

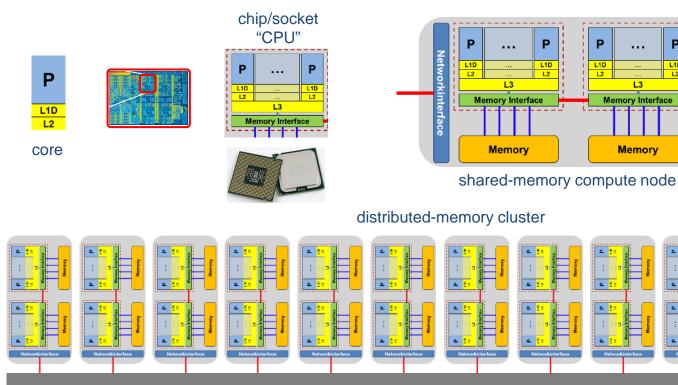
High Performance Computing in a Nutshell

HPC Services, RRZE / NHR@FAU

HPC systems at RRZE

https://hpc.fau.de/systems-services/systems-documentation-instructions/

Parallel computing hardware terminology


Ρ

L1D

L2

a_ <u>8</u>0

a. 80

Network

RRZE "Woody" cluster + "TinyEth"

main workhorse for throughput and single-node jobs

Woody:

- all 246 nodes with 4 cores and high clock frequency (3.5/3.7 GHz) Intel Xeon E3-1240 v? processors
 - 70x Intel Haswell, 8 GB RAM
 - 64x Intel Skylake, 32 GB RAM
 - 112x Intel Kaby Lake, 32 GB RAM
- at least 900 GB local HDD/SSD
- and Gbit only

TinyEth:

- 20 nodes (480 cores)
 - > 12 cores @ 2.66 GHz
 - > 48 GB RAM
 - > 30/190/420 GB local HDD
 - Single cores can be requested

RRZE "Emmy" cluster

main workhorse for parallel jobs

- 543 compute nodes (10.880 cores)
 - 2 Intel Xeon E5-2660v2 (Ivy Bridge)
 2.2 GHz (10 cores)
 - 20 cores/node + SMT cores
- 64 GB main memory per node
- No local disks
- Full QDR Infiniband fat tree network: 40 GBit/s and < 2 µs latency

RRZE "Meggie" cluster

for scalable parallel jobs – prior account activation required

- 728 Compute nodes (14.560 cores)
 - 2 Intel Xeon E5-2630 v4 (Broadwell) 2.2 GHz (10 cores)
 - 20 cores/node
 - 64 GB main memory
- No local disks
- Intel OmniPath network: Up to 100 Gbit/s
- Peak Performance: R_{peak} = 0.5 PF/s

RRZE "TinyGPU" cluster

for GPU workloads – not all nodes always generally available

- 7 nodes with 2x "Broadwell" @2.2 GHz, 64 GB RAM, 980 GB SSD, 4x GTX1080
- 10 nodes with 2x "Broadwell" @2.2 GHz, 64 GB RAM, 980 GB SSD, 4x GTX1080Ti
- 12 nodes with 2x "Skylake" @ 3.2 GHz, 96 GB RAM, 1.8 TB SSD, 4x RTX 2080Ti
- 4 nodes with 2x "Skylake" @3.2 GHz, 96 GB RAM, 2.9 TB SSD, 4x Tesla V100
- (5 nodes with 2x AMD Rome 7662 @2.0 GHz, 512 GB RAM, 5.8 TB SSD, 4x Volta A100)

What is each system good for?

Cluster	#nodes	Appl.	Parallel FS	Local HDD	Description
Meggie	728	massively parallel	Yes	No	Newest RRZE cluster, highly parallel workloads. Access restricted.
Emmy	560	massively parallel	Yes	No	Current main cluster for parallel jobs
Woody	246	serial, single-node, throughput	No	Yes, some w/ SSD	High clock speed single-socket nodes for serial throughput
TinyEth	20	single-node, throughput	No	Yes	Throughput workloads
TinyGPU	38	GPGPU	No	Yes, all w/ SSD	Different types of Nvidia GPGPUs; Access restrictions and throttling policies may apply
TinyFat	46	Large memory	No	Yes, all w/ SSD	256-512 GB memory per node. Access restrictions may apply.

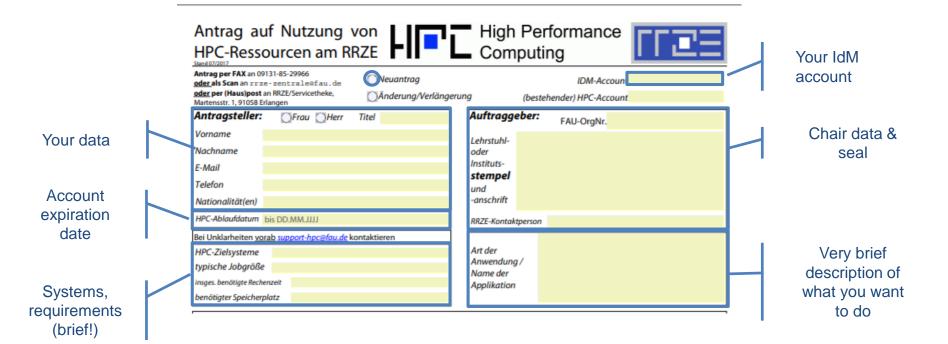
Accessing HPC systems at RRZE

- You need a separate account (not your IdM account)
- HPC account application form
- Account can access all HPC systems at RRZE!
- Ask your local RRZE contact person for help
- If you change your affiliation, you need a new HPC account. Data migration may be required

Antrag au HPC-Resso	f Nutzung urcen am R	von RZE	L High Com	Performand puting	
Antrag per FAX an 091 oder als Scan an rrze oder per (Haus)post ar Martensstr. 1, 91058 Erla	zentrale@fau.de RRZE/Servicetheke,	∑Neuantrag ∑Änderung/Verläng	gerung	IDM-Ac	
Antragsteller: Vorname	∑Frau ∑Herr	Titel	Auftragge	FAU-OrgNr.	
Nachname E-Mail Telefon Nationalität(en)			oder Instituts- stempel und -anschrift		
HPC-Ablaufdatum	is DD.MM.JJJJ		RRZE-Kontak	tperson	
typische Jobgröße Insges. benötigte Recher benötigter Speicherpl	atz		Anwendung Name der Applikation	/	
Art/Finanzierung Abrechnung der F	lechenzeit über) bestehende Kundennu) neue Kundennummer		enzeitprojekt	RRZE-intern RG ProjArt
rüh für	l des Forschungsvorh das Projekt insgesamt rilligungszeitraum / Pi	benötigte Rechenzeit			
topology Kurr. HPC	lernde Institution und ze Beschreibung der :-Aktivitäten im schungsvorhaben	Förderkennzeichen			
General Wurde d General dem RR2 General Antrag d Haben d Förderei	ler Rechenzeitbedarf n ZE abgestimmt und in Jargestellt? lie Gutachter der inrichtung dazu genommen?				

Personenbezogene Daten im Sinne der geltenden Datenschutzgesetze dürfen unter dieser Benutzerkennung nicht ohne Sondergenehnigung seitens des RRZE und des Datenschutzbeauftragten verarbeitet werden!

Dem Antragsteller ist bekannt, dass er sich durch eine missbräuchliche Benutzung der Informationsverarbeitungssysteme strafbar machen kann und dass beim Vorliegen eines Missbrauchs grundsätzlich Strafantrag gestellt wird. Des weiteren bemüht sich der Antragsteller, die HPC-Systeme effizient zu nutzen und güngige HPC-Praktiken zu beachten.


Benutzerrichtlinien

https://www.rrze.fau.de/infocenter/rahmenbedingungen/richtlinien/benutzungsrichtlinien/

Antragsteller und Auftraggeber erklärt hiermit, von den Benutzungsrichtlinien sowie den ergänzenden Hinweisen auf der Rückseite dieses Antrags Kenntnis genommen zu haben.


		Unterschift Antragsteller	
Ort. Datum			
		Unterschrift Auftraggeber/	
	 	 Kontaktperson 	
RRZE-interne			
Bemerkungen		IdM-Kennung Auftraggeber	/Kontaktpers.
L	 	2	

HPC account application form (II)

Is there a fee for compute cycles?

- CPU cycles are free for FAU-funded research and education
 - No special permissions, priorities, quotas,...
- DFG/BMBF projects etc.
 - Consult with HPC@RRZE before submitting the DFG proposal
- Industry
 - Set up contract with RRZE
 - Case by case basis
 - There is an official price list: <u>https://www.rrze.fau.de/infocenter/preise-kosten/#hpc</u>

- Primary point of contact: cluster frontends
 - woody.rrze.uni-erlangen.de (also for TinyX)
 - emmy.rrze.uni-erlangen.de
 - meggie.rrze.uni-erlangen.de
 - Only available from within FAU (private IP addresses)
- Access from outside FAU: dialog server
 - shpc.rrze.uni-erlangen.de
 - The only machine with a public IP address

- By default: text mode only
 - \$ ssh ihpc02h@emmy.rrze.uni-erlangen.de
- Basic knowledge of file handling, scripting, editing, etc. under Linux is required
- X11 forwarding with option -x or -y
 - Requires local X server

E ~	-	×
update_avx_sky_SNC.dat		^
update_avx_sky_SNC_noLLCpref.dat		
user-skel		
Vortrag		
wc.out		
#web2.html# web2.html		
web2.ntml		
web.html~		
weekday.cc		
wh.m		
WO		
workspace		
wrap.m		
x.dat		
unrz55@meggie2:~ \$		
unrz55@meggie2:~ \$		
unrz55@meggie2:~ \$		\sim

Secure Shell client programs

- Linux: OpenSSH available in any distribution
- Mac: ditto
- Windows
 - Putty (https://putty.org/)
 - OpenSSH via Command/PowerShell
 - Linux Subsystem for Windows
 - WinSCP (data transfer only) (<u>https://winscp.net</u>)
 - MobaXterm (https://mobaxterm.mobatek.net/)
 - includes an embedded X server

Working with data

https://hpc.fau.de/systems-services/systems-documentation-instructions/hpc-storage/

File systems

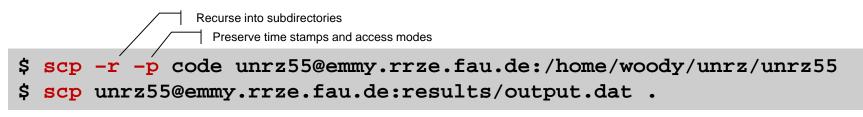
- File system == directory structure that can store files
- Several file systems can be "mounted" at a compute node
 - Similar to drive letters in Windows (C:, D:, ...)
 - Mount points can be anywhere in the root file system
- Available file systems differ in size, redundancy and how they should be used

RRZE file systems overview

Mount point	Access	Purpose	Technology	Backup	Snap- shots	Data lifetime	Quota
/home/hpc	\$HOME	Source, input, important results	NFS on central servers, small	YES	YES	Account lifetime	50 GB
/home/vault	\$HPCVAULT	Mid-/long-term storage	Central servers	YES	YES	Account lifetime	500 GB
/home/woody	\$WORK	Short-/mid-term storage, General-purpose	Central NFS server	(NO)	NO	Account lifetime	330 GB
/*lxfs	\$FASTTMP (only within cluster)	High performance parallel I/O	Lustre parallel FS via InfiniBand	NO	NO	High watermark	Only inodes
/???	\$TMPDIR	Node-local job- specific dir	HDD/SDD/ ramdisk	NO	NO	Job runtime	NO

File system quotas

- File system may impose quotas on
 - Stored data volume
 - Number of files and directories (inodes, actually)
- Quotas may be set per user or per group (or both)
- Hard quota
 - Absolute upper limit, cannot be exceeded
- Soft quota
 - May be exceeded temporarily (e.g., for 7 days grace period)
 - Turns into hard quota at end of grace period



\$ quota -s	# generic	command						
Disk quotas for us	er unrz55 (ui	d 12050).	:					
Filesystem b	locks quota	. limit	grace	files	quota	limit 9	grace	
10.28.20.201:/hpcd	atacloud/hpch	ome/shar	red					
5	544M 51200M	100G		72041	500k	1000k		
wnfs1.rrze.uni-erl	angen.de:/srv	/home						
1	12G 318G	477G		199k	0	0		
\$ shownicerquota.p	l # only on	RRZE SVS	toms					
Path		_	HardQ	Gracetime	Filec	FileQ	FiHaQ	FileGrace
/home/hpc	5.7G	52.5G	104.9G	N/A	7:	2K 5001	K 1,000K	N/A
/home/woody	112G	333.0G	499.5G	N/A	188	3K		N/A

Data transfer

- Most RRZE file systems are mounted at all HPC systems
 - Exception: parallel FS and node-local storage
- No NFS mounting from or to systems outside of RRZE
- \rightarrow scp / rsync is the preferred file transfer tool from and to the outside

Windows: <u>https://winscp.net/</u>

Software

https://hpc.fau.de/systems-services/systems-documentation-instructions/environment/

Pre-installed software packages

Linux standard distro packages

- Cluster front-ends: "Full" installation available, easy to add additional packages
- Node installation: usually stripped down, not easy to add new software

The modules system

- Software provided locally by RRZE
 - Compilers, libraries, commercial and open software
 - Installed on central server and available on all cluster nodes
- A package must be made available in the user's environment to become usable
 - Command: module
 - All module commands affect the current shell only!

Show available modules: module avail

\$ module avail						
/apps/modules/data/applications						
amber-gpu/14p13-at15p06-gnu-intelmpi5.1-cuda7.5 gromacs/4.6.6-mkl-IVB						
amber-gpu/16p04-at16p1	0-gnu-intelmpi5.1-cuda7.5 gromacs/5.0	.4-mkl-IVB				
amber/12p21-at12p38-intel16.0-intelmpi5.1 gromacs/5.1.1-mkl-IVB_d						
	/apps/modules/data/development					
cuda/7.5	intel64/16.0up04	intelmpi/5.1up03-intel				
cuda/8.0	intel64/17.0up05(default)	llvm-clang/3.8.1				
cuda/9.0	intel64/18.0up02	opencl/intel-cpuonly-5.2.0.10002				
cuda/9.1	intel64/18.0up03	openmpi/1.08.8-gcc				
Ś						

Load a module: module load <modulename>

\$ module load intel64
\$ icc -V
Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 17.0.5.239 Build
20170817
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

Display loaded modules: module list

\$ module list Currently Loaded Modulefiles: 1) torque/current 2) intelmpi/2017up04-intel 3) mkl/2017up05 4) intel64/17.0up05

Command	What it does
module avail	List available modules
module whatis	Shows over-verbose listing of all modules
module list	Shows which modules are currently loaded
module load <pkg></pkg>	Loads module pkg, i.e., adjusts environment
module load <pkg>/<version></version></pkg>	Loads specific version of pkg instead of default
module unload <pkg></pkg>	Undoes what the load command did
module help <pkg></pkg>	Shows a detailed description of pkg
module show <pkg></pkg>	Shows what environment variables pkg modifies and how

https://hpc.fau.de/systems-services/systems-documentation-instructions/environment/#modules

Running jobs

https://hpc.fau.de/systems-services/systems-documentation-instructions/batch-processing/

Interactive runs on the front-ends

- The cluster frontends are for interactive work
 - Editing, compiling, preparing input,...
 - Amount of compute time per binary is limited by system limits
 - E.g., after 1 hour of CPU time your process will be killed
 - MPI jobs are not allowed on front ends at RRZE
- Front-ends are shared among all users, so be considerate!

iww042@meggie1\$	emacs Makefile
iww042@meggie1\$	make all
iww042@meggie1\$	<pre>./scripts/preprocess.py < inputfile</pre>
iww042@meggie1\$./bin/a.out arg1 arg2 arg3

2021-02-10 | HPC in a Nutshell | HPC@RRZE

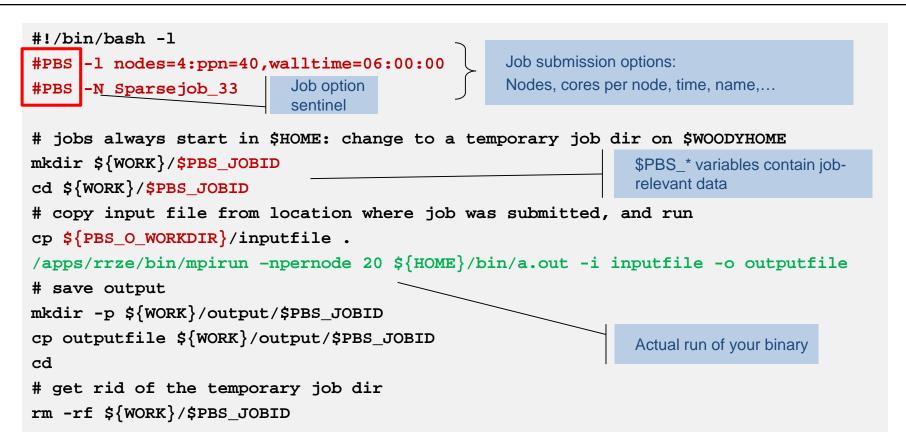
Batch jobs

- All big clusters have resource manager software → "Batch system"
 - Users can request resources for their jobs
 - Number of nodes (optionally: type of nodes, memory, ...)
 - Job runtime
 - What to run (normally a shell script)
 - Job will run when resources become available
 - What you do with your node allocation is entirely up to you
- Popular batch systems: PBS Pro, Torque, SLURM, LSF, GridEngine
- Some setups (e.g., at RRZE) allow interactive batch jobs
- Most queues at RRZE have a 24 hour wall time limit

Example: Simple Torque batch script

Most simple batch script (job1.sh):

#!/bin/bash -l
~/bin/a.out arg1 arg2 arg3


Submission:

iww042@emmy1\$ qsub -1 nodes=1:ppn=40,walltime=01:00:00 job1.sh

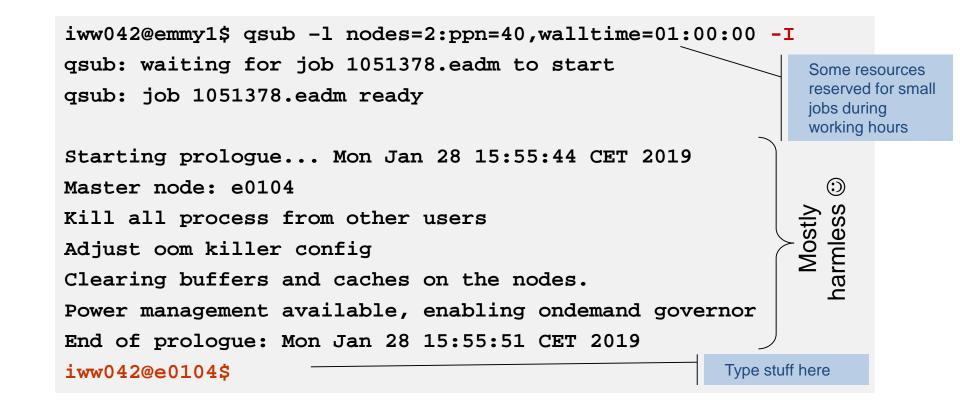
1051341.eadm

Example: Complex Torque batch script

Example: Managing a Torque job

Job ID can be used to check and control the job later

iww042@emmy1\$ <mark>qsub</mark> 1051342.eadm	job2.sh									
iww042@emmy1\$ <mark>qstat -a</mark>										
eadm:										
T-h TD		0	Talanana	0 TD		man	Req'd	Req'd	-	Elap
Job ID	Username	Queue	Jobname	SessID	NDS	TSK	Memory	Time	S	Time
1051342.eadm	iww042	devel	test.sh		1	40		00:10:00	R	00:00:02


stdout/stderr will be in <JobName>.[o|e]<JobID>

Torque user commands (non-exhaustive)

Command	Purpose	Options
qsub [<options>] [-I <job_script>]</job_script></options>	Submit batch job (-I = interactive)	-I <resource_spec> -N <jobname> -o <stdout_filename> -e <stderr_filename> -q <queue_name> -M your@email.de –m abe -X X11 fowarding</queue_name></stderr_filename></stdout_filename></jobname></resource_spec>
qstat [<options>] [<jobid> <queue>]</queue></jobid></options>	Check job status	 -a friendly formatting -f verbose job info -r only running jobs -n show nodes of each job
qdel <jobid></jobid>	Delete batch job	_

Some Dos and don'ts

Good practices

- Be considerate. Clusters are valuable shared resources that have been paid by the taxpayer.
- Use the appropriate amount of parallelism
 - Most workloads are not highly scalable
 - Best to run scaling experiments to figure out "sweet spot"
- Check your jobs regularly
 - Are the results OK?
 - Does the job actually use the allocated nodes in the intended way? Does it run with the expected performance?
 - Memory consumption? Disk quota exceeded?
 - Job Monitoring: <u>https://www.hpc.rrze.fau.de/HPC-Status/job-info.php</u>

Good practices

- Use the appropriate file system(s)
 - #1 mistake: Overload metadata servers by doing tiny-size, high-frequency I/O to parallel FS
 - Delete obsolete data
- Do not re-use other people's job scripts if you don't understand them completely
 - Things to look out for: file systems, number of nodes, cores per node, modules
- Look at tips and tricks for various applications (e.g. example batch scripts): https://hpc.fau.de/systems-services/systems-documentation-instructions/special-applications-and-tips-tricks/

- FRIEDRICH-ALEXANDER URLANGEN-NÜRNBERG
- Learn a scripting language to automate daunting, repetitive tasks
 Bash, Python, Perl,...
- Talk to co-workers who are more experienced cluster users; let them educate you
- When reporting a problem to RRZE:
 - Use the official contact <u>hpc-support@fau.de</u> this will immediately open a helpdesk ticket
 - Provide as much detail as possible so we know where to look
 - "My jobs always crash" will not do
 - Cluster, JobID, file system, time of event, ...

THANK YOU.

HPC@RRZE

https://hpc.fau.de

