
HPC Café – Make (Build automation)
Jan Eitzinger, 08.06.2021

08.06.2021 2HPC-Cafe: Make build automation

What is this good for?

Software development is hard!

Software configuration management
 Identification, control, status and auditing of configuration
 Build management
 Process management
 Environment management
 Facilitate teamwork
 Defect tracing
 …

Aspect of software
engineering

Topic of today:
Build systems

08.06.2021 3HPC-Cafe: Make build automation

What are the benefits?
 Allow to compile software without knowledge about

 Toolchain details
 Source code internals
 Target system internals

 Reduce build time
 Only build required sources for current configuration
 Only recompile changed source files on rebuilds
 Enable parallel builds

 Deterministic compilation for reproducible builds
 Select and configure a set of external dependencies that is compatible
 Configure the source files for specific feature sets
 Select a compatible set of source files

Automation

Configuration

Portability

Speedup

08.06.2021 4HPC-Cafe: Make build automation

Some history and classification
 Earliest build systems: Collection of OS specific shell scripts
 First Make tool (Stuart Feldman, Bell Labs 1976): POSIX standard!
Multiple implementations available

 BSD Make
 GNU Make (de-facto standard on Linux and MacOS)
 Microsoft nmake (Part of Visual Studio)

Efforts to replace Make
 Scons (Python application)
 Rake (Ruby application)
 Ninja (Google)
 Apache Ant (Java application)

Modern languages bring their own build tool: Golang, Rust

Build file generators
 GNU Automake
 CMake (Kitware, 2000)
 qmake (QT)

08.06.2021 5HPC-Cafe: Make build automation

Core concept
 Make is controlled by Makefiles

 A Makefile consists of rules:
target : prerequisites
<TAB> recipe

 Target and prerequisites are assumed to be files!
 In some cases targets are not connected to a file: PHONY targets

Name of file to
generate

Input file(s) used
to create target

Action to carry out

…

08.06.2021 6HPC-Cafe: Make build automation

Simple Makefile
edit : main.o kbd.o command.o display.o

cc -o edit main.o kbd.o command.o display.o

main.o : main.c defs.h
cc -c main.c –o main.o

kbd.o : kbd.c defs.h command.h
cc -c kbd.c –o kbd.o

command.o : command.c defs.h command.h
cc -c command.c –o command.o

display.o : display.c defs.h buffer.h
cc -c display.c –o display.o

clean :
rm edit main.o kbd.o command.o display.o

Perform action if target
does not exist or a

prerequisite is more
recent than target

Target with no file and
no prerequisites

 $ make will generate the
first target in Makefile, in
this case edit

 $ make <target> builds
just the specified target

08.06.2021 7HPC-Cafe: Make build automation

Using variables (and behind the scenes)
OBJECTS = main.o kbd.o command.o display.o
edit : $(OBJECTS)

cc -o edit $(OBJECTS)

main.o : main.c defs.h
cc -c main.c

kbd.o : kbd.c defs.h command.h
cc -c kbd.c

command.o : command.c defs.h command.h
cc -c command.c

display.o : display.c defs.h buffer.h
cc -c display.c

clean :
rm edit $(OBJECTS)

Make operates in two phases
1. Read all Makefiles and build

dependency graph of all
targets and their prerequisites

2. Use data to determine which
targets need to be updated
and run the recipes necessary
to update them

08.06.2021 8HPC-Cafe: Make build automation

Make it simpler (using implicit rules)
OBJECTS = main.o kbd.o command.o display.o
edit : $(OBJECTS)

cc -o edit $(OBJECTS)

main.o : defs.h
kbd.o : defs.h command.h
command.o : defs.h command.h
display.o : defs.h buffer.h

.PHONY : clean
clean :

rm edit $(OBJECTS)

Make deduces how targets are
built
 Find main.c and match C rule
 Use builtin recipe for C:
$(CC) $(CPPFLAGS) $(CFLAGS) –c

The VPATH variable specifies a
list of directories that Make should
search for targets and
prerequisites.

$(OBJECTS) : def.h
kbd.o command.o : command.h
display.o : buffer.h

Prevent target to
be omited if a file

named clean exists

08.06.2021 9HPC-Cafe: Make build automation

Pattern rules (write your own implicit rules)
Rule to compile x.c files into x.o files
%.o : %.c

$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

Commonly used automatic variables
$@ file name of the target of the rule
$< name of the first prerequisite
$* stem with which an implicit rule matches

Automatic variables

08.06.2021 10HPC-Cafe: Make build automation

How to set variables
 Shell environment variables are also valid inside Makefile
 Make sets many automatic variables
 Variable names can contain function and variable references

 To set a variable if not already set use
FOO ?= bar
 Shell assignment operator != to set variable to script output
file_list != find . -name '*.c’
file_list = $(shell find . -name '*.c’)

 Long lines can be split with a backslash (\) character

Equivalent function

08.06.2021 11HPC-Cafe: Make build automation

Two types of variables
Recursively expanded variables
CFLAGS = $(include_dirs) –O
include_dirs = -Ifoo –Ibar

Disadvantages:
 CFLAGS = $(CFLAGS) –O

 If functions are referenced in definitions execution will get very slow

Simply expanded variables
x := foo
y := $(x) bar
x := later

Expands to:
-Ifoo -Ibar -O

Error: Infinite loop!
+= operator is a

possible solution!

Contains values as of
the time this variable

was defined

Rules for when expansion
happens, during parsing or
when using a variable:
https://www.gnu.org/software/
make/manual/html_node/Read
ing-Makefiles.html

https://www.gnu.org/software/make/manual/html_node/Reading-Makefiles.html

08.06.2021 12HPC-Cafe: Make build automation

Functions (Details on usage in DEMO)
 Syntax: $(function arguments)

 Functions allow to do portable text processing (and more) in a Makefile
Commonly used functions:

$(patsubst pattern,replacement,text)

$(var:suffix=replacement)

$(filter pattern…,text)

$(filter-out pattern…,text)

$(wildcard pattern)

$(error text…) $(warning text…) $(info text…)

Many functions operate
on whitespace-separated
words in text !

Useful for debugging Make

Short version for
replacing file suffixes!

08.06.2021 13HPC-Cafe: Make build automation

Conditionals

ifneq ($(CC),gcc)
libs = $(normal_libs)

else
libs = $(libs_for_gcc)

endif

 Conditionals act on a textual level (in contrast to syntactic level)
 Supported variants: ifeq, ifneq, ifdef, ifndef, else, endif

ifeq ($(strip $(CC)),)
CC = gcc

endif
ifdef foo

frobozz = yes
endif

Check if variable is
set (not if it is empty)

Remove surrounding whitespaces

08.06.2021 14HPC-Cafe: Make build automation

Requirements for a production Makefile
 Generic: No adaption necessary when adding source files
 Flat directory structure based on simple naming conventions
 Configurable locations of source and header files
 Automatic dependency generation
 Clear output with focus on warnings and errors
 Separation of build configuration and Makefile
 Support for multiple tool chains / build configurations
 Multiple simultaneous builds possible in same directory
 Support C, C++ and Fortran
 Support mixed language applications

08.06.2021 15HPC-Cafe: Make build automation

Demo
 GitHub Repository with Makefile templates

 Real world examples based on above template

https://github.com/RRZE-HPC/Makefile-template

https://github.com/RRZE-HPC/likwid

https://github.com/RRZE-HPC/MD-Bench

https://github.com/RRZE-HPC/TheBandwidthBenchmark

https://github.com/RRZE-HPC/HPCCG-F90
https://aoterodelaroza.github.io/devnotes/modern-fortran-makefiles/

https://aoterodelaroza.github.io/devnotes/modern-fortran-makefiles/

08.06.2021 16HPC-Cafe: Make build automation

Tool paths and library dependencies
 For large projects you may need specific compiler or tool versions
 Non-standard libraries may be required to build the application
 Finding the correct libraries and their configuration can be tedious

 Those issues are not automatically addressed by Make!
 But they can be solved within a Makefile strategy

Other tools try to fill the gap: GNU autotools, GNU libtool, CMake, …

Script languages and modern languages (Golang, Rust) come with an
integrated package manager to address this problem!

08.06.2021 17HPC-Cafe: Make build automation

Isn’t this oldfashioned? What about CMake?
 CMake is a popular software for building, packaging and installing software
 CMake is not a build system on its own but generates native build files
 CMake can be seen as a portable sucessor to GNU autotools

Features
 Can handle complicated directory structures
 Can locate system-wide and user-specified executables, files and libraries
 Comes with a graphical configuration editor
 Can generate project files for many IDEs as well as build scripts for native build

systems

My opinion: CMake adds complexity and introduces problems and does for
90% of projects not solve any pressing problems!

08.06.2021 18HPC-Cafe: Make build automation

Best practice recommendation

Keep it simple stupid!

 Make provides a robust and portable environment

 You can find simple solutions for most build requirements

 Handle dependencies in a transparent and explicit way

 Automatic never comes for free!

08.06.2021 19HPC-Cafe: Make build automation

Outlook and further information
 GNU Make is a build automation tool that can meet any requirement
 As always it is up to you to use this powerful tool in a sensible way
 Things not covered in this talk

 Recursive Make
 Advanced topics for writing rules and recipes
 Integration of Make in editors and IDEs
 Strategies for install and reinstall targets
 Dealing with archive files

 The one stop for documentation of Make are the official info pages:
https://www.gnu.org/software/make/manual/html_node/index.html

Topics for next HPC-Café
July: KONWIHR + NHR News
August: No HPC-Café!

https://www.gnu.org/software/make/manual/html_node/index.html

	HPC Café – Make (Build automation)
	What is this good for?
	What are the benefits?
	Some history and classification
	Core concept
	Simple Makefile
	Using variables (and behind the scenes)
	Make it simpler (using implicit rules)
	Pattern rules (write your own implicit rules)
	How to set variables
	Two types of variables
	Functions (Details on usage in DEMO)
	Conditionals
	Requirements for a production Makefile
	Demo
	Tool paths and library dependencies
	Isn’t this oldfashioned? What about CMake?
	Best practice recommendation
	Outlook and further information

