
HPC Café – Git in Practice
Collaborations, Workflow, Continuous Integration

xkcd.com
/1597/

Julian Hammer, Thomas Gruber, 2021-03-09

https://xkcd.com/1597/

Goal
§ Explain and show best practices for (collaborative) development
§ Motivate use of git and development platforms
§ Motivate to go open source and contribute yourself
§ Highlight solutions to everyday problems

§ Practical/”how to” oriented
§ Feel free to ask background questions, at any time

3

Survey
Are you using git?No

Yes

Are you using a development platform?

No
Yes

GitHub other cloud gitlab@FAU locally hosted

4

Practicing and Understanding Git

§ Game to learn git
§ Teaches fundamentals concepts

as well as commands

§ Recommendation also to
intermediate git users

ohmygit.org

https://ohmygit.org/

5

Overview
1. Git Collaboration Platforms – Why? Which?
2. New Project

1. Setup Local Repository
2. Initialize Repository

3. Working Together
1. Organizations and Collaborators
2. Issues
3. Pull Requests

4. Continuous Integration with Actions
5. Tags and Releases
6. Stashing Changes
7. Addition Features

6* do NOT rely on this!

Git Collaboration Platforms – Why?
§ Hosts your repository and metadata

Backups* and sharing made easy
§ Web front-end

Easy access to git and non-git users
§ User management

Permissions, groups, collaborators
§ Issue tracker
§ Documentation tools

e.g., a wiki
§ Integration & deployment tools

All of this is just one click away…

7

Git Collaboration Platforms – Which to use?
GitHub.com
§ de-facto standard for open source projects
§ private repositories have limited features
§ owned by Microsoft

GitLabs hosted at FAU:
§ gitlab.cs.fau.de

§ collaboration with anyone
§ gitos.rrze.fau.de

§ collaborate with DFN users
§ gitlab.rrze.fau.de (enterprise features)

§ collaborate with FAU users
§ account request via idm.fau.de

@

https://github.com/
https://gitlab.cs.fau.de/
https://gitos.rrze.fau.de/
https://gitlab.rrze.fau.de/

8

Git Collaboration Platforms – Which to use?

9

Platform and Repository Access
§ To web platforms: login via website

consider two-factor-authentication (2FA)

§ Repository access: SSH key-pair
§ Generate SSH key file
ssh-keygen –t ed25519

§ Upload public key to platform
e.g., ~/.ssh/id_ed25519.pub
User Profile → Settings → SSH Keys → Add key

See HPC Café – Secure System Access (2020-06-09) for details:
https://hpc.fau.de/files/2020/06/2020-06-09-hpc-cafe-security.pdf
https://www.video.uni-erlangen.de/clip/id/17820

https://hpc.fau.de/files/2020/06/2020-06-09-hpc-cafe-security.pdf
https://www.video.uni-erlangen.de/clip/id/17820

10

New Project
github.com/new

we’ll get to it

https://github.com/new

11

Setup Local Repository

git clone git@github.com:user/repo.git

Clone a fresh copy from github

!

Make local folder a repo
on main branch,

add files and commit

git init -b main
git add myfiles…

git commit

git remote add origin git@github.com:user/repo.git
git push --set-upstream origin main

Add remote location origin and
configure as upstream for main branch

!

Already existing files,
but not as git repo?

Already have a local
git repository?

Starting from scratch?
(i.e., no local files)

12

Initialize Repository
Useful files to have:
§ README.md

Say what this it’s about, how to use and interact with it.

§ LICENSE.md
Tell others how to treat your code.
https://choosealicense.com/

§ .gitignore
Ignoring unnecessary files, makes life simpler.
https://gitignore.io

! Don‘t forget to git add, commit and push.

https://choosealicense.com/
https://gitignore.io/

13

Working Together

I am a lazy person, which is why I like open source,
for other people to do work for me.

[Linus Torvalds]

I wish…
[me]

14

Survey

Are you developing alone?Yes

No

2 ppl. 2-5 ppl. 5-10 ppl. >10 ppl.

15

Working Together: Interactions

IssuesPull
Requests

W Wiki

Code Repository

Anyone

Close

Comment

Review

Merge

Change

Comment

Reopen

Fork

Push

Branch

Clone

Open Open Change

Re
ad

Su
gg

es
t c

ha
ng

es

As
k

qu
es

tio
ns

Do
cu

m
en

ta
tio

n

W
rit

e

Ac
ce

pt
 c

ha
ng

es

Re
so

lve

Owner and
Collaborators

16

Organizations and Collaborators
Organizations
§ Shared ownership
§ Default permissions for org repos
§ Teams
§ Public Face

Ø Use for research groups and
institutions

github.com/organizations/new

Collaborators
§ Individual permissions

Ø Use for external collaborators

https://github.com/organizations/new

17

Working Together: Issues
Ticketing system

Usually first contact between developers and users.
➔ Used for support, questions, bugs, feature requests, discussions…

Useful:
§ References to commits (commithash) and other issues/PRs (#number)
§ Mentions (@username)
§ Check lists (- [] item)
§ Tags (e.g., bug, feature request, support)
§ Markdown, templates…

18* Only with write permissions

Working Together: Workflow

Fork /
Branch*

Make changes Open
Pull Request

Discuss and
improve

Merge*

/

19

Continuous Integration
Test continuously
§ Build: Does it compile?
§ Unit Tests:

Produces correct results?
§ Coverage:

Are more tests needed?
§ Lint: Is code “well written”?
§ Matrix builds: Compatibility
(Continuous Deployment)
§ Upload releases
§ Deploy to production

Usually ON EVERY PUSH

You ask WHY???
§ It’s “free”
§ Find bugs earlier
§ Encourages test-driven

development (write test before
code and fore every bug found)

§ Find regressions (reintroduction of
already fixed bugs)

§ Helps contributors get engaged
§ Standardized environment

20xkcd.com/1205

Test? Why Bother?
§ More than one developer?

Write tests!
§ Your code is complex?

Write more tests!
§ Plan on developing long term?

Write even more tests!
§ Want to enjoy your life?

Trust me: write tests!

§ Setting up a test environment is
always worth the effort!

21

Survey

Do you have software tests?

No Are they automatically run?

Yes No

22

Continuous Integration with Actions

23

Tags and Releases: Versioning Your Software
Tags
git tag v0.1.2
git push --tags

§ Marks a defined state (commit)
§ Easy to find and go back to
git checkout v0.1.2

§ Basis for releases

Releases
§ Code + what ever you want
§ e.g., generated or compiled files

v0
.1
.2

v0
.2

zip
tar.gz

zip
tar.gz

24

Stashing Changes
§ When working together, editing the same file is common
§ Local changes need to revert back to HEAD without data loss

git stash push (<file(s)>)

git stash list/show

git stash pop

Put files into temporary stash area
Restore HEAD

List/show all pushes

Get changes back (and merge if needed)

HEAD

HEAD

STASH

pu
sh

po
p

25

Additional Features
§ GH Forks

§ For collaboration on project, fork repository to your account
§ Create and work on branch in forked repository
§ Create PR by “compare across forks” to original project

§ GH Wiki & Pages
§ Place for documentation, show cases, project webpage, …
§ In free plan: GH pages only for public repos

§ Cite code with DOI by Zenodo
§ Financed by the EU
§ Cloud storage for papers, reports, video, software, data, …
§ Integrates in GH to create DOI with every release

2020-10-15 26Footer

Further information
§ https://docs.gitlab.com
§ https://github.com/git-guides
§ https://guides.github.com
§ https://git-scm.com

§ Continuous Integration:
§ https://docs.github.com/en/actions
§ https://docs.gitlab.com/ee/ci/

ohmygit.org

https://github.com/git-guides
https://github.com/git-guides
https://guides.github.com/
https://git-scm.com/
https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/
https://ohmygit.org/

