction by 2.3x (GCC) or 3.1x (FCC)
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DW kernel optimizations and ECM model
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CMG performance RIRI vs. RRII

▪ RRII saturates already at 8 cores

▪ Sharing across cores in L2 gives slight increase @ 12 cores
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Comparison with other architectures

RIRI
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Summary

▪ECM model constructed for single-core performance of A64FX 

▪Partially overlapping memory hierarchy → high single-core memory 

bandwidth (even more so with large pages)

▪ If performance is bad, the single-core performance is usually the 

culprit

▪SpMV requires proper data format for efficient single-core execution

▪DW kernel benefits from prefetching and OoO improvements

▪Performance modeling is invaluable for navigating optimization 

efforts



Thank You.


