Report on the 8/3/2019 Meeting

Marcello Sega, Manuel Zellhofer

May 2019

For most of the investigations performed in our group, we make use of our
LB3D software package to simulate soft matter systems at the mesoscopic scale.
The package is built around a lattice Boltzmann engine, which takes care of
computing the evolution of the hydrodynamic fields and includes, among oth-
ers, solvers for the electrokinetic (EK) equations, point-like particle dynamics,
rigid and deformable bodies. Within LB3D it is possible to simulate multiphase
and multicomponent flows, EK phenomena and the dynamics of solid and de-
formable finite size suspended particles. All the functionalities are properly
coupled such that, for example, it is possible to study the dynamics of charged
colloidal suspensions in binary electrolyte solutions. Particles are implemented
using a fully parallel molecular dynamics (MD) solver and coupled through the
fluid via boundary conditions. Concerning EK, ion fluxes are resolved at the
continuum level and coupled to the fluid and particles through electrostatic
forces computed using a parallel solver of the Poisson equation. A great advan-
tage of the LB method is that it is intrinsically local in space, therefore allowing
for a straightforward and efficient parallelization, which makes the code excel-
lently scalable and perfectly suitable for large HPC machines. LB3D has been
so far employed on clusters such as JUQUEEN/JURECA to simulate systems
of 10242 lattice nodes on 16384,/2048 cores in parallel routinely.

In the course of the last months, our code underwent considerable changes in
data layout and source code structure, with a focus on the core lattice Boltzmann

routines, to adapt the code to the features of machines with SIMD processing

units. Besides moving to an object-oriented paradigm, the reorganization of the
code involved rewriting the more computationally intensive routines dedicated
to the advection, collision, calculation of fields and communication. The data
layout was changed from arrays of structures to structures of arrays. In partic-
ular, the populations of the D3Q19 lattice are now stored in a single contiguous

array in the order

pl(la 17 1)pl(n$7 17 1)p1(n:ﬂ7 ny7 1)p1 (nwanya nz)"'p19(n$,ny7nz)7

for a box with (n,ny,n;) nodes along the x,y and z edges.

However, during the development and testing phase, it became evident that,
at the single core level, the SIMD units were underperforming, even though we
could not spot the origin of this problem. To profile the bandwidth usage and
the amount of calculation performed in the SIMD units, we decided to use the
LIKWID library. In particular, the Marker API was appealing for us to use, in
order to understand which part of the code had potential for improvement.

The meeting with Thomas Gruber on the 8th of March 2019 was dedicated

to the following:

e An introduction to the capabilities of LIKWID and its MarkerAPI, in-

cluding hands-on examples tailored to the data structures used in LB3D.

e In-depth explanations on how to interpret the output of LIKWID, in par-

ticular for cases relevant to the profiling of LB3D.

e Extension of the development branch of LB3D to include calls to the
LIKWID library

e Performance measurements of specific hotspots in LB3D

The performance analysis made together with Thomas Gruber allowed spot-
ting a problem in the generation of AVX2 instructions by the GNU Fortran
compiler. The compiler was not able to generate AVX2 code due to a missing

declaration as contiguous of a pointer to memory allocated using malloc.

—8— new implementation
— old implementation

MLU/s/core

2000 3000 4000 5000
cores

o -
=
(=3
o
o

Figure 1: Weak scaling on Hazel Hen in MLU/s/core for the single fluid lattice
Boltzmann in LB3D, old and new implementation. The whole domain is a cube
of side 16 and 32 nodes/core, corresponding to the optimal sizes for the new

and old implementations, respectively.

Thanks to the visit of Thomas Gruber, we increased the performances of
about 20%. This is however not the only outcome, as clearing this issue allowed
to start optimizing several other regions of the code, bringing the new imple-
mentation to peak performances of about 7.5 million lattice updates per second
(MLU/s) on the Skylake machines on our local cluster, to be compared with
the older implementation, which reached 2.5 MLU/s.

The results of weak scaling benchmarks are reported in Fig.1, where it is
possible to appreciate the more than three-fold improvement in performance,
which is roughly constant over a range of roughly 5000 cores employed on the
Hazel Hen cluster at HLRS (Haswell). To perform the weak scaling, we kept
the number of lattice nodes per core fixed to the value that gives optimal per-
formance on a single cluster node (163 and 323 lattice nodes per core, for the

new and old implementations, respectively).

Given the extremely positive experience in using LIKWID to analyze the
performance of our code, we added it to our testing framework in order to
automatically monitor the performance of the code in the course of future de-

velopments.

