
Applying the Execution-Cache-Memory Model: Current State of
Practice

Georg Hager
Erlangen Regional Computing Center

Erlangen, Germany
georg.hager@fau.de

Jan Eitzinger
Erlangen Regional Computing Center

Erlangen, Germany
jan.eitzinger@fau.de

Julian Hornich
Erlangen Regional Computing Center

Erlangen, Germany
julian.hornich@fau.de

Francesco Cremonesi
École Polytechnique Fédérale de

Lausanne
Geneva, Switzerland

francesco.cremonesi@epfl.ch

Christie L. Alappat
Erlangen Regional Computing Center

Erlangen, Germany
christie.alappat@fau.de

Thomas Röhl
Erlangen Regional Computing Center

Erlangen, Germany
thomas.roehl@fau.de

Gerhard Wellein
Erlangen Regional Computing Center

Erlangen, Germany
gerhard.wellein@fau.de

ABSTRACT
The ECM (Execution-Cache-Memory)model is an analytic, resource-
based performance model for steady-state loop code running on
multicore processors. Starting from a machine model, which de-
scribes the interaction between the code and the hardware, and
static code analysis it allows an accurate prediction of the runtime
of sequential loop code. Together with a scaling assumption it also
gives a performance scaling prediction. This poster summarizes
the current state of practice in constructing and applying the ECM
model, points out problems and open questions, and applies the
model to three nontrivial use cases.
ACM Reference Format:
Georg Hager, Jan Eitzinger, Julian Hornich, Francesco Cremonesi, Christie L.
Alappat, Thomas Röhl, and Gerhard Wellein. 2018. Applying the Execution-
Cache-Memory Model: Current State of Practice. In Proceedings of ACM
(SC18). ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Similar to the Roofline model [6], the ECM model [2, 5] can predict
the runtime of loops on multicore CPUs. In contrast to Roofline,
ECM works for sequential and parallel codes. It predicts relevant
execution and data transfer bottlenecks and the performance satura-
tion point with increasing number of cores. The premise of the ECM
model is that the runtime of a program is determined by two basic
resources: instruction execution and data transfer. Construction of
the model for a sequential loop comprises four steps:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC18, November 2018, Dallas, Texas USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(1) Derive the traffic data volume Vi per loop iteration across
all relevant data paths (i) in the CPU. Typically, a simplified
model of the memory hierarchy is used, which includes only
basic features (size, inclusive/exclusive).

(2) Calculate optimistic transfer times Ti = Vi/bi over all data
paths. They are optimistic because latency effects are initially
ignored and only asymptotic bandwidth bi (measured or
taken from hardware documentation) is considered. Latency
penalties may be introduced as corrections.

(3) Calculate an “in-core” runtime prediction with all data com-
ing from the innermost cache. Here one can either opti-
mistically assume full throughput, i.e., all instructions are
scheduled independently to the available execution units, or
perform a critical path analysis for a worst-case prediction.
The actual execution time typically lies between these limits.
Part of the in-core execution time counts as “overlapping”
(TOL) while the rest is “non-overlapping” (TnOL). How over-
lapping and non-overlapping parts enter the final prediction
depends on the machine model (see below).

(4) All time contributions are put together to build a prediction
TECM using a machine model. The machine model makes
assumptions about which of the components overlap in time
and which do not.

If the code is run in parallel, the model assumes that all time contri-
butions that come from scalable resources (pipelines, core-private
caches, shared but scalable caches) are divided by the number of
cores, while data transfer times over a bottleneck (such as the main
memory interface) stay constant. The runtime with n active cores
in presence of a memory bottleneck is thus

T ECM
Mem (n) = max *

,

T ECM
Mem
n
,TL3Mem+

-
, (1)

where TL3Mem is the data transfer time across the bottleneck. The
number of cores needed to reach saturation is ns = T ECM

Mem /TL3Mem.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SC18, November 2018, Dallas, Texas USA G. Hager et al.

The model can be validated by measuring the actual runtime
of the code and the actual data transfer volumes using hardware
performance counters. One particularly powerful way of validation
is to observe data transfers change with some parameter, such as
the problem size.

2 POSTER COMPONENTS
2.1 Model construction and notation
The ECM model makes runtime predictions. Model construction
requires data transfer times through the memory hierarchy, an in-
coremodel, and overlap assumptions (all covered on the poster). The
notation we have introduced is convenient for reasoning about the
model and its components; e.g., {8 ∥ 4 | 7 | 10 | 17} cy denotes that
the designated number of iterations needs 8 cy for overlapping in-
core execution, 4 cy for non-overlapping in-core execution (such as
loads), and 7, 10, and 17 cy, respectively, for transferring the required
data through the data paths between adjacent memory levels. The
machine model puts these numbers together to form a prediction.
E.g., {8 ⌉ 11 ⌉ 21 ⌉ 38} cy would denote runtime predictions for data
residing in L1, L2, L3, and memory on a processor that shows a
fully non-overlapping characteristic.

2.2 Case studies
A frequent criticism towards analytic performance modeling is
that it can only handle “simple” cases, while real applications are
allegedly too complicated for this approach. We chose the case
studies specifically to counter this attitude. Two of them have rather
complex loop bodies, while the third is a multi-loop algorithm. None
of these results have been published before.

2.2.1 Complex arithmetic stencil. This stencil update loop nest
is taken from a Time Harmonic Inverse Iteration Method (THIIM)
code using finite-difference frequency domain (FDFD) discretiza-
tion for simulating thin-film solar cells [4]. All variables are of
double precision complex type, which makes SIMD vectorization
by compiler a challenge. Hence, AVX2 vectorization was done man-
ually via C intrinsics. This is a stencil algorithm with a 3D layer
condition in z direction. The condition is broken if two successive
layers of the grid do not fit into the cache any more; on the Intel
Xeon Haswell CPU used here, this happens at the L3 cache beyond
a problem size of about 3503 lattice sites. The results show that the
model can predict the runtime with an error of 5% or less on either
side of the layer condition. The measured data traffic between adja-
cent cache levels is also very well in line with the model. The main
insight from the model is that spatial blocking has only a limited
benefit, and that temporal blocking should be employed for better
performance and scalability.

2.2.2 Kernels from brain cell simulations. The two loop kernels
are taken from mini-apps developed in the Blue Brain Project [1].
Case 1 (synaptic current) has mainly streaming data accesses, an
exponential function call, and some divides. The two indirect ac-
cesses are actually sequential, with consecutive blocks of identical
indices; they can be accommodated by an adjusted data volume.
Due to the function call and the many concurrent data streams,
some integer register spill occurs and there is a rather strong intra-
iteration dependency chain. On the Ivy Bridge CPU, this leads to

the critical path latency being a very good estimate of the runtime
per iteration. On the Haswell CPU, consecutive iterations can over-
lap better and the data transfers become the bottleneck. Although
the two architectures expose different behavior, the performance is
expected to saturate with all cores of the ccNUMA domain.

Case 2 (sodium ion channel) has different characteristics. It com-
prises multiple exp() calls and divides, but no strong dependency
chain and a moderate data volume to memory. Even when assuming
full throughput of all instructions (and the exponential function,
whose throughput was determined experimentally), the overlap-
ping part of the in-core runtime dominates by far. In such a case the
runtime is largely set by the out-of-order hardware being able to
overlap successive iterations. On Ivy Bridge, the measured runtime
(190 cy per iteration) is 36% longer than the optimistic estimate,
which indicates that this overlap is less than perfect.

2.2.3 A Conjugate-Gradient solver. We solve a Poisson prob-
lem on a quadratic plate with Dirichlet boundary conditions and a
source term. Due to the finite-difference discretization the coeffi-
cient matrix does not have to be stored. The ECM model for each of
the six loops is set up for a problem size of 40000×1000 grid points.
All loops are dominated by data transfers. Their sum (152 cy for 8
iterations) is the runtime prediction for the entire solver, which is
very close to the measurement of 159 cy on a Haswell core. The
saturated runtime (with seven cores in a ccNUMA domain) is just
the sum of the memory-L3 transfer times in this case; it is within
0.5% of the measurement. The scaling graph shows performance vs.
number of cores together with the model predictions.

2.3 Additional information
2.3.1 Overlap assumptions. The current working hypotheses

for overlap assumptions on different platforms are as follows. Intel
server CPUs up to Broadwell EP show no overlapping between
any data transfer contributions (including loads from the L1 cache),
while all the remaining code execution fully overlaps with data
transfers. Experiments indicate that the non-overlapping feature is
retained on Skylake SP, but the data flow analysis must be modified
because of the L3 victim cache. On AMD Epyc (Zen architecture),
initial findings suggest that the memory hierarchy is fully overlap-
ping. Finally, on the IBM Power8 the best assumption is full overlap
at the L1 cache and non-overlap of all other data transfers.

2.3.2 Applicability of the model. The ECM model is built upon
the steady-state assumption, which says that loop startup and wind-
down effects, and all latency contributions connected with them,
are ignored. Hence, short loops cannot be accurately modeled. On
some architectures, latency penalties can be introduced to reduce
prediction error. Non-streaming data access can be accommodated
via a worst/best-case analysis.

2.3.3 Improved saturation prediction. The saturation assump-
tion of the plain ECM model is too optimistic near the saturation
point. This can be corrected by a dynamic latency penalty that
depends on the utilization of the memory interface [3]. Although
this correction makes the model extremely accurate, it contains a
fit parameter that is not code-independent. This problem needs to
be investigated.

Applying the Execution-Cache-Memory Model: Current State of Practice SC18, November 2018, Dallas, Texas USA

REFERENCES
[1] Timothée Ewart, Judit Planas, Francesco Cremonesi, Kai Langen, Felix Schürmann,

and Fabien Delalondre. 2017. Neuromapp: A Mini-application Framework to
Improve Neural Simulators. In High Performance Computing, Julian M. Kunkel, Rio
Yokota, Pavan Balaji, and David Keyes (Eds.). Springer International Publishing,
Cham, 181–198.

[2] Georg Hager, Jan Treibig, Johannes Habich, and Gerhard Wellein. 2013. Exploring
performance and power properties of modern multicore chips via simple machine
models. Concurrency Computat.: Pract. Exper. (2013). DOI: 10.1002/cpe.3180.

[3] Johannes Hofmann, Georg Hager, and Dietmar Fey. 2018. On the Accuracy and
Usefulness of Analytic Energy Models for Contemporary Multicore Processors.
In High Performance Computing, Rio Yokota, Michèle Weiland, David Keyes, and
Carsten Trinitis (Eds.). Springer International Publishing, Cham, 22–43.

[4] T. M. Malas, J. Hornich, G. Hager, H. Ltaief, C. Pflaum, and D. E. Keyes. 2016.
Optimization of an Electromagnetics Code with Multicore Wavefront Diamond
Blocking and Multi-dimensional Intra-Tile Parallelization. In 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). 142–151. https:
//doi.org/10.1109/IPDPS.2016.87

[5] Holger Stengel, Jan Treibig, Georg Hager, and Gerhard Wellein. 2015. Quan-
tifying performance bottlenecks of stencil computations using the Execution-
Cache-Memory model. In Proceedings of the 29th ACM International Conference on
Supercomputing (ICS ’15). ACM, New York, NY, USA, 10. https://doi.org/10.1145/
2751205.2751240

[6] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
insightful visual performance model for multicore architectures. Commun. ACM
52, 4 (2009), 65–76. https://doi.org/10.1145/1498765.1498785

https://doi.org/10.1109/IPDPS.2016.87
https://doi.org/10.1109/IPDPS.2016.87
https://doi.org/10.1145/2751205.2751240
https://doi.org/10.1145/2751205.2751240
https://doi.org/10.1145/1498765.1498785

	Abstract
	1 Introduction
	2 Poster components
	2.1 Model construction and notation
	2.2 Case studies
	2.3 Additional information

	References

