

Performance Engineering for Sparse Matrix-Vector Multiplication

C.L. Alappat, G. Hager, <u>G. Wellein</u> Erlangen National Center for High Performance Computing (NHR@FAU)

Motivation – Sparse Matrix Multiplication

- SpMV: Multiplication of a sparse matrix with a dense vector
- Core component of sparse algebra alogrithms used in
 - Quantum Physics / Chemsitry / Computing
 - Engineering, e.g. CFD or Structural Mechanics
 - Clustering algorithms

- (Vendor) optimized libraries available: Intel MKL, NVIDIA cuSPARSE, SparseMAGMA,...
- This talk: Node-level implementation of SpMV for "large" matrices

• • • •

Motivation – Sparse Matrix Vector Multiplication

- Easy to parallelize but sparse irregular data structures / accesses
- SpMV Performance ← > Strongly Memory Bound (high code balance)
- Sparse data format for A(:,:)
 - **CRS**, COO,...
 - ELLPACK, hybrid
 - SELL-C-σ, SELL-P
 - GPU formats, e.g. [1]

[1] S. Filippone et al.: Sparse Matrix-Vector Multiplication on GPGPUs. ACM TOMS (2017) https://doi.org/10.1145/3017994

Motivation – Sparse Matrix Vector Multiplication

- Improve code balance of SpMV-algorithms
 - Kernel fusion, e.g. HPCG:

Algorithm 2. HPCG				
1: 1	while $k \leq iter \& r_{norm}/r_0 > tol c$	lo		
2:	z = MG(A,r)	- > MG sweep		
3:	oldrtz = rtz			
4:	$rtz = \langle r, z angle$	- > DOT		
5:	$\beta = rtz/oldrtz$			
6:	$p = \beta * p + z$	- > WAXPBY		
7:	Ap = A * p	- > SpMPV		
8:	$pAp = \langle p, Ap \rangle$	- > DOT		
9:	$\alpha = r \iota z / p A p$			
10:	$x = x + \alpha * p$	- > WAXPBY		
11:	$r = r - \alpha * Ap$	- > WAXPBY		
12:	$r_{norm} = \langle r, r angle$	- > DOT		
13:	$r_{norm} = sqrt(r_{norm})$			
14:	k + +			

Sparse Matrix Multiple Vector Multiplication

Gropp et al.: Towards Realistic Performance Bounds for Implicit CFD Codes ParCFD 1999. <u>https://wgropp.cs.illinois.edu/bib/papers/pdata/1999/pcfd99/gkks.ps</u>

 Both, e.g. Chebyshev Filter Computation for eigenvalue computations: Kreutzer et al.: Chebyshev Filter Diagonalization on Modern Manycore Processors and GPGPUs. ISC 2018. DOI: <u>https://dx.doi.org/10.1007/978-3-319-92040-5_17</u>

Motivation – Sparse Matrix Vector Multiplication

THIS TALK: Improve code balance of SpMV-algorithms

Exploit symmetry:

$$A = A^t$$

- Many problems in physics, chemistry, engineering
- Problem: Efficient parallelisation
- Cache blocking for Sparse Matrix Power kernels: $y = A^p x$
 - Matrix polynomials, asynchr. Krylov Methods,...
 - Problem: Data locality in "sparse matrix-matrix multiply"

Approach: Recursive Algebraic Coloring Engine (RACE)

- SpMV Performance Model
- Exploiting Matrix Symmetry: SymmSpMV
- RACE: Hardware efficient SymmSpMV parallelization
- RACE: Hardware efficient Sparse Matrix Powers

SpMV Performance Model – A roofline type approach

$$P_{SpMV} = I * b_S = \frac{b_S}{B_C}$$

R.W. Hockney and I.J. Curington: Parallel Computing 10, (1989). <u>DOI: 10.1016/0167-8191(89)90100-2</u> S. Williams: UCB Tech. Re. No. UCB/EECS-2008-164. PhD thesis (2008)

Gropp et al.: ParCFD1999. <u>https://wgropp.cs.illinois.edu/bib/papers/pdata/1999/pcfd99/gkks.ps</u> Kreutzer et al.: SIAM SISC **36**(5), C401–C423 (2014). <u>DOI: 10.1137/130930352</u>,

SpMV node performance model – CRS (1)

do i = 1, N_r	real*8	val[N _{nz}]	7
do $j = row_ptr(i), row_ptr(i+1) - 1$	integer*4	col_idx[N _{nz}]	-A(:,:)
$C(i) = C(i) + val(j) * B(col_idx(j))$	integer*4	row_ptr[N _r]	
enddo	real*8	C[N _r]	
enddo	real*8	B[N _c]	

Min. load traffic [B]: $(8 + 4) N_{nz} + (4 + 8) N_r + 8 N_c$ $8 N_c$ Nonzeros perMin. store traffic [B]: $8 N_r$ row $(N_{nzr} = \frac{N_{nz}}{N_r})$ Total FLOP count [F]: $2 N_{nz}$ orColumn $(N_{nzc} = \frac{N_{nz}}{N_c})$ column $(N_{nzc} = \frac{N_{nz}}{N_c})$

$$B_{C,min} = \frac{12 N_{nz} + 20 N_r + 8 N_c}{2 N_{nz}} \frac{B}{F} =$$

Lower bound for code balance: $B_{C,min} \ge 6 \frac{B}{F} \rightarrow I_{max} \le \frac{1}{6} \frac{F}{B}$

SpMV node performance model – CRS (2)

do i = 1,
$$N_r$$

do j = row_ptr(i), row_ptr(i+1) - 1
 $C(i) = C(i) + val(j) * B(col_idx(j))$
enddo
enddo
 $B_{C,min} = \frac{12 + 20/N_{nzr} + 8/N_{nzc}}{2} \frac{B}{F}$
 $B_C(\alpha) = \frac{12 + 20/N_{nzr} + 8\alpha}{2} \frac{B}{F}$
 $B_C(\alpha) = \frac{12 + 20/N_{nzr} + 8\alpha}{2} \frac{B}{F}$
Consider square matrices: $N_{nzc} = N_{nzr}$ and $N_c = N_r$
Note: $B_C(^1/N_{nzr}) = B_{C,min}$

SPCL_Bcast

Gerhard Wellein (NHR@FAU)

SpMV node performance model – CRS (3)

- Value of α depends on matrix structure $\leftarrow \rightarrow$ cache subsystem
 - Size of LLC > sizeof(B) $\rightarrow \alpha \approx 1/_{N_{nzc}}$
 - $\alpha = 1$: Each load to B main memory access
 - $\alpha > 1$: Highly erratic access
- Determine by measuring the balance, i.e. main memory data volume

$$B_{C}(\alpha) = \left(6 + 4\alpha + \frac{10}{N_{nzr}}\right) \frac{B}{F} = \frac{V_{meas}}{N_{nz} \cdot 2 F} \quad (= B_{C}^{meas})$$

- Maximum SpMV performance (roofline): $P_{SpMV} = \frac{b_S}{B_C}$
- More technical details: Node-level Performance Engineering (tutorial)

SpMV node performance model – CLX-AP

SpMV performance model – GPU lightspeed

H. Anzt, et al; 2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), GA, USA, 2020, pp. 26-38, doi: 10.1109/PMBS51919.2020.00009.

SPCL_Bcast

Exploiting Matrix Symmetry: SymmSpMV

FRIDERIC CONTRACTOR

Symmetric SpMV – serial execution

Store only upper (lower) triangular part of symmetric sparse matrix

```
do i = 1, N_r
do j = row_ptr(i), row_ptr(i+1) - 1
C(i) = C(i) + val(j) * B(col_idx(j))
C(col_idx(j)) = C(col_idx(j)) + val(j) * B(j)
enddo
enddo
```


Symmetric SpMV – parallelisation: write conflicts

Symmetric SpMV – parallelisation approaches

- Technical solutions (OpenMP)
 - Locks (omp_set_lock (&lock))
 - Thread-local copies of result vector (reduction (C(:):+))
- Special data formats
 - Compressed Sparse Blocks [1]
 - Recursive Sparse Blocks [2]

Block partitioning of audikw_1 matrix for 16 threads as done by RSB. Picture source [2].

[1] Buluç et al., Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks. SPAA'09, 2009, https://doi.org/10.1145/1583991.1584053

[2] Michele Martone, Efficient multithreaded untransposed, transposed or symmetric sparse matrix-vector multiplication with the Recursive Sparse Blocks format, Parallel Computing, 2014, <u>https://doi.org/10.1016/j.parco.2014.03.008</u>

Symmetric SpMV – parallelisation approaches

- D2-coloring of undirected graph (representing symmetric sparse matrix)
 - Vertices/columns with same color can be calculated in parallel
 - Same color matrix entries consecutive in memory (matrix reordering)
- Existing methods
 - Multicoloring [1]
 - ABMC [2]

Commonly used strategy for D1 coloring like Gauss-Seidel, ICCG or D2 for KACZ [3]

- Benefits
 - Need no change in data storage format
 - No locking or thread private vectors.

[1] M. T. Jones and P. E. Plassmann, Scalable iterative solution of sparse linear systems, https://doi.org/10.1016/0167-8191(94)90004-3

[2] Iwashita et al., Algebraic block multi-color ordering method for parallel multi-threaded sparse triangular solver in iccg method, https://doi.org/10.1109/IPDPS.2012.51

[3] Galgon et al., On the parallel iterative solution of linear systems arising in the feast algorithm for computing inner eigenvalues,. https://doi.org/10.1016/j.parco.2015.06.005

Symmetric SpMV – thread level parallelisation: MC

$$B_{C,min}^{sym} = \frac{12 + 4/N_{nzr}^{sym} + \mathbf{24} \, \alpha^{sym}}{4} \, \frac{B}{F}$$

Repeatedly accessing complete vectors => α^{sym} may increase!

Symmetric SpMV – thread level parallelisation: MC

Performance

RACE: Hardware efficient SymmSpMV parallelization

C. Alappat, et al. (2020). A Recursive Algebraic Coloring Technique for Hardware-efficient Symmetric Sparse Matrix-vector Multiplication. ACM Trans. Parallel Comput. 7, 3, Article 19 (August 2020). DOI: <u>https://doi.org/10.1145/3399732</u>

Recursive Algebraic Coloring Engine

RACE uses a recursive level based method.

Objectives motivated by hardware efficiency

- Preserve data locality (lower α factor).
- Generate sufficient parallelism to support hardware underneath.
- Reduce synchronization overheads.
- Use simple data format like CRS.

Sample Stencil Matrix and its graph representation

Step 1: Level Construction – BFS

Step 1: Level Construction – Permutation

Step 2: Distance-k coloring

Step 3: Load balancing

5 threads

Just sufficient levels to maintain D2 independency

More levels since n_r on each levels are small

Step 3: Load balancing

Solution: Find more parallelism using Recursion

8 threads

Load imbalance

Parallelism limited by number of levels

Load balancing: Recursion

Load balancing: Recursion

Symmetric SpMV – RACE Perfromance

Performance

Symmetric SpMV – RACE Perfromance

Symmetric SpMV – RACE Perfromance

Speedup of RACE compared to other methods

Method	Min.	Max.	Mean
MC (ColPack 2019)	1.40	13.92	3.52
ABMC (ColPack + METIS v 5.1.0)	0.99	4.89	1.66
RSB (v 1.2.0-rc7)	1.02	2.86	1.44

RACE: Hardware efficient Sparse Matrix Powers

Example: $y = A^{3}x = (A^{3}) x = A(A(Ax))$

C. Alappat, et al. (2021). In preparation

Matrix powers: Concept

Matrix powers: Concept

Sparse Matrix Powers: Performance

SPCL_Bcast

Sparse Matrix Powers: Performance

- Performance Modeling for SpMV@CPU: useful upper performance bounds
- Plenty of room for performance improvement for SpMV based algorithms
- RACE: Hardware-aware approach to extract parallelism and locality in SpMV operations
- Outlook:
 - Integration in distributed memory parallelisation
 - New architectures: A64FX CRS data format no longer sufficient

RACE: <u>https://github.com/RRZE-HPC/RACE</u>

C. L. Alappat, N. Meyer, J. Laukemann, T. Gruber, G. Hager, G. Wellein, and T. Wettig: *ECM* modeling and performance tuning of *SpMV* and *Lattice QCD* on *A64FX*. Preprint: <u>arXiv:2103.03013</u>

C. L. Alappat, J. Laukemann, T. Gruber, G. Hager, G. Wellein, N. Meyer, and T. Wettig: *Performance Modeling of Streaming Kernels and Sparse Matrix-Vector Multiplication on A64FX*. 2020 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS), GA, USA, 2020, pp. 1-7. .DOI: <u>10.1109/PMBS51919.2020.00006</u> Preprint: <u>arXiv:2009.13903</u>

C. L. Alappat, J. Hofmann, G. Hager, H. Fehske, A. R. Bishop, and G. Wellein: *Understanding HPC Benchmark Performance on Intel Broadwell and Cascade Lake Processors*. ISC 2020. LNCS. DOI: <u>10.1007/978-3-030-50743-5_21</u>

Information on test matrices (1)

Table 2. Details of the Benchmark Matrices

Index	Matrix name	Nr	N _{nz}	N _{nzr}	bw	bw _{RCM}
1	crankseg_1* (C)	52,804	10,614,210	201.01	50,388	5,126
2	ship_003*	121,728	8,086,034	66.43	3,659	3,833
3	pwtk*	217,918	11,634,424	53.39	189,331	2,029
4	offshore*	259,789	4,242,673	16.33	237,738	19,534
5	F1	343,791	26,837,113	78.06	343,754	10,052
6	inline_1 (C)	503,712	36,816,342	73.09	502,403	6,002
7	parabolic_fem* (C)	525,825	3,674,625	6.99	525,820	514
8	gsm_106,857*	589,446	21,758,924	36.91	588,744	17,865
9	Fault_639	638,802	28,614,564	44.79	19,988	19,487
10	Hubbard-12* (Q)	853,776	11,098,164	13.00	232,848	38,780
11	Emilia_923	923,136	41,005,206	44.42	17,279	14,672
12	audikw_1	943,695	77,651,847	82.29	925,946	35,084
13	bone010	986,703	71,666,325	72.63	13,016	14,540
14	dielFilterV3real	1,102,824	89,306,020	80.98	1,036,475	25,637
15	thermal2*	1,228,045	8,580,313	6.99	1,226,000	797
16	Serena	1,391,349	64,531,701	46.38	81,578	84,947
17	Geo_1438	1,437,960	63,156,690	43.92	26,018	30,623
18	Hook_1498	1,498,023	60,917,445	40.67	29,036	28,994
19	Flan_1565	1,564,794	117,406,044	75.03	20,702	20,849
20	G3_circuit*	1,585,478	7,660,826	4.83	947,128	5,068
21	Anderson-16.5* (Q)	2,097,152	14,680,064	7.00	1,198,372	24,620
22	FreeBosonChain-18 (Q)	3,124,550	38,936,700	12.46	2,042,975	131,749
23	nlpkkt120	3,542,400	96,845,792	27.34	1,814,521	86,876
24	channel-500x100x100-b050	4,802,000	90,164,744	18.78	600,299	23,766
25	HPCG-192	7,077,888	189,119,224	26.72	37,057	110,017
26	FreeFermionChain-26 (Q)	10,400,600	140,616,112	13.52	5,490,811	434,345
27	Spin-26 (Q)	10,400,600	145,608,400	14.00	709,995	211,828
28	Hubbard-14 (Q)	11,778,624	176,675,928	15.00	3,171,168	425,415
29	nlpkkt200	16,240,000	448,225,632	27.60	8,240,201	240,796
30	delaunay_n24	16,777,216	100,663,202	6.00	16,769,102	32,837
31	Graphene-4096 (C,Q)	16,777,216	218,013,704	13.00	4,098	6,145

 N_r is the number of matrix rows, and N_{nz} is the number of nonzeros. $N_{nzr} = N_{nz}/N_r$ is the average number of nonzeros per row. *bw* and *bw*_{RCM} refet to the matrix bandwidth without and with RCM preprocessing. The letter "C" in the parentheses of the matrix name indicates a corner case matrix that will be discussed in detail, while the letter "C" marks a matrix from quantum physics that is not part of the SuiteSparse Matrix Collection. With an asterisk ('), we have labeled all the matrices that are less than 128 MB, which could potentially lead to some caching effects especially on the Skylake SP architecture.

C. Alappat, et al. (2020). *A Recursive Algebraic Coloring Technique for Hardware-efficient Symmetric Sparse Matrixvector Multiplication*. ACM TOPC 7, 3, Article 19 (August 2020). DOI: <u>https://doi.org/10.1145/3399732</u>

Information on test matrices (2)

TABLE 4 Details of the benchmark matrices. N_r is the number of rows, N_{nz} is the number of nonzeros, and N_{nzr} is the average number of nonzeros per row. Most matrices were taken from the SuiteSparse Matrix Collection [15]. The matrices with * come from other research projects.

Index	Matrix name	N _r	N _{nz}	N _{nzr}
1	scircuit	170,998	958,936	5.61
2	qcd5_4	49,152	1,916,928	39.00
3	pdb1HYS	36,417	4,344,765	119.31
4	Hamrle3	1,447,360	5,514,242	3.81
5	G3_circuit	1,585,478	7,660,826	4.83
6	shipsec1	140,874	7,813,404	55.46
7	pwtk	217,918	11,634,424	53.39
8	kkt_power	2,063,494	14,612,663	7.08
9	Si41Ge41H72	185,639	15,011,265	80.86
10	bundle_adj	513,351	20,208,051	39.36
11	msdoor	415,863	20,240,935	48.67
12	scai1*	3,405,035	24,027,759	7.06
13	Fault_639	638,802	28,614,564	44.79
14	af_shell10	1,508,065	52,672,325	34.93
15	HPCG-128-128-128	2,097,152	55,742,968	26.58
16	Serena	1,391,349	64,531,701	46.38
17	bone010	986,703	71,666,325	72.63
18	audikw_1	943,695	77,651,847	82.28
19	channel-500x100x100-b050	4,802,000	85,362,744	17.78
20	rrze3*	6,201,600	92,527,872	14.92
21	nlpkkt120	3,542,400	96,845,792	27.34
22	delaunay_n24	16,777,216	100,663,202	6.00
23	ML_Geer	1,504,002	110,879,972	73.72
24	FreeFermionChain-26*	10,400,600	140,616,112	13.52
25	Spin-26*	10,400,600	145,608,400	14.00
26	scai2*	22,786,800	160,222,796	7.03

C. L. Alappat et al.: *ECM modeling and performance tuning of SpMV and Lattice QCD on A64FX.* Submitted to CCPE. Preprint: <u>arXiv:2103.03013</u>