
Tasking in OpenMP 5.0
Christian Terboven <terboven@itc.rwth-aachen.de>

June 22nd, 2021
NHR PerfLab Seminar Series

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES2

What is OpenMP?

• De-facto standard Application Programming Interface (API) to write
shared memory parallel
applications in C,
C++, and Fortran

• Consists of Compiler Directives,
Runtime routines
and Environment
variables

• Version 5.0 has been released
at SC 2018

• Version 5.1 has been released
at SC 2020

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES3

What is OpenMP?

• De-facto standard Application Programming Interface (API) to write
shared memory parallel
applications in C,
C++, and Fortran

• Consists of Compiler Directives,
Runtime routines
and Environment
variables

• Version 5.0 has been released
at SC 2018

• Version 5.1 has been released
at SC 2020

Parallel Region

WorksharingTasking

Memory Management Accelerators

Vectorization

Motivation

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES5

Sudoko for Lazy Computer Scientists

• Lets solve Sudoku puzzles with brute multi-core force

 (1) Search an empty field

 (2) Try all numbers:
 (2 a) Check Sudoku

 If invalid: skip
 If valid: Go to next field

 Wait for completion

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES6

Parallel Brute-force Sudoku

• This parallel algorithm finds all valid solutions

 (1) Search an empty field

 (2) Try all numbers:
 (2 a) Check Sudoku

 If invalid: skip
 If valid: Go to next field

 Wait for completion

first call contained in a
#pragma omp parallel
#pragma omp single
such that one tasks starts
the execution of the algor.

#pragma omp task
needs to work on a new
copy of the Sudoku board

#pragma omp taskwait
wait for all child tasks

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES7

First Performance Evaluation

• First Performance Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32
0

1

2

3

4

5

6

7

8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

#threads

R
u

n
tim

e
 [

se
c]

 f
o

r
1

6
x1

6

S
p

e
e

d
u

p

Is this the best
we can do?

Tasking Basics

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES9

What is a task in OpenMP?

• Tasks are work units whose execution
- may be deferred or…
- … can be executed immediately

• Tasks are composed of
- code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

• Tasks are created…
… when reaching a parallel region  implicit tasks are created (per thread)
… when encountering a task construct  explicit task is created
… when encountering a taskloop construct  explicit tasks per chunk are created
… when encountering a target construct  target task is created

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES10

Tasking execution model

• Supports unstructured parallelism
- unbounded loops

- recursive functions

• Several scenarios are possible:
- single creator, multiple creators, nested tasks (tasks & WS)

• All threads in the team are candidates to execute tasks

while (<expr>) {
 ...
}

void myfunc(<args>)
{
 ...; myfunc(<newargs>); ...;
}

Task pool

Parallel Team

#pragma omp parallel
#pragma omp master
while (elem != NULL) {
 #pragma omp task
 compute(elem);
 elem = elem->next;
}

• Example (unstructured parallelism)

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES11

!$omp task [clause[[,] clause]...]
…structured-block…
!$omp end task

Synchronization

Cutoff
Strategies

Data
Environment

The task construct

• Deferring (or not) a unit of work (executable for any member of the team)

Where clause is one of:  if(scalar-expression)

 mergeable

 final(scalar-expression)

 depend(dep-type: list)

 untied

 priority(priority-value)

 affinity(list)

 private(list)

 firstprivate(list)

 shared(list)

 default(shared | none)

 in_reduction(r-id: list)

 allocate([allocator:] list)

 detach(event-handler)

#pragma omp task [clause[[,] clause]...]
{structured-block}

Task Scheduling
Miscellaneous

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES12

The taskloop Construct

• Task generating construct: decompose a loop into chunks, create a task for each loop chunk

Where clause is one of:

!$omp taskloop [clause[[,] clause]…]
…structured-do-loops…
!$omp end taskloop

Scheduler (R/H)

Cutoff
Strategies

Data
Environment

 if(scalar-expression)

 final(scalar-expression)

 mergeable

 untied

 priority(priority-value)

 collapse(n)

 nogroup

 allocate([allocator:] list)

 shared(list)

 private(list)

 firstprivate(list)

 lastprivate(list)

 default(sh | pr | fp | none)

 reduction(r-id: list)

 in_reduction(r-id: list)

 grainsize(grain-size)

 num_tasks(num-tasks)

#pragma omp taskloop [clause[[,] clause]…]
{structured-for-loops}

Chunks/Grain

Miscellaneous

Task Synchronization

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES14

• The taskwait directive (shallow task synchronization)
- It is a stand-alone directive

- wait on the completion of child tasks of the current task; just direct children, not all descendant tasks; includes
an implicit task scheduling point (TSP)

Task synchronization: taskwait directive

#pragma omp taskwait

#pragma omp parallel
#pragma omp single
{
 #pragma omp task
 {
 #pragma omp task
 { … }
 #pragma omp task
 { … …}
 #pragma omp taskwait
 }
} // implicit barrier will wait for C.x C.1 C.2

wait for…

A

: A

{ … #C.1; #C.2; …} B C

: B

: C

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES15

Task synchronization: taskgroup construct

• The taskgroup construct (deep task synchronization)
- attached to a structured block; completion of all descendants of the current task; TSP at the end

- where clause (could only be): reduction(reduction-identifier: list-items)

#pragma omp taskgroup [clause[[,] clause]...]
{structured-block}

#pragma omp parallel
#pragma omp single
{
 #pragma omp taskgroup
 {
 #pragma omp task
 { … }
 #pragma omp task
 { … #C.1; #C.2; …}

 } // end of taskgroup
}

wait for…

B C

C.1 C.2

A

:B

:C

: A

Task Scheduling

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES17

Task scheduling: taskyield directive

• Task scheduling points (and the taskyield directive)
- tasks can be suspended/resumed at TSPs  some additional constraints to avoid deadlock problems
- implicit scheduling points (creation, synchronization, ...)
- explicit scheduling point: the taskyield directive

• Scheduling [tied/untied] tasks: example#pragma omp taskyield

#pragma omp parallel
#pragma omp single
{
 #pragma omp task
 {
 foo();
 #pragma omp taskyield
 bar()
 }
}

single

foo()

bar(
)

untied:

single

foo()
bar(

)tied:

untied

(default)

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES18

Task reductions (using taskgroup)

• Reduction operation
- perform some forms of recurrence calculations
- associative and commutative operators

• The (taskgroup) scoping reduction clause

- Register a new reduction at [1]
- Computes the final result after [3]

• The (task) in_reduction clause [participating]

- Task participates in a reduction operation [2]

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp taskgroup \
 task_reduction(+: res)
 { // [1]
 while (node) {
 #pragma omp task in_reduction(+: res) \
 firstprivate(node)
 { // [2]
 res += node->value;
 }
 node = node->next;
 }
 } // [3]
 }
}

#pragma omp task in_reduction(op: list)
{structured-block}

#pragma omp taskgroup task_reduction(op: list)
{structured-block}

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES19

Task reductions (+ modifiers)

• Reduction modifiers
- Former reductions clauses have been extended
- task modifier allows to express task reductions
- Registering a new task reduction [1]
- Implicit tasks participate in the reduction [2]
- Compute final result after [4]

• The (task) in_reduction clause [participating]

- Task participates in a reduction operation [3]

int res = 0;
node_t* node = NULL;
...
#pragma omp parallel reduction(task,+: res)
{ // [1][2]
 #pragma omp single
 {
 #pragma omp taskgroup
 {
 while (node) {
 #pragma omp task in_reduction(+: res) \
 firstprivate(node)
 { // [3]
 res += node->value;
 }
 node = node->next;
 }
 }
 }
} // [4]

#pragma omp task in_reduction(op: list)
{structured-block}

Task Dependencies

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES21

What’s in the spec: a bit of history

• The depend clause was added to the
target constructs

• Support for doacross loops

OpenMP 4.5

• The depend clause was added
to the task construct

OpenMP 4.0

• lvalue expressions in the depend clause
• New dependency type: mutexinoutset
• Iterators were added to the depend clause
• The depend clause was added to the taskwait
• Dependable objects

OpenMP 5.0

• New dependency type:
inoutset

OpenMP 5.1

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES22

What’s in the spec: sema depend clause (1)

• A task cannot be executed until all its predecessor tasks are completed

• If a task defines an in dependence over a variable
- the task will depend on all previously generated sibling tasks that reference at least one of the list items in an
out or inout dependence

• If a task defines an out/inout dependence over a variable
- the task will depend on all previously generated sibling tasks that reference at least one of the list items in an
in, out or inout dependence

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES23

What’s in the spec: sema depend clause (1)

• A task cannot be executed until all its predecessor tasks are completed

• If a task defines an in dependence over a variable
- the task will depend on all previously generated sibling tasks that reference at least one of the list items in an
out or inout dependence

• If a task defines an out/inout dependence over a variable
- the task will depend on all previously generated sibling tasks that reference at least one of the list items in an
in, out or inout dependence

int x = 0;
#pragma omp parallel
#pragma omp single
{
 #pragma omp task depend(inout: x) //T1
 { ... }

 #pragma omp task depend(in: x) //T2
 { ... }

 #pragma omp task depend(in: x) //T3
 { ... }

 #pragma omp task depend(inout: x) //T4
 { ... }
}

T
1

T
2

T
3

T
4

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES24

What’s in the spec: sema depend clause (2)

• Set types: inoutset & mutexinoutset

int x = 0, y = 0, res = 0;
#pragma omp parallel
#pragma omp single
{
 #pragma omp task depend(out: res) //T0
 res = 0;

 #pragma omp task depend(out: x) //T1
 long_computation(x);

 #pragma omp task depend(out: y) //T2
 short_computation(y);

 #pragma omp task depend(in: x)
 res += x;

 #pragma omp task depend(in: y)
 res += y;

 #pragma omp task depend(in: res) //T5
 std::cout << res << std::endl;
}

T
3

T
4

T
5

T
1

T
2

T
0

depend(mutexinoutset: res) //T3depend(inout: res) //T3

depend(inout: res) //T4depend(mutexinoutset: res) //T4

T
3

T
4

1. inoutset property: tasks with a mutexinoutset
dependence create a cloud of tasks (an inout set) that
synchronizes with previous & posterior tasks that
dependent on the same list item

2. mutex property: Tasks inside the inout set can be
executed in any order but with mutual exclusion

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES25

Advanced features: deps on taskwait

• Adding dependences to the taskwait construct
- Using a taskwait construct to explicitly wait for some predecessor tasks

 Syntactic sugar!

int x = 0, y = 0;
#pragma omp parallel
#pragma omp single
{
 #pragma omp task depend(inout: x) //T1
 x++;

 #pragma omp task depend(in: y) //T2
 std::cout << y << std::endl;

 #pragma omp taskwait depend(in: x)

 std::cout << x << std::endl;
}

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES26

Advanced features: dependable objects (1)

• Offer a way to manually handle dependences
- Useful for complex task dependences
- It allows a more efficient allocation of task dependences
- New omp_depend_t opaque type
- 3 new constructs to manage dependable objects

 #pragma omp depobj(obj) depend(dep-type: list)
 #pragma omp depobj(obj) update(dep-type)
 #pragma omp depobj(obj) destroy

int x = 0;
#pragma omp parallel
#pragma omp single
{
 omp_depend_t obj;
 #pragma omp depobj(obj) depend(inout: x)

 #pragma omp task depend(depobj: obj) //T1
 x++;

 #pragma omp depobj(obj) update(in)

 #pragma omp task depend(depobj: obj) //T2
 std::cout << x << std::endl;

 #pragma omp depobj(obj) destroy
}

int x = 0;
#pragma omp parallel
#pragma omp single
{
 #pragma omp task depend(inout: x) //T1
 x++;

 #pragma omp task depend(in: x) //T2
 std::cout << x << std::endl;
}

T1

T2

Clauses to optimize Task Scheduling

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES28

Task scheduling: programmer’s hints

• Programmers may specify a priority value when creating a task

- pvalue: the higher  the best (will be scheduled earlier)
- once a thread becomes idle, gets one of the highest priority tasks

#pragma omp parallel
#pragma omp single
{
 for (i = 0; i < SIZE; i++) {
 #pragma omp task priority(1)
 { code_A; }
 }
 #pragma omp task priority(100)
 { code_B; }
 ...
}

#pragma omp task priority(pvalue)
{structured-block}

Task pool
priority-aware

Parallel Team

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES29

affinity clause

• New clause: #pragma omp task affinity (list)
- Hint to the runtime to execute task closely to physical data location
- Clear separation between dependencies and affinity

• Expectations:
- Improve data locality / reduce remote memory accesses
- Decrease runtime variability

• Still expect task stealing
- In particular, if a thread is under-utilized

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES30

Selected LLVM implementation details

Encounter
task region …

Task with
data

affinity?

Push to
local

queue

Location
for data

reference in
map?

Identify NUMA
domain where
data is stored

Select thread
pinned to

NUMA domain

Save
{reference,

location} in map

Push task into
other threads

queue
end

Yes

No

Yes

No

A map is introduced to
store location information
of data that was previously
used

Jannis Klinkenberg, Philipp Samfass,
Christian Terboven, Alejandro Duran,
Michael Klemm, Xavier Teruel, Sergi
Mateo, Stephen L. Olivier, and
Matthias S. Müller. Assessing Task-
to-Data Affinity in the LLVM
OpenMP Runtime. Proceedings of
the 14th International Workshop on
OpenMP, IWOMP 2018. September
26-28, 2018, Barcelona, Spain.

Do you still remember the Motivation?

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES32

Performance Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32
0

1

2

3

4

5

6

7

8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

#threads

R
u

n
tim

e
 [

se
c]

 f
o

r
1

6
x1

6

S
p

e
e

d
u

p

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES33

Performance Analysis

Duration: 0.16 sec

Duration: 0.047 sec

Event-based profiling provides a
good overview :

Every thread is executing ~1.3m tasks…

… in ~5.7 seconds.
=> average duration of a task is ~4.4 μs

Tracing provides more details:

Duration: 0.001 sec

Duration: 2.2 μs

Tasks get much smaller
down the call-stack.

lvl 6

lvl 12

lvl 48

lvl 82

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES34

Performance Evaluation (with cutoff)

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32
0

1

2

3

4

5

6

7

8

0

2

4

6

8

10

12

14

16

18

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding Intel C++ 13.1, scatter binding, cutoff
speedup: Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding, cutoff

#threads

R
u

n
tim

e
 [

se
c]

 f
o

r
1

6
x1

6

S
p

e
e

d
u

p

Tasking in OpenMP 5.0 | Christian Terboven | RWTH@NHR4CES35

What did I leave out?

• Cancellation: Cancellation (since OpenMP 4.0) provides a best-effort approach to terminate OpenMP regions
- Best-effort: not guaranteed to trigger termination immediately
- Triggered “as soon as” possible

• Asynchronous API Interaction: This provides a mechanism to marry asynchronous APIs with the parallel task
model of OpenMP
- How to synchronize completions events with task execution?

	Slide 1
	What is OpenMP?
	What is OpenMP?
	Slide 4
	Sudoko for Lazy Computer Scientists
	Parallel Brute-force Sudoku
	First Performance Evaluation
	Slide 8
	What is a task in OpenMP?
	Tasking execution model
	The task construct
	The taskloop Construct
	Slide 13
	Task synchronization: taskwait directive
	Task synchronization: taskgroup construct
	Slide 16
	Task scheduling: taskyield directive
	Task reductions (using taskgroup)
	Task reductions (+ modifiers)
	Slide 20
	What’s in the spec: a bit of history
	What’s in the spec: sema depend clause (1)
	What’s in the spec: sema depend clause (1)
	What’s in the spec: sema depend clause (2)
	Advanced features: deps on taskwait
	Advanced features: dependable objects (1)
	Slide 27
	Task scheduling: programmer’s hints
	affinity clause
	Selected LLVM implementation details
	Slide 31
	Performance Evaluation
	Performance Analysis
	Performance Evaluation (with cutoff)
	What did I leave out?

