
HPC Café – Git: Basics, common workflow, hints and tricks
Jan Eitzinger, 09.02.2021

09.02.21 2HPC-Cafe - git version control system

What is this good for?

Software development is hard!

Software configuration management
§ Identification, control, status and auditing of configuration
§ Build management
§ Process management
§ Environment management
§ Facilitate teamwork
§ Defect tracing
§ …

Aspect of software
engineering

Topic of today:
Version control
systems (VCS)

09.02.21 3HPC-Cafe - git version control system

What are the benefits?

§ Change management (Who changed what when?)

§ Archiving of all states (Access to all previous versions)

§ Reconstruction of previous file states (Ability to reverse changes)

§ Coordination of access of multiple persons

§ Simultanious development of variants (Branching)

§ Manage baselines: labels and tags (Mark relevant states)

Documentation

Backup

Synchronisation

09.02.21 4HPC-Cafe - git version control system

Some history and classification
Local systems:
§ Source Code Control System (SCCS, 1972): POSIX standard!
§ Revision Control System (RCS, 1982): created by Walter Tichy (KIT)

Centralized client-server:
§ Concurrent Versioning System (CVS, 1986): Frontend to RCS
§ Subversion (SVN, 2000): CVS improved

Distributed (local + remote sync):
§ Mercurial (HG, 2005)
§ Git (2005): created by Linus Torvalds
§ Fossil (2006): created by Richard Hipp (sqlite creator)

09.02.21 5HPC-Cafe - git version control system

Centralized vs. Distributed VCS

09.02.21 6HPC-Cafe - git version control system

Introduction to git (which means "unpleasant person" in British English slang)

§ De-facto standard distributed version-control system
§ Development began on 3 April 2005 by Linus Torvalds to create Open-

Source replacement for proprietary BitKeeper
§ Maintenance on 26 July 2005 handed over to Junio Hamano
§ git is implemented as a set of command line tools
§ Some notable features

§ Sophisticated branching support
§ Supports any workflow
§ Emphasis on data integrity (everything is checksummed)
§ Staging area allows for fine grained control about what to commit

§ Website: https://git-scm.com/

https://git-scm.com/

09.02.21 7HPC-Cafe - git version control system

Git Terminology - Basics
§ Repository - The repository (or "repo") is where files' current and historical

data are stored.

§ Clone/Fork - Create a repository containing the revisions from another
repository

§ Working copy - The working copy is the local copy of files from a
repository, at a specific time or revision. All work done to the files in a
repository is initially done on a working copy. Also called sandbox.

§ To checkout - Create a local working copy from the repository

09.02.21 8HPC-Cafe - git version control system

Git Terminology - Synchronisation
§ To pull, push - Copy revisions from one repository into another. Pull is

initiated by the receiving repository, while push is initiated by the source.

§ Pull request - A developer asking others to merge their "pushed" changes

§ Conflict - A conflict occurs when different parties make changes to the
same document, and the system is unable to reconcile the changes. A
user must resolve the conflict by combining the changes, or by selecting
one change in favour of the other.

§ Resolve - The act of user intervention to address a conflict between
different changes to the same document.

09.02.21 9HPC-Cafe - git version control system

Git Terminology – Branches and commits

§ Branch - A set of files under version control may be branched at a point in
time; from that time forward, two copies of those files may develop at
different speeds or in different ways independently of each other.

§ A Commit - A modification that is applied to the repository

§ To commit - Write or merge the changes made in the working copy back to
the repository

09.02.21 10HPC-Cafe - git version control system

Git Terminology – Revisions and Tags/Labels
§ Revision - State at a point in time of the entire tree in the repository

§ Tag - A tag or label refers to an important snapshot in time, consistent
across many files using a user-friendly, meaningful name.

§ Trunk or Master - The unique line of development that is not a branch

§ Head – The most recent commit, either to the trunk or to a branch

09.02.21 11HPC-Cafe - git version control system

Common Workflow (centralized, per Repository)

Laptop

Workstation

HPC cluster

…

GitHub or GitLab or
gitolite

Clone
Repository

1 or more persons

Push
changes

Pull
changes

rejected

Pull = Fetch + Merge

Merge
1. Auto-merge
2. Conflict

Conflict requires
manual

interventionResolve conflict!

09.02.21 12HPC-Cafe - git version control system

git – File states and workflow to apply changes
§ Tracked: Files that were part of last snapshot (revision)

§ Modified: File was changed but no committed to the database yet.
§ Staged: Modified file is marked to go into the next commit snapshot.
§ Committed: Data is safely stored in the local database.

§ Untracked: All other files

Workflow
§ Modify files in your working tree.
§ Stage changes to be part of next

commit
§ Commit, save files in staging area

and store snapshot permanently to
the Git repository.

Current file
version

09.02.21 13HPC-Cafe - git version control system

git – Configuration
§ First time setup:

§ Check settings:

$ git config --global user.name "John Doe”
$ git config --global user.email johndoe@example.com
$ git config --global core.editor vim

$ git config –list
user.name=John Doe
user.email=johndoe@example.com
…

Or set $EDITOR
environment variable

Use --local to
apply changes only

on current repository

For reference

mailto:johndoe@example.com
mailto:user.email=johndoe@example.com

09.02.21 14HPC-Cafe - git version control system

git – Getting a repository
§ Create new local repository:

§ Cloning an existing repository:

§ Creates a directory named likwid
§ Initializes a .git directory inside it and pulls down the repository data
§ Checks out a working copy of the latest version

$ cd /home/user/my_project
$ git init
$ git add *.c
$ git commit -m 'Initial project version'

$ git clone git@github.com:RRZE-HPC/likwid.git

For reference

09.02.21 15HPC-Cafe - git version control system

git – Record changes
§ Track new files

§ Stage modified files

§ Remove files

§ Move (rename) files

§ Check status of files

§ Short status

§ Commit staged files

§ Skip staging with

$ git status$ git add README

$ git add main.c $ git status -s

$ git commit

Opens an editor

$ git commit –m “Fix Bla”

$ git commit –am “Fix Bla”

Commit all
modified files

$ git rm README

$ git mv README.md README

Shortcut to
$ mv README.md README
$ git rm README.md
$ git add README

For reference

09.02.21 16HPC-Cafe - git version control system

git – Staging area

§ General advice: Commit often!

§ Do detailed commit messages

§ The staging area seems strange if you switch from other VCS

§ But you learn to appreciate this additional step
§ Careful review of changes
§ Plan to map changes on commits

You can skip staging and commit all modified files with git commit -a

More on meaningful
commits in a moment

09.02.21 17HPC-Cafe - git version control system

Best Practices – Write good commit messages
The commit message should explain
What and Why you did.

Capitalized, short (50 chars or less) summary

More detailed explanatory text, if necessary.
Write your commit message in the imperative:
"Fix bug" and not "Fixed bug" or "Fixes bug.”

Further paragraphs come after blank lines.
If you use an issue tracker, add a reference(s)
to them at the bottom, like so:
Fixes: #123

Examples:
5ba3db6 Fix failing CompositePropertySourceTests
84564a0 Rework @PropertySource early parsing logic
e142fd1 Add tests for ImportSelector meta-data
887815f Update docbook dependency and generate epub
ac8326d Polish mockito usage

Simplify serialize.h's exception handling

Remove the 'state' and 'exceptmask' from serialize.h's stream
implementations, as well as related methods.

As exceptmask always included 'failbit', and setstate was always called
with bits = failbit, all it did was immediately raise an exception. Get rid of
those variables, and replace the setstate with direct exception throwing
(which also removes some dead code).
…
fail(), clear(n) and exceptions() are just never called. Delete them.

On the command line:
git commit -m "Subject" -m "Description..."

09.02.21 18HPC-Cafe - git version control system

Best practices: How to review changes?

§ On the command line
see changes in tracked unstaged files

see changes in staged files

BUT: You really want to review changes in an editor or GUI!

$ git diff

$ git diff --staged

Note: Staging is possible
for parts of a file!

09.02.21 19HPC-Cafe - git version control system

Configure tool for git diff
§ Tell git which configuration to use for diff

§ Tool configuration

§ Disable y/n prompts every time you open the diff tool

§ Now you can get tool-based diffs with (git diff uses terminal output!)

§ If the tool is not in $PATH

$ git config --local diff.tool meld

$ git config --local difftool.meld.cmd meld ”$LOCAL” ”$REMOTE”

$ git config --local difftool.prompt false

$ git difftool <file(s)>

$ git config --local difftool.meld.path /usr/bin/meld

For global
configuration,
use --global

For reference

09.02.21 20HPC-Cafe - git version control system

Best practices: Which files to track?
Only put source files under revision control!
No intermediate build products, hidden system files, binaries, libraries …

Fine grained control which files to skip with .gitignore files:
ignore all .a files
*.a
but do track lib.a, even though you're ignoring .a files above

!lib.a
only ignore the TODO file in the current directory, not subdir/TODO
/TODO

ignore all files in any directory named build
build/
ignore doc/notes.txt, but not doc/server/arch.txt
doc/*.txt

ignore all .pdf files in the doc/ directory and any of its subdirectories
doc/**/*.pdf

Usually one .gitignore
in root of repo, but can be

in multiple directories

GitHub maintains good list of examples:
https://github.com/github/gitignore

09.02.21 21HPC-Cafe - git version control system

Fixing Mistakes and undoing Things
To add a file or fix the commit message of the previous commit

Unstaging a staged file

Unmodifying a modified File
Better use git stash.

Undoing last commit(s)

Git 2.23 introduces new command for above actions: git restore

$ git commit -m 'Initial commit’
$ git add forgotten_file
$ git commit --amend

Replace previous commit.
Only use on not yet
pushed commits!

$ git reset HEAD README.md

$ git checkout -- README.md

Danger zone!
This will delete unsaved

local changes.

$ git reset --hard a1e8fb5
Reset history to
specific commit

For reference

09.02.21 22HPC-Cafe - git version control system

Basic Branching and Merging
§ In git branches are pointers to snapshots
§ The HEAD points to the most recent snapshot of the current branch

§ Create new branch
create pointer to current last commit

§ Switch to existing branch

§ Shorthand for branch+checkout

$ git branch testing

Creates the branch but
does not switch to it

$ git checkout testing

$ git checkout –b testing

You cannot switch branches if there
are uncommitted changes!

For reference

09.02.21 23HPC-Cafe - git version control system

Basic Branching workflow
§ Typical use case

§ Git tries to merge changes automatically
§ If this fails a merge conflict occurs

$ git checkout –b hotfix
Modify files and commit changes
$ git checkout master
$ git merge hotfix
$ git branch -d hotfix

Doing tests and review
on hotfix branch

Merge changes from
hotfix into master

Delete branch

$ git status
You have unmerged paths
Unmerged paths: index.html

Pro Tip: Use branching! Often!

master should always be a
working and tested state!

09.02.21 24HPC-Cafe - git version control system

Resolving merge conflicts
§ Git will add standard conflict resolution markers in unmerged files
<<<<<<< HEAD:index.html
<div id="footer">contact : email.support@github.com</div>
=======
<div id="footer">
please contact us at support@github.com

</div>
>>>>>>> iss53:index.html

§ Resolve conflict by editing the files, add and commit the resolved state:

You want to to do this in a editor or GUI with an integrated merge tool!

$ git add index.html
$ git commit

09.02.21 25HPC-Cafe - git version control system

Configure tool for merge conflict resolution
§ Tell git which configuration to use for conflict resolution

§ Tool configuration

§ Disable y/n prompts every time you open the merge tool

§ Now you can get tool-based conflict resolution with

§ If the tool is not in $PATH

$ git config --local merge.tool meld

$ git config --local mergetool.meld.cmd \
meld “LOCAL” “MERGED” “REMOTE” --output “MERGED”

$ git config --local mergetool.prompt false

$ git merge
$ git mergetool <file(s)> # if auto merge fails

$ git config --local mergetool.meld.path /usr/bin/meld

For reference

09.02.21 26HPC-Cafe - git version control system

Dealing with Remotes
§ Remote repositories are other versions of your project
§ A remote always creates an implicit branch that may require merging!
A clone from a URL will automatically create a remote called origin

Adding an additional remote

$ git clone git@github.com:RRZE-HPC/likwid.git
$ cd likwid
$ git remote –v
origin git@github.com:RRZE-HPC/likwid.git (fetch)
origin git@github.com:RRZE-HPC/likwid.git (push)

$ git remote add mylikwid https://github.com/jan/likwid

List all remotes

For reference

09.02.21 27HPC-Cafe - git version control system

Synchronization with remotes
Get all data from a remote project that you don’t have yet

Merge changes from remote branch

Shorthand for fetch+merge

Push changes back to remote

Explicitly create tracking branch

$ git fetch <remote> Creates remote tracking
branches: e.g. origin/master

$ git merge origin/master

$ git pull
For this to work you need

a tracking branch!

$ git checkout -b <branch> <remote>/<branch>

$ git push <remote> <branch>

For reference

09.02.21 28HPC-Cafe - git version control system

That’s complicated! Show me the simple case.
§ Clone from a remote repository

§ Pull new changes from remote (fetch and merge)

§ Push new revisions to remote origin

$ git clone <URL>

This will:
• clone the repository
• create a remote named origin
• set up tracked remote branches
• checkout origin/master

$ git pull You need to commit
your local changes first!

$ git push Often requires to first pull and
merge remote changes first!

09.02.21 29HPC-Cafe - git version control system

Viewing the History and other Information
§ List all commits in reverse chronological order

§ Show local branches

§ Show all branches (including tracked remote branches)

§ Inspect remote

$ git log

$ git branch

$ git branch --all

$ git remote show <remote>

$ git log --pretty=oneline Compact commit list

For reference

09.02.21 30HPC-Cafe - git version control system

Creating Baselines with Tagging
Mark specific points in a repository’s history with meaningful names
§ List tags

§ Tag recent commit

§ Tag previous commit

§ Push tags to remote server

$ git tag

$ git tag v1.0

$ git tag -a v1.2 9fceb02
Part of commit

checksum

$ git push origin --tags

$ git push origin v1.5

git push does
not transfer tags
to remote server!

For reference

09.02.21 31HPC-Cafe - git version control system

Communication protocols and Authentication

§ Four protocols are available for communication between
remotes
§ Local Protocol – file:///srv/git/project.git
§ HTTP Protocol – https://example.com/gitproject.git
§ SSH protocol – [user@]server:project.git
§ Git protocol – git://example.com/gitproject.git

§ Most common case
§ HTTPS for read only clone
§ SSH for read/write access using ssh key authentication

09.02.21 32HPC-Cafe - git version control system

Some remarks on GUIs
GUI options

§ Builtin GUI options for committing (git-gui) and browsing (gitk)

§ GitHub Desktop (Windows/Mac, https://desktop.github.com/)

§ SourceTree (Windows/Mac, https://www.sourcetreeapp.com/)

Editor integration
§ vim-fugitive plugin (https://github.com/tpope/vim-fugitive)

§ Magit (https://magit.vc)

§ Visual Studio Code has a powerful builtin git integration

https://git-scm.com/docs/git-gui
https://git-scm.com/docs/gitk
https://desktop.github.com/
https://www.sourcetreeapp.com/
https://github.com/tpope/vim-fugitive
https://magit.vc/

09.02.21 33HPC-Cafe - git version control system

… and Servers
Git ist commonly used as software as a service offering:
§ GitHub (Microsoft)

§ GitLab (Open Core company)

Other options:
§ gitolite (central git server with fine-grained access control)
https://gitolite.com/

§ cgit (minimalistic web interface, can be combined with gitolite)
https://git.zx2c4.com/cgit/about/

self-hosted Option

https://gitolite.com/
https://git.zx2c4.com/cgit/about/

09.02.21 34HPC-Cafe - git version control system

Outlook and further information
§ Things we did not cover in this talk

§ Workflows and development strategies
§ Git stash and clean
§ Git rebase
§ Submodules
§ And a lot of other stuff!

§ Very good online book for self study:
https://git-scm.com/book/en/v2
§ Tutorial style introduction
https://www.atlassian.com/git/tutorials

Topics for next event?
• General Software engineering

(including work flows)
• Build system make
• Effective Vim Editing
• Software testing and CI
• Other suggestions …

