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Selection Problem

Given an unsorted sequence of real numbers                                            ,
we want to find the element        such that in the sorted sequence 
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the element       is located in position    . 

We do not necessarily need to sort the complete sequence!

• Statistics (Quantiles)
• Top-𝑘 selection
• Thresholds



General Approach: Partial Sorting 
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Splitters separate buckets
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• We only copy elements of the buckets we are interested in;
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• We only copy elements of the buckets we are interested in;

• In case of identical splitter elements, they are placed in an 
equality bucket;

• If target rank is in an equality bucket, the algorithm can 
terminate early by returning lower bound;

• For sorting the splitters, small input datasets, and the lowest 
recursion level a bitonic sort in registers + shared memory is 
used; 

• Use a binary search tree to sort elements into the buckets;

• Store the bucket indices to avoid recomputation
(also helpful for kernel fusion)



Parallelization & Communication
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• Run SampleSelect using all resources on complete data set;
• Use global atomics to generate bucket counts;

Thread Block Thread BlockThread Block

Thread Block Thread BlockThread Block

…

• Split data set into chunks, assign to thread blocks;
• Each thread block runs bucket count on its data;
• Use a global reduction to get global bucket counts;

Shared Memory AtomicsGlobal Memory Atomics

Global Atomics
Shared Memory Atomics



Experiment Setup
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• 2 distinct GPU architectures
• Input datasets with 216 to 228 elements
• d= 1, 16, 128, 1024, n distinct values
• All results averaged over 10 runs
• Single precision input data

• Comparison against QuickSelect kernel

• QuickSelect and SampleSelect have 
same performance optimization level

• Correctness check using C++ std::nth_element

2013 2017

#44@TOP500 #1@TOP500

NVIDIA K40 NVIDIA V100



Kernel Performance: Global vs. Shared Atomics
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NVIDIA K40 NVIDIA V100

-g : global memory atomics
-s: shared memory atomics

Larger performance variation for QuickSelect as we are more likely to run into the “Worst-Case” performance.



Kernel Performance: Global vs. Shared Atomics
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-g : global memory atomics
-s: shared memory atomics

NVIDIA K40 NVIDIA V100

double precision



Runtime breakdown
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NVIDIA V100
(shared atomics)

NVIDIA K40
(global atomics)

𝑛 = 224, single precision



Kernel Performance: Host vs. Device recursion
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-host: Host launches recursive kernels
-cdp: CUDA dynamic parallelism

NVIDIA A100

double precision



Kernel Optimization: Element Repetition
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Idea: use warp aggregations to mitigate the performance impact from atomic collisions.



Kernel Optimization: Element Repetition
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NVIDIA K40 NVIDIA V100

more collisionsmore collisions

Idea: use warp aggregations to mitigate the performance impact from atomic collisions.



Kernel Performance: What if we needed no atomics?
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NVIDIA A100
with warp-
aggregation

double precision

NVIDIA A100
without warp-
aggregation



Approximate Selection

We do not descend to the lowest level of the recursion tree, 
but limit to one single bucket selection. 
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• Accuracy depends on the number of splitters vs. dataset size
• Accuracy independent of value distribution (works on ranks, only) Select splitter



Approximate Selection

We do not descend to the lowest level of the recursion tree, 
but limit to one single bucket selection. 
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• Accuracy depends on the number of splitters vs. dataset size
• Accuracy independent of value distribution (works on ranks, only)

Test problem: 
• 228 uniformly distributed single precision values
• Approximate selection uses 1 level only
• We report statistics over 10 runs

1024 buckets
512 buckets

256 buckets

128 buckets



Multiple Selection
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Generalization: Select elements at multiple ranks 𝑘1, … , 𝑘𝑚 simultaneously

• Determine which buckets contain 𝑘𝑖 using binary search

• Extract elements from all these buckets simultaneously

• Launch multiple subcalls using CUDA dynamic parallelism
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Generalization: Select elements at multiple ranks 𝑘1, … , 𝑘𝑚 simultaneously

• Determine which buckets contain 𝑘𝑖 using binary search

• Extract elements from all these buckets simultaneously

• Launch multiple subcalls using CUDA dynamic parallelism

• Comparison with QuickSelect and CUB RadixSort

• Input ranks: clustered with 𝑘𝑖 = 2𝑖 (best case)

uniform with 𝑘𝑖 =
𝑖
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Multiple Selection
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Generalization: Select elements at multiple ranks 𝑘1, … , 𝑘𝑚 simultaneously

• Determine which buckets contain 𝑘𝑖 using binary search

• Extract elements from all these buckets simultaneously

• Launch multiple subcalls using CUDA dynamic parallelism

• Comparison with QuickSelect and CUB RadixSort

• Input ranks: uniform with 𝑘𝑖 =
𝑖

#𝑟𝑎𝑛𝑘𝑠
∙ 𝑛 for 𝑛 = 227
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Summary and Outlook

• SampleSelect kernel much faster than QuickSelect

• 36% (single) 48% (double) of experimental 
peak memory bandwidth on NVIDIA V100 

• Approximate selection >2x faster than exact selection

• Multiple selection faster than sorting for up to 128 ranks

From a performance engineering standpoint (overgeneralized take-aways ☺ ):

• Hardware support beats warp-aggregation for atomics

• Shared-memory atomics are blazingly fast

• Host-side kernel launches outperform dynamic parallelism for tail recursion

• Pruning your recursion tree can be worthwile (if you still have enough parallelism left)

Helmholtz Impuls und Vernetzungsfond
VH-NG-1241
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