
[12 Nov 2020] • [AoE]

PMBS20 Workshop

﻿Performance Modeling of Streaming Kernels
and Sparse Matrix-Vector Multiplication

on A64FX

Christie Alappat, Jan Laukemann, Thomas Gruber, Georg Hager,
Gerhard Wellein, Nils Meyer, Tilo Wettig

A64FX

Source : https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/

https://www.top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/

A64FX – FX700

1 CMG

4 CMGs
per node

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

L2

Memory Interface

Memory

L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P
L1D

P

48 cores
per node

A64FX – FX700

1 CMG

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

A64FX – FX700

• Clock : 1.8 GHz

• Instruction set : Armv8.2-A+SVE

• Maximum VL : 512 bit (8 double)

For example on GCC compiler use :

-msve-vector-bits=512 -march=armv8.2-a+sve

Core

1 CMG

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

A64FX – FX700

1 CMG

• Size : 64 KiB

• Topology : Private cache

• Cache line size : 256 bytes

L1D cache

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

A64FX – FX700

1 CMG

• Size : 8 MiB

• Topology : Shared within 1 CMG

• Cache line size : 256 bytes

L2 cache

L2

Memory Interface

Memory

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

L1D

P

A64FX – FX700

1 CMG

• Size : 4 x 8 GiB

• Type : HBM2

Main memory

Motivation

Clear memory bandwidth
saturation for STREAM TRIAD
(a[i] = b[i] + s*c[i]).

Thread pinning : Compact

But why not for SUM (s += a[i])
and SpMV (b = Ax)?

210 GB/s = 117 B/cy

Motivation

Thread pinning : Compact

Understanding single-core
performance is the key !

Motivation  ECM model

Registers

L1

L2

MEM

Execution-Cache-Memory (ECM) model helps us to
understand and analyze the single-core performance.

Registers

L1

L2

MEM

Motivation  ECM model

Execution-Cache-Memory (ECM) model helps us to
understand and analyze the single-core performance.

3 major components :

1) In-core

Registers

L1

L2

MEM

Motivation  ECM model

Execution-Cache-Memory (ECM) model helps us to
understand and analyze the single-core performance.

3 major components :

1) In-core

2) Data transfer through memory hierarchies

Motivation  ECM model

Execution-Cache-Memory (ECM) model helps us to
understand and analyze the single-core performance.

3 major components :

1) In-core

2) Data transfer through memory hierarchies

3) Overlap hypothesis

Can these transfers be
overlapped or not ?

Registers

L1

L2

MEM

ECM model  In-core

Instruction Reciprocal
Throughput [cy]

Latency [cy]

ld1d 0.5 11

simple gather 2.0 ≥ 11

complex gather 4.0 ≥ 11

st1d 1.0 –

fadd 0.5 9

fmad 0.5 9

faddv1 11.5 49

1horizontal recursive add

from/to
L1

STREAM TRIAD
a[i] = b[i] + s * c[i]

ECM model  In-core

.L18:
ld1d z4.d, p5/z, [x21, x9, lsl 3]
ld1d z5.d, p5/z, [x20, x9, lsl 3]
fmad z5.d, p5/m, z2.d, z4.d
st1d z5.d, p5, [x19, x9, lsl 3]
add x8, x9, 8
whilelo p5.d, w8, w7
b.any .L18

ST

LD LDFMA1 cy

2 cy

2cy / VL

ECM model Memory hierarchy

L1

L2

MEM

117 B/cy 64 B/cy

64 B/cy 32 B/cy

Machine model
FX700

ECM model Memory hierarchy

L1

L2

MEM

117 B/cy 64 B/cy

64 B/cy 32 B/cy

Machine model
FX700

L1

L2

MEM

Application model
TRIAD

a[i] = b[i] + s*c[i]

ECM model Memory hierarchy

L1

L2

MEM

117 B/cy 64 B/cy

64 B/cy 32 B/cy

Machine model
FX700

L1

L2

MEM

Application model
TRIAD

a[i] = b[i] + s*c[i]

ECM prediction
TRIAD on FX700

L1

L2

MEM

RD

RD

RD
WR

L2  L1
3 cy/VL

L1 L2
2 cy/VL

RD
RD
RD

MEM  L2
1.64 cy/VL

WR

L2  MEM
1 cy/VL

ECM model Memory hierarchy + In-core

L1

L2

MEM

117 B/cy 64 B/cy

64 B/cy 32 B/cy

Machine model
FX700

L1

L2

MEM

Application model
TRIAD

a[i] = b[i] + s*c[i]

ECM prediction
TRIAD on FX700

L1

L2

MEM

RD

RD

RD
WR

RD
RD
RD

WR

Registers Registers Registers
LD

128 B/cy 64 B/cy LD
ST

ECM model  Overlap hypothesis

ECM prediction
TRIAD on FX700

RD

RD

RD
WR

RD
RD
RD

WR

LD
LD

ST

How do these
boxes overlap?

ECM model  Overlap hypothesis

RD

RD

RD

WR

RD
RD
RD

WR

LD
LD

ST

Hypothesis 1 : No overlap

ECM model  Overlap hypothesis

RD

RD

RD
WR

RD
RD
RDWR

LD
LD

ST

Hypothesis 2 : Full overlap

ECM model  Overlap hypothesis

RD

RD

RD

WR

RD
RD
RD

WR

LD
LD

ST

Hypothesis 3 : Full overlap + half-duplex

ECM model  Overlap hypothesis

RD

RD

RD
WR

RD
RD
RD

WR

LD
LD

ST

Hypothesis 4 : L1L2 overlap + half-duplex at MEM

Compare measurements
with predictions.

There are numerous combinations.

How do we find the correct one?

ECM model  Overlap hypothesis

RD

RD

RD

WR

RD
RD
RD

WR

LD
LD

ST

The best hypothesis for FX700

Compare measurements
with predictions.

There are numerous combinations.

How do we find the correct one?

Pred.

2

6

7.7

cy/VL

L1-Reg

L2-L1

MEM-L2

ECM model  Overlap hypothesis

RD

RD

RD

WR

RD
RD
RD

WR

LD
LD

ST

The best hypothesis for FX700

Compare measurements
with predictions.

There are numerous combinations.

How do we find the correct one?

Pred. Meas.

2 2.1

6 5.8

7.7

6.7

A systematic way of identifying overlap hypothesis is presented in : Hofmann et.al., 2020, Bridging The Architecture Gap:
Abstracting Performance-relevant Properties Of Modern Server Processors, https://doi.org/10.14529/jsfi200204

cy/VL

L1-Reg

L2-L1

MEM-L2

http://dx.doi.org/10.14529/jsfi200204

ECM model  Insights

Unrolling plays an important role

STENCIL – 2d5pt SUM

OoO inefficiency

Compiler:
• Vectorization

Unrolling factor=8Unrolling factor=1 ECM prediction

• Pipelining

ADD pipeline
latency

SpMV

Sparse Matrix-Vector Multiplication (SpMV) : b=Ax

= + • Nr

General case:
some indirect
addressing
required!

b[:] = b[:] + A[:,:] * x[:]

for i = 0:nrows-1 //Long outer-loop
for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner-loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

SpMV

for i = 0:nrows-1 //Long outer-loop
for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner-loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:
ld1sw z0.d, p0/z, [x17, x20, lsl 2]
ld1d z2.d, p0/z, [x18, x20, lsl 3]
ld1d z3.d, p0/z, [x30, z0.d, lsl 3]
add x20, x20, 8
fmla z1.d, p0/m, z3.d, z2.d
whilelo p0.d, x20, x14
b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

GCC compiler

SpMV

for i = 0:nrows-1 //Long outer-loop
for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner-loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:
ld1sw z0.d, p0/z, [x17, x20, lsl 2]
ld1d z2.d, p0/z, [x18, x20, lsl 3]
ld1d z3.d, p0/z, [x30, z0.d, lsl 3]
add x20, x20, 8
fmla z1.d, p0/m, z3.d, z2.d
whilelo p0.d, x20, x14
b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

Why ?

HPCG matrix
dimension 1283

SpMV

for i = 0:nrows-1 //Long outer-loop
for j = row_ptr[i]:row_ptr[i+1]-1 // Short inner-loop

b[i] = b[i] + A[j] * x[col_idx[j]]

In Compressed Row Storage (CRS) format

.L6:
ld1sw z0.d, p0/z, [x17, x20, lsl 2]
ld1d z2.d, p0/z, [x18, x20, lsl 3]
ld1d z3.d, p0/z, [x30, z0.d, lsl 3]
add x20, x20, 8
fmla z1.d, p0/m, z3.d, z2.d
whilelo p0.d, x20, x14
b.any .L6

faddv d4, p1, z1.d

Assembly of the short inner-loop

FMA3: Update z1.d

Latency: 9 cycles

Horizontal add of 512-bit
register

Throughput = 11.5 cycles

Loop length : 27
HPCG matrix

SpMV -> SELL-C-σ

Vector-friendly SpMV data format/kernel required for A64FX  SELL-C-σ1

Chunk size 𝐶𝐶

Sorting scope 𝜎𝜎

1M. Kreutzer et al., A Unified Sparse Matrix Data Format For Efficient General Sparse Matrix-vector Multiplication On Modern
Processors With Wide Simd Units, SIAM SISC 2014, DOI: 10.1137/130930352

CRS SELL-C-σ
Benefits:

• Vectorization and unrolling along chunk size (C)  long loop and tunable
• No costly horizontal-add (faddv)
• No loss of vector efficiency

SpMV SELL-C-σ ECM

LD

ST

Gather

RD

RD

20.3

0

25.8

28.8

cy/VL

3.4 Gflops/s ≈ 22 Gbytes/s =

SpMV SELL-C-σ ECM

Can we saturate now ?

0

1

2

3

4
Single core

3.4 Gflops/s ≈ 22 Gbytes/s

HPCG matrix, dimension 1283

SpMV SELL-C-σ ECM

Can we saturate now ?

0

1

2

3

4
Single core

Yes, but needs almost all cores

HPCG matrix, dimension 1283

SpMV SELL-C-σ ECM

Can we saturate now ?

0

1

2

3

4
Single core

HPCG matrix, dimension 1283

SpMV

0

20

40

60

80

100

120

140

af_shell10 BenElechi1 bone010 HPCG ML_Geer nlpkkt120 pwtk

SpMV performance on full node (48 cores)

SELL CRS

Measured : 798 GB/s

SpMV

Matrices from SuiteSparse Matrix Collection : https://suitesparse-collection-website.herokuapp.com

0

20

40

60

80

100

120

140

af_shell10 BenElechi1 bone010 HPCG ML_Geer nlpkkt120 pwtk

SpMV performance on full node (48 cores)

SELL CRS

• High single core performance is crucial.

• ECM model was established and utilized to analyze the single core performance.

• The partial overlapping memory hierarchy allows for high single-core memory

bandwidth.

• Proper single core optimizations have to be done to hide long floating point

latency and inefficiencies in OoO.

• For SpMV we were able to saturate the bandwidth with SELL-C-σ format.

Conclusion

Thank you

Questions ?

	Slide Number 1
	PMBS20 Workshop
	A64FX
	A64FX – FX700
	A64FX – FX700
	A64FX – FX700
	A64FX – FX700
	A64FX – FX700
	A64FX – FX700
	Motivation
	Motivation
	Motivation  ECM model
	Motivation  ECM model
	Motivation  ECM model
	Motivation  ECM model
	ECM model  In-core
	ECM model  In-core
	ECM model  Memory hierarchy
	ECM model  Memory hierarchy
	ECM model  Memory hierarchy
	ECM model  Memory hierarchy + In-core
	ECM model  Overlap hypothesis
	ECM model  Overlap hypothesis
	ECM model  Overlap hypothesis
	ECM model  Overlap hypothesis
	ECM model  Overlap hypothesis
	ECM model  Overlap hypothesis
	ECM model  Overlap hypothesis
	ECM model  Insights
	SpMV
	SpMV
	SpMV
	SpMV
	SpMV -> SELL-C-s
	SpMV  SELL-C-s  ECM
	SpMV  SELL-C-s  ECM
	SpMV  SELL-C-s  ECM
	SpMV  SELL-C-s  ECM
	SpMV
	SpMV
	Conclusion
	Slide Number 64

