
Approximate and Exact (Multi-)Selection on GPUs
Tobias Ribizel1, Hartwig Anzt1,2

1Karlsruhe Institute of Technology
2University of Tennessee

The SIAM Conference on Parallel Processing for Scientific Computing (SIAM PP)
February 14th, 2020 | Seattle, Washington, USA

SonderBruce, CC BY-SA 4.0

Approximate and Exact (Multi-)Selection on GPUs
Tobias Ribizel1, Hartwig Anzt1,2

1Karlsruhe Institute of Technology
2University of Tennessee

The SIAM Conference on Parallel Processing for Scientific Computing (SIAM PP)
February 14th, 2020 | Seattle, Washington, USA

SonderBruce, CC BY-SA 4.0

Selection Problem

Given an unsorted sequence of real numbers ,
we want to find the element such that in the sorted sequence

3

the element is located in position .

We do not necessarily need to sort the complete sequence!

• Statistics (Quantiles)
• Top-𝑘 selection
• Thresholds

General Approach: Partial Sorting

4

General Approach: Partial Sorting

5

General Approach: Partial Sorting

6

Splitters separate buckets

General Approach: Partial Sorting

7

General Approach: Partial Sorting

8

General Approach: Partial Sorting

9

General Approach: Partial Sorting

10

General Approach: Partial Sorting

11

Implementation Aspects

12

Implementation Aspects

13

• We only copy elements of the buckets we are interested in;

Implementation Aspects

14

• We only copy elements of the buckets we are interested in;

• In case of identical splitter elements, they are placed in an
equality bucket;

• If target rank is in an equality bucket, the algorithm can
terminate early by returning lower bound;

Implementation Aspects

15

• We only copy elements of the buckets we are interested in;

• In case of identical splitter elements, they are placed in an
equality bucket;

• If target rank is in an equality bucket, the algorithm can
terminate early by returning lower bound;

• For sorting the splitters, small input datasets, and the lowest
recursion level a bitonic sort in registers + shared memory is
used;

Implementation Aspects

16

• We only copy elements of the buckets we are interested in;

• In case of identical splitter elements, they are placed in an
equality bucket;

• If target rank is in an equality bucket, the algorithm can
terminate early by returning lower bound;

• For sorting the splitters, small input datasets, and the lowest
recursion level a bitonic sort in registers + shared memory is
used;

• Use a binary search tree to sort elements into the buckets;

• Store the bucket indices to avoid recomputation
(also helpful for kernel fusion)

Parallelization & Communication

17

• Run SampleSelect using all resources on complete data set;
• Use global atomics to generate bucket counts;

Thread Block Thread BlockThread Block

Thread Block Thread BlockThread Block

…

• Split data set into chunks, assign to thread blocks;
• Each thread block runs bucket count on its data;
• Use a global reduction to get global bucket counts;

Shared Memory AtomicsGlobal Memory Atomics

Global Atomics
Shared Memory Atomics

Experiment Setup

18

• 2 distinct GPU architectures
• Input datasets with 216 to 228 elements
• d= 1, 16, 128, 1024, n distinct values
• All results averaged over 10 runs
• Single precision input data

• Comparison against QuickSelect kernel

• QuickSelect and SampleSelect have
same performance optimization level

• Correctness check using C++ std::nth_element

2013 2017

#44@TOP500 #1@TOP500

NVIDIA K40 NVIDIA V100

Kernel Performance: Global vs. Shared Atomics

19

NVIDIA K40 NVIDIA V100

-g : global memory atomics
-s: shared memory atomics

Larger performance variation for QuickSelect as we are more likely to run into the “Worst-Case” performance.

Kernel Performance: Global vs. Shared Atomics

20

-g : global memory atomics
-s: shared memory atomics

NVIDIA K40 NVIDIA V100

double precision

Runtime breakdown

21

NVIDIA V100
(shared atomics)

NVIDIA K40
(global atomics)

𝑛 = 224, single precision

Kernel Performance: Host vs. Device recursion

22

-host: Host launches recursive kernels
-cdp: CUDA dynamic parallelism

NVIDIA A100

double precision

Kernel Optimization: Element Repetition

23

Idea: use warp aggregations to mitigate the performance impact from atomic collisions.

Kernel Optimization: Element Repetition

24

NVIDIA K40 NVIDIA V100

more collisionsmore collisions

Idea: use warp aggregations to mitigate the performance impact from atomic collisions.

Kernel Performance: What if we needed no atomics?

25

NVIDIA A100
with warp-
aggregation

double precision

NVIDIA A100
without warp-
aggregation

Approximate Selection

We do not descend to the lowest level of the recursion tree,
but limit to one single bucket selection.

26

• Accuracy depends on the number of splitters vs. dataset size
• Accuracy independent of value distribution (works on ranks, only) Select splitter

Approximate Selection

We do not descend to the lowest level of the recursion tree,
but limit to one single bucket selection.

27

• Accuracy depends on the number of splitters vs. dataset size
• Accuracy independent of value distribution (works on ranks, only)

Test problem:
• 228 uniformly distributed single precision values
• Approximate selection uses 1 level only
• We report statistics over 10 runs

1024 buckets
512 buckets

256 buckets

128 buckets

Multiple Selection

28

Generalization: Select elements at multiple ranks 𝑘1, … , 𝑘𝑚 simultaneously

• Determine which buckets contain 𝑘𝑖 using binary search

• Extract elements from all these buckets simultaneously

• Launch multiple subcalls using CUDA dynamic parallelism

Multiple Selection

29

Generalization: Select elements at multiple ranks 𝑘1, … , 𝑘𝑚 simultaneously

• Determine which buckets contain 𝑘𝑖 using binary search

• Extract elements from all these buckets simultaneously

• Launch multiple subcalls using CUDA dynamic parallelism

• Comparison with QuickSelect and CUB RadixSort

• Input ranks: clustered with 𝑘𝑖 = 2𝑖 (best case)

uniform with 𝑘𝑖 =
𝑖

32
∙ 𝑛 (worst case)

N
V

ID
IA

 V
1

0
0

Multiple Selection

30

Generalization: Select elements at multiple ranks 𝑘1, … , 𝑘𝑚 simultaneously

• Determine which buckets contain 𝑘𝑖 using binary search

• Extract elements from all these buckets simultaneously

• Launch multiple subcalls using CUDA dynamic parallelism

• Comparison with QuickSelect and CUB RadixSort

• Input ranks: uniform with 𝑘𝑖 =
𝑖

#𝑟𝑎𝑛𝑘𝑠
∙ 𝑛 for 𝑛 = 227

N
V

ID
IA

 V
1

0
0

Summary and Outlook

• SampleSelect kernel much faster than QuickSelect

• 36% (single) 48% (double) of experimental
peak memory bandwidth on NVIDIA V100

• Approximate selection >2x faster than exact selection

• Multiple selection faster than sorting for up to 128 ranks

From a performance engineering standpoint (overgeneralized take-aways ☺):

• Hardware support beats warp-aggregation for atomics

• Shared-memory atomics are blazingly fast

• Host-side kernel launches outperform dynamic parallelism for tail recursion

• Pruning your recursion tree can be worthwile (if you still have enough parallelism left)

Helmholtz Impuls und Vernetzungsfond
VH-NG-1241

References

1. T. Ribizel and H. Anzt, “Approximate and Exact Selection on GPUs,“
Proceedings of the 9th AsHES Workshop at IPDPS, 2019

2. T. Ribizel and H. Anzt, “Parallel selection on GPUs,”
Parallel Computing, vol. 91, p. 102588, Mar. 2020

