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A64FX

Source : https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/

https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/


A64FX – FX700
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48 cores 
per node
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A64FX – FX700

• Clock : 1.8 GHz

• Instruction set : Armv8.2-A+SVE

• Maximum VL : 512 bit (8 double)

For example on GCC compiler use :

-msve-vector-bits=512 -march=armv8.2-a+sve

Core

1 CMG
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A64FX – FX700

1 CMG

• Size : 64 KiB

• Topology : Private cache

• Cache line size : 256 bytes

L1D cache
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A64FX – FX700

1 CMG

• Size : 8 MiB

• Topology : Shared within 1 CMG

• Cache line size : 256 bytes

L2 cache
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A64FX – FX700

1 CMG

• Size : 4 x 8 GiB

• Type : HBM2

Main memory



Motivation

Clear memory bandwidth 
saturation for STREAM TRIAD 
(a[i] = b[i] + s*c[i]).

Thread pinning : Compact

But why not for SUM (s += a[i]) 
and SpMV (b = Ax)?

210 GB/s = 117 B/cy



Motivation

Thread pinning : Compact

Understanding single-core 
performance is the key !



Motivation  ECM model
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Execution-Cache-Memory (ECM) model helps us to 
understand and analyze the single-core performance.
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Motivation  ECM model

Execution-Cache-Memory (ECM) model helps us to 
understand and analyze the single-core performance.

3 major components :

1) In-core

2) Data transfer through memory hierarchies

3) Overlap hypothesis

Can these transfers be 
overlapped or not ?

Registers

L1

L2

MEM



ECM model  In-core

Instruction Reciprocal 
Throughput [cy]

Latency [cy]

ld1d 0.5 11

simple gather 2.0 ≥ 11

complex gather 4.0 ≥ 11

st1d 1.0 –

fadd 0.5 9

fmad 0.5 9

faddv1 11.5 49

1horizontal recursive add

from/to
L1



STREAM TRIAD
a[i] = b[i] + s * c[i]

ECM model  In-core

.L18:
ld1d z4.d, p5/z, [x21, x9, lsl 3]
ld1d z5.d, p5/z, [x20, x9, lsl 3]
fmad z5.d, p5/m, z2.d, z4.d
st1d z5.d, p5, [x19, x9, lsl 3]
add x8, x9, 8
whilelo p5.d, w8, w7
b.any .L18

ST

LD LDFMA1 cy

2 cy

2cy / VL



ECM model Memory hierarchy
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ECM model Memory hierarchy
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Machine model
FX700
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Application model
TRIAD

a[i] = b[i] + s*c[i]

ECM prediction
TRIAD on FX700
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RD
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ECM model Memory hierarchy + In-core
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TRIAD on FX700

L1

L2

MEM

RD

RD

RD
WR

RD
RD
RD

WR

Registers Registers Registers
LD

128 B/cy 64 B/cy LD
ST



ECM model  Overlap hypothesis

ECM prediction
TRIAD on FX700
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How do these 
boxes overlap?



ECM model  Overlap hypothesis
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ECM model  Overlap hypothesis
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Hypothesis 3 : Full overlap + half-duplex



ECM model  Overlap hypothesis
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Hypothesis 4 : L1L2 overlap + half-duplex at MEM

Compare measurements 
with predictions.

There are numerous combinations.

How do we find the correct one?



ECM model  Overlap hypothesis
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ECM model  Overlap hypothesis

RD
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The best hypothesis for FX700

Compare measurements 
with predictions.

There are numerous combinations.

How do we find the correct one?

Pred. Meas.

2 2.1

6 5.8

7.7

6.7

A systematic way of identifying overlap hypothesis is presented in : Hofmann et.al., 2020, Bridging The Architecture Gap: 
Abstracting Performance-relevant Properties Of Modern Server Processors, https://doi.org/10.14529/jsfi200204

cy/VL

L1-Reg

L2-L1

MEM-L2

http://dx.doi.org/10.14529/jsfi200204


ECM model  Insights

Unrolling plays an important role

STENCIL – 2d5pt SUM

OoO inefficiency

Compiler:
• Vectorization

Unrolling factor=8Unrolling factor=1 ECM prediction

• Pipelining

ADD pipeline 
latency



SpMV

Sparse Matrix-Vector Multiplication (SpMV) :  b=Ax

= + • Nr

General case: 
some indirect
addressing
required!

b[:]  = b[:]  + A[:,:] * x[:]

for i = 0:nrows-1 //Long outer-loop 
for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner-loop

b[i] = b[i] + A[j] * x[col_idx[j]] 

In Compressed Row Storage (CRS) format



SpMV

for i = 0:nrows-1 //Long outer-loop 
for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner-loop

b[i] = b[i] + A[j] * x[col_idx[j]] 

In Compressed Row Storage (CRS) format

.L6:
ld1sw z0.d, p0/z, [x17, x20, lsl 2]
ld1d z2.d, p0/z, [x18, x20, lsl 3]
ld1d z3.d, p0/z, [x30, z0.d, lsl 3]
add x20, x20, 8
fmla z1.d, p0/m, z3.d, z2.d
whilelo p0.d, x20, x14
b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

GCC compiler



SpMV

for i = 0:nrows-1 //Long outer-loop 
for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner-loop

b[i] = b[i] + A[j] * x[col_idx[j]] 

In Compressed Row Storage (CRS) format

.L6:
ld1sw z0.d, p0/z, [x17, x20, lsl 2]
ld1d z2.d, p0/z, [x18, x20, lsl 3]
ld1d z3.d, p0/z, [x30, z0.d, lsl 3]
add x20, x20, 8
fmla z1.d, p0/m, z3.d, z2.d
whilelo p0.d, x20, x14
b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

Why ?

HPCG matrix 
dimension 1283



SpMV

for i = 0:nrows-1 //Long outer-loop 
for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner-loop

b[i] = b[i] + A[j] * x[col_idx[j]] 

In Compressed Row Storage (CRS) format

.L6:
ld1sw z0.d, p0/z, [x17, x20, lsl 2]
ld1d z2.d, p0/z, [x18, x20, lsl 3]
ld1d z3.d, p0/z, [x30, z0.d, lsl 3]
add x20, x20, 8
fmla z1.d, p0/m, z3.d, z2.d
whilelo p0.d, x20, x14
b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

FMA3: Update z1.d

Latency: 9 cycles

Horizontal add of 512-bit 
register

Throughput = 11.5 cycles

Loop length : 27
HPCG matrix



SpMV -> SELL-C-σ

Vector-friendly SpMV data format/kernel required for A64FX  SELL-C-σ1

Chunk size 𝐶𝐶

Sorting scope 𝜎𝜎

1M. Kreutzer et al., A Unified Sparse Matrix Data Format For Efficient General Sparse Matrix-vector Multiplication On Modern 
Processors With Wide Simd Units, SIAM SISC 2014, DOI: 10.1137/130930352

CRS SELL-C-σ
Benefits:

• Vectorization and unrolling along chunk size (C)  long loop and tunable
• No costly horizontal-add (faddv)
• No loss of vector efficiency



SpMV SELL-C-σ ECM

LD
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Gather
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3.4 Gflops/s ≈ 22 Gbytes/s =



SpMV SELL-C-σ ECM

Can we saturate now ?
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Single core

3.4 Gflops/s ≈ 22 Gbytes/s 

HPCG matrix, dimension 1283



SpMV SELL-C-σ ECM

Can we saturate now ?
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Yes, but needs almost all cores

HPCG matrix, dimension 1283
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Can we saturate now ?

0

1

2

3

4
Single core

HPCG matrix, dimension 1283



SpMV

0

20

40

60

80

100

120

140

af_shell10 BenElechi1 bone010 HPCG ML_Geer nlpkkt120 pwtk

SpMV performance on full node (48 cores)

SELL CRS

Measured : 798 GB/s



SpMV

Matrices from SuiteSparse Matrix Collection : https://suitesparse-collection-website.herokuapp.com
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SELL CRS



• High single core performance is crucial.

• ECM model was established and utilized to analyze the single core performance.

• The partial overlapping memory hierarchy allows for high single-core memory 

bandwidth.

• Proper single core optimizations have to be done to hide long floating point 

latency and inefficiencies in OoO.

• For SpMV we were able to saturate the bandwidth with SELL-C-σ format.

Conclusion



Thank you

Questions ?
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