
Professur für
Höchstleistungsrechnen

Friedrich-Alexander-Universität
Erlangen-Nürnberg

BACHELOR THESIS

Design and Implementation of a Framework
for Predicting Instruction Throughput

Jan Laukemann

Erlangen, January 11, 2018

Examiner: Prof. Dr. Gerhard Wellein
Advisor: Julian Hammer



Eidesstattliche Erklärung / Statutory Declaration

Hiermit versichere ich eidesstattlich, dass die vorliegende Arbeit von mir selbständig, ohne Hilfe Dritter und
ausschließlich unter Verwendung der angegebenen Quellen angefertigt wurde. Alle Stellen, die wörtlich
oder sinngemäß aus den Quellen entnommen sind, habe ich als solche kenntlich gemacht. Die Arbeit
wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegt.

I hereby declare formally that I have developed and written the enclosed thesis entirely by myself and have
not used sources or means without declaration in the text. Any thoughts or quotations which were inferred
from the sources are marked as such. This thesis was not submitted in the same or a substantially similar
version to any other authority to achieve an academic grading.

Der Friedrich-Alexander-Universität, vertreten durch die Professur für Höchstleistungsrechnen, wird für
Zwecke der Forschung und Lehre ein einfaches, kostenloses, zeitlich und örtlich unbeschränktes Nutzungsrecht
an den Arbeitsergebnissen der Arbeit einschließlich etwaiger Schutz- und Urheberrechte eingeräumt.

Erlangen, January 11, 2018

Jan Laukemann

i



ii



Zusammenfassung

Für das Aufstellen eines Performance Modells oder anderweitiger Optimierung von, speziell wissenschaft-
licher, Software, ist eine Analyse der in-core Ausführungszeit meist unerlässlich. Diese kann je nach
verwendeter Microarchitektur des Prozessors unterschiedlich ausfallen. Deshalb soll in dieser Arbeit ein
architekturabhängiges Open-Source Analysetool OSACA (Open-Source Architecture Analyzer) implemen-
tiert werden, welches die Durchsatzanalyse des Intel-eigenen Tools IACA (Intel Archcitecture Code An-
alyzer) beherrscht. Es wird gezeigt, dass OSACA die durchschnittliche Belegung einzelner Ports in der
Ausführungspipeline und eine gesamte Durchsatzanalyse beherrscht und zusätzlich das semi-automatische
Messen von Durchsatz und Latenz einzelner Instruktion unterstützt.

Abstract

For creating performance models or the optimization of, mostly scientific, software, it is essential to run
analyses for in-core execution time, which are dependent on the micro architecture of the chip. Therefore
in this work we present a tool named Open-Source Architecture Code Analyzer (OSACA) which is meant to
recreate the throughput analysis functionalities of IACA (Intel Architecture Code Analyzer). We can show,
that OSACA predicts the average port pressure in the execution pipeline for specific instruction forms and
the total port binding for identifying bottlenecks. Furthermore, it is able to semi-automatically measure
throughput and latency values of instructions forms to integrate them in the database.
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1
INTRODUCTION

In the last years in this century, computers not only became more powerful and faster, but in the same time
the complexity of processor architectures grew tremendously. In order to optimize a modern program for
a specific architecture, insight knowledge of the executing processor is almost indispensable. One way
to predict the behavior of a CPU for a kernel is to create a performance model. They provide the user
with information about memory traffic and execution time and allow to predict a bottleneck to see which
component affects the application performance at most.

1.1 Motivation

Most software in scientific computing is organized in loops. Therefore it is often useful to create a perfor-
mance model of a loop kernel. To get an impression of the currently used ways for kernel analysis, two
analytic performance models will be described briefly:

The roofline model [1] in its simplest form puts processor performance and off-chip memory traffic in a
relation. For this the term arithmetic intensity is introduced. Arithmetic intensity or operational intensity
can be described as the ratio of work W , which is the number of floating point operations executed in a
certain kernel, and the memory traffic Q, which is the number of bytes of memory needed in the very same
kernel. The arithmetic intensity I can then be written as [2]

I =
W

Q

It is the number of operations per byte, thus, true arithmetic intensity is always dependent of both the chip
architecture and the executed kernel [1]. The roofline model represents the maximum attainable floating
point performance:

P = min

{
Ppeak

BWmeasured × I

1
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Figure 1.1: Roofline model for (a) AMD Opteron X2 and (b) Opteron X2 vs. Opteron X4 [1]

Its roof lines result from both the peak memory bandwidth Bmeasured and the overall peak performance
Ppeak and determine the upper bounds of the model. Figure 1.1a shows an example of a standard roofline
model. In the optimal case a program — represented as a single point in the graph — can be found on
the roof line limited by the peak floating point performance, but normally a naive code kernel is bounded
by another, not in the model plotted roof line. A simple way of identifying the current performance of a
kernel is to analyze the optimal in-core throughput. Figure 1.1b outlines the difference between a 2.25 GHz
AMD Opteron X2 with two cores and a 2.3 GHz AMD Opteron X4 with four cores. Due to the fact that
they are placed on the same socket, both processors use the same DRAM interface and share the same
peak memory bandwidth as upper bound. Nevertheless, the Opteron X4 can achieve more than four times
the peak performance of the X2, because it not only has twice as many cores, but also can issue twice the
number of SSE2 instructions per cycle [1].

A different, more complex approach for performance modeling is the Execution-Cache-Memory (ECM)
model [3]. It takes the same input as the roofline model plus the data transfer times in the cache hierarchy
and a more accurate in-core execution model. It then predicts execution time in CPU clock cycles. There
are rules when parts of the core execution time overlaps with the transfer time as shown in [4] and the ECM
model considers these additional information. The total model prediction for a single core can be described
as

TECM = f(TnOL + Tdata, TOL) (1.1)

with Tdata as the transfer time, TOL as the part of the core execution that overlaps with the transfer time,
and TnOL as the part that does not [3]. For x86 microarchitectures till Intel Broadwell (BDW) function
f() can be replaced with max() [4]. Therefore the model prediction for Intel BDW is the maximum of the
overlapping time and the sum of all other contributions.

Assuming out-of-order execution within the execution units, no overlap between any data transfer up to L1
cache and perfect overlap between all other instructions and data transfer, a scaling limit, thus, the number
of cores up to which the performance increases linear with the number of nodes, can be defined by:

ns =
# cycles per iteration overall

# cycles per iteration at the bottleneck

2
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Figure 1.2: Single-core ECM model for the DAXPY loop kernel on Intel SNB using AVX [4].

For better understanding the ECM model will be applied to the DAXPY loop on an Intel Sandy Bridge
(SNB) core:

for(i=0; i<N; ++i)
a[i] = s * b[i] + a[i]

The loop body consists of two loads, one store, one multiply and one add instruction. This defines our
work unit. A timeline diagram of the execution is shown in Figure 1.2. It is easy to see the bottle-
neck of DAXPY is in the load pipeline. The different contributions to the ECM model are written as
{TOL ‖ TnOL| TL1L2| TL2L3| TL3Mem} which for the DAXPY would result in {2 ‖ 2 | 6 | 6 | 13} cy. The
ECM model on SNB is constructed according to Equation 1.1, so, e.g., the prediction for data out of L2
cache would be TL1L2 = max(2, 2+6) cy = 8 cy [4]. Therefore the total prediction is {2e6e6e13} cy with
“e” as delimiter indicating the results of the algorithm as shown above for L2 cache. The model calculates
the saturation assumption as:

ns =

⌈
Tmem
ECM

TL3Mem

⌉
=

⌈
27

13

⌉
= 3

Beyond the accurate calculation of data traffic, one crucial element of an analytic performance model is the
in-core execution time, quantified by TOL and TnOL. In simple cases like the DAXPY loop above, this is
easy to do by hand. However, due to the intricacy of the core architecture and the ubiquity of bottlenecks
on the core level, complex loop bodies often evade manual analysis. Intel provides a free tool called Intel
Architecture Code Analyzer (IACA) [5]. For a given, marked innermost loop body it provides an analysis of
optimal instruction throughput and the binding of the instructions to the processor ports. It also identifies the
critical path. IACA requires a piece of byte code to work on, which the user can provide by inserting special
byte sequences, so-called markers, in the assembly code. This can be difficult especially for large code or if
developers are not familiar with assembly. Optionally they may insert inline-assembly markers in high-level
code, but this has proven to inhibit certain compiler optimizations as correct vectorization. Furthermore,
as IACA is a tool owned by Intel, it only supports Intel Architectures, currently Sandy Bridge, Ivy Bridge,
Haswell, Broadwell, Skylake and Skylake X. Unfortunately, Intel dropped its support for latency analysis in
Version 2.2 (Dec 2016), so a user has no chance to get information about the latency of single instructions1,
therefore a detailed critical path analysis is not possible. Moreover, the future development path of IACA is
unclear, as new versions are deployed irregularly and there is no official information about the prospective
plans for the tool.

To overcome these issues and provide a solid basis for other tools such as Kerncraft [6], an open-source
replacement for IACA should be developed. The goal of the present thesis is to create an initial imple-
mentation of Open Source Architecture Code Analyzer (OSACA) with the aim to support the throughput

1So called “micro-ops” or “µops” in Intel literature.

3
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Listing 1.1: Evaluation output of the 20 most common instruction forms out of 163 in HPCG and STREAM bench-
marks.

Number of mnemonic
calls

1168 movslq MEM(offset(base, index, scale)) GPR64
887 vmovsd MEM((base, index, scale)) XMM128
620 vmovhpd MEM((base, index, scale)) XMM128 XMM128
591 xor GPR32 GPR32
565 mov MEM(offset(base)) GPR64
543 add IMD GPR64
478 vmulsd MEM((base, index, scale)) XMM128 XMM128
472 jb LBL
431 mov MEM(offset(base)) GPR32
424 cmp GPR64 GPR64
419 movslq MEM((base, index, scale)) GPR64
416 movslq GPR32 GPR64
408 vsubsd XMM128 XMM128 XMM128
353 mov IMD GPR32
337 vmovsd MEM(offset(base)) XMM128
323 cmp GPR32 GPR32
308 vinsertf128 IMD XMM128 YMM256 YMM256
307 jne LBL
270 jmpq LBL
269 vaddsd XMM128 XMM128 XMM128

analysis mode of IACA and provide a high level code marker option. Future work will extend OSACA to
support various current CPU architectures as well as latency analysis mode.

1.2 Scope of Work

The scope of work can be separated into three main tasks: (i) The automatic extraction of relevant in-
structions using assembly or high level code markers, (ii) the automatic generation of benchmark files for
measuring throughput and latency for a yet unknown instruction form, and (iii) the computation of the
throughput analysis for a given kernel using the throughput values and manually inserted port occupations.
Only Intel architectures are targeted for now, since these are very well documented and allow direct com-
parison with IACA reference results.

It is important to differentiate not only between single instructions, but also between the operands of in-
structions. For example an Intel Ivy Bridge (IVB) processor has a reciprocal throughput of 0.5 cy

instr for
MOV r64,m64, which equates to a load instruction, while MOV m64, r64, commonly known as store
instruction, has a reciprocal throughput of 1 cy

instr . Therefore the term instruction form is introduced. An
instruction form describes the combination of an assembly instruction mnemonic and its operand types in a
specific order. This is particularly relevant on Intel architectures because of the intricacy of the instruction
set and the use of the same mnemonic for many different operand types and orders.

Modern microprocessors have extremely large instruction sets. The detailed performance characteristics
of individual instructions are often insufficiently documented for use in performance modelling, and even
if they are, the data is not available in electronic (and parseable) form. In order to generate a set of rel-
evant machine instructions that the tool OSACA should support, a semi-automatic “instruction profiling”
approach was chosen: Benchmark programs or real applications are compiled and “typical” instruction
forms are subsequently extracted from the assembly output. As an example, Listing 1.1 shows the output
of the 20 most common instruction forms extracted from the profiler. Even though comparison and jump
instructions can be found in the listing, they are not considered in the final analysis, because they normally
carry no weight during a large number of loop iterations in an inner loop.

To extract the marked kernel, two different approaches were considered. As one possible option, a user can

4



CHAPTER 1. INTRODUCTION

insert byte markers as known from IACA into the assembly code. For convenience OSACA supports the
same byte marker as IACA, as presented below:

movl $111, %ebx
.byte 100,103,144

# ..LABEL:
# Some code
# ...
# conditional jump to ..LABEL

movl $222, %ebx
.byte 100,103,144

For this type of marking it is necessary to find the kernel in the assembly code, either by hand or by using
Kerncraft. The Kerncraft IACA marker insertion function is integrated in OSACA; further information
can be found in Section 1.3. In order to avoid handling assembly code, it is possible to insert a marker
in the high level code. It is not advisable to insert inline-assembler, because additional bytes interfere
with compiler optimizations such as SIMD vectorization and unrolling. Alternatively, the comment-based
marker “//STARTLOOP” must be put one line before the loop header, and the loop code must be indented
consistently. This means the marker and the head must have the same indentation level while the whole
loop body needs to be more indented than the code before and after. The indentation is necessary, due to
the fact the formatting of high-level code will be kept while interleaving it with assembly instructions. For
instance, a valid OSACA marker can have a form as follows:

int i = 0;
while(i < M){

int j = 0;
//STARTLOOP
while(j < N){

//do work
}

}

An automatic analysis of ELF files compiled with -g and also of assembly files is therefore possible.

After identifying the individual instruction forms, OSACA automatically generates an assembly bench-
mark file for missing instruction forms. For this, it must consider data dependencies and the necessary
initialization of registers and memory addresses. Ibench [7], a tool for measuring instruction latency and
throughput, which is discussed in Section 1.3, imports this benchmark test and measures the needed latency
and throughput values. For valid results, the size of the loop for executing the instruction to be measured
needs to be customizable, because instructions with a short execution time in a comparatively small loop
body may lead to wrong values du to the overhead at the start and the end of the loop. Given this throughput
and latency information as standard ibench output, OSACA reads the file and checks every measured value
to add if it is reasonable.

Having a file with a marked kernel, OSACA extracts the relevant loop code and provides a throughput
prediction for steady-state, throughput-limited execution with port bindings. By design, it assumes that all
data for execution lies in the L1 cache and all instructions of the loop body are in the instruction cache.
The associated data file of the corresponding core architecture not only contains the throughput and latency
values, but also the average pressure of each operation per port, thus, the average amount of cycles the port is
reserved for the instruction form during a steady-state execution. The instruction form ADD xmm0, xmm1,
which has a reciprocal throughput of 1.00 cy can be executed in the port model on port 0, 1 or 5, would be
assigned with a 0.33 on port 0, 1 and 5 and a 0 otherwise. Furthermore, the analysis contains the overall
port binding per iteration through which one can pinpoint a possible bottleneck by checking the functions
of the execution unit at the port with the most workload.

Finally the last task of this work was to make the code available for further collaboration and freely acces-
sible as an open source project.

5
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1.3 Related Work

General information about IACA by Israel Hirsh and Gideon S. can be found at the official IACA home-
page [5]. The User’s Guide [8] provides an overview of the installation of the tool, functionalities, supported
platforms and processors and presents various examples.

Narayanan et al. [9] introduced a tool named Pbound for automatically generating an upper bound perfor-
mance estimation. It further creates parametrized memory and computational metrics, as information about
execution resources, from C/C++ source code for a simplified performance model [6]. The functionality
of Pbound is entirely covered by Kerncraft and IACA/OSACA. It only provides a crude model for in-core
runtime prediction based on benchmarks.

Johannes Hofmann [7] developed the ibench tool for measuring latency and maximum throughput of single
assembly instructions embedded in a C program. OSACA relies on ibench as it provides the framework for
integrating measured latency and throughput values.

Hammer et al. [6] describe the Kerncraft tool2 for predicting the single-core performance and scaling be-
havior of loops using analytic performance models (Roofline or ECM model). It also provides the function-
ality to heuristically detect the innermost loop in an assembly file and automatically inserts IACA markers
around it. Based on the IACA output and the data traffic analysis it then constructs analytic Roofline and
ECM models. It is planned to replace IACA with OSACA in kerncraft as soon as OSACA is sufficiently
mature.

1.4 Results

A structural overview of the design of OSACA is presented in Figure 1.3. Given a marked kernel within
source code, OSACA extracts the instructions form of the loop and analyzes the throughput by the provided
information in its data file. In case of new instruction forms, OSACA automatically generates benchmark
files which act as input for ibench runs. Subsequently OSACA uses the output of ibench for inserting the
new measured throughput and latency values for the previously unknown instruction forms. It calculates
the average throughput per active execution unit for each instruction and returns a tabular output on the
terminal together with the overall port binding and a throughput estimation of the loop.

At the time of writing, OSACA supports the following functionalities:

• Throughput analysis
As main functionality of OSACA this process starts by default. It is necessary to specify the core
architecture by the flag --arch ARCH, where ARCH may be SNB, IVB, HSW, BDW or SKL.
The optional flag --iaca defines if OSACA needs to search for the IACA byte markers or the
OSACA marker in the chosen file. With an additional, optional --tp-list, OSACA adds a simple
list of all kernel instruction forms together with their reciprocal throughput to the output. This is
helpful if there is no further information about the port binding of a particular instruction form.

• Including new measurements into the data file
Running OSACA with the flag -i or --include-ibench and a specified microarchitecture, it
takes the values given in an ibench output file and checks them for sanity. If a value is not in the
data file already, it will be added, otherwise OSACA prints out a warning message and keeps the old
value in the data file. If a value does not pass the validation, a warning message is shown, however,
OSACA will keep working with the new value. This is an advantage over IACA because it allows the
user not only to enlarge the data files of OSACA, but even to create a base of information for a not
yet implemented microarchitecture.

• Inserting IACA markers Using the -m or --insert-marker flags for a given file, OSACA calls
the Kerncraft module for identifying and marking the inner-loop block. More information about how
this is done can be found in Appendix C of [10].

2The current version of Kerncraft is available at https://github.com/RRZE-HPC/Kerncraft
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// Multiply i with immediate 
// and add to array
int t = 0.19;
int main(void){
    int i = 0;
    //STARTLOOP
    while(i < 1000){
        arr[i] = arr[i-1] + i * t;
        i += 1;
    }
}

Port Binding in Cycles Per Iteration:
----------------------------------------------
|  Port  |  0  |  1  |  2  |  3  |  4  |  5  |
----------------------------------------------
| Cycles | 4.0 | 5.0 | 3.0 | 3.0 | 2.0 | 2.0 |
----------------------------------------------

          Ports Pressure in cycles          
|  0   |  1   |  2   |  3   |  4   |  5   |
-------------------------------------------
|      |      | 1.00 | 1.00 |      |      | lea   0x1(%rax,%rax,1),%edx
| 0.50 | 1.00 |      |      |      | 0.50 | vcvtsi2ss %edx,%xmm2,%xmm2
| 1.00 |      |      |      |      |      | vmulss %xmm2,%xmm0,%xmm3
|      |      | 1.00 | 1.00 |      |      | lea   0x2(%rax,%rax,1),%ecx
|      | 1.00 |      |      |      |      | vaddss %xmm3,%xmm1,%xmm4
| 0.33 | 0.33 |      |      |      | 0.33 | vxorps %xmm1,%xmm1,%xmm1
| 0.50 | 1.00 |      |      |      | 0.50 | vcvtsi2ss %ecx,%xmm1,%xmm1
| 1.00 |      |      |      |      |      | vmulss %xmm1,%xmm0,%xmm5
|      |      | 0.50 | 0.50 | 1.00 |      | vmovss %xmm4,0x4(%rsp,%rax,8)
|      | 1.00 |      |      |      |      | vaddss %xmm5,%xmm4,%xmm1
|      |      | 0.50 | 0.50 | 1.00 |      | vmovss %xmm1,0x8(%rsp,%rax,8)
| 0.33 | 0.33 |      |      |      | 0.33 | inc   %rax
| 0.33 | 0.33 |      |      |      | 0.33 | cmp   $0x1f3,%rax
|      |      |      |      |      |      | jb    400bc2 <main+0x62>
Total number of estimated throughput: 5.0

Extract instructions

CSV

data les
OSACA

xor        ,

lea        ,

vcvtsi2ss  , ,   

vmulss     , ,

lea        ,

vaddss     , ,       

vxorps     , ,

vcvtsi2ss  , ,

vmulss     , ,

vmovss     ,

ibench
vcvtsi2ss-xmm_xmm_r32     1.0

vcvtsi2ss-xmm_xmm_r32-TP  3.0

vmulss-xmm_xmm_xmm        1.0

available on

Figure 1.3: Structural design of OSACA.

For clarifying the functionality of OSACA a sample kernel is analyzed for an Intel IVB core.

double a[n], b[N];
double s;

//STARTLOOP
for(int i = 0; i < N; ++i)

a[i] = s * b[i];

The example above shows a simple scalar multiplication of a vector b and a floating-point number s. The
result is written to vector a. After including the OSACA marker “//STARTLOOP” and compiling the
source, one can start the analysis typing osaca --arch IVB path/to/file in the command line.
Optionally, one can create the assembly code out of the file, identify and mark the kernel of interest and run
OSACA with the additional --iaca flag.

In Listing 1.2 the resulting output of the run can be seen. It shows the whole kernel together with the average
port pressure and the overall port binding. While the actual loop kernel including a[i] = s * b[i]
as well as the increment of the index variable and the compare and jump instruction is represented in lines
20–32 there are two more instructions in before, since the marker is placed before the for-loop and therefore
the analyzed kernel consists also of the beginning loop control instructions. Especially for large loop bodies
this behavior can be neglected.

OSACA estimates a block throughput of 6.0cy and most of the instructions are bound to port 2 and 3,
which lets us assume a bottleneck for load operations. Note that for now, no automatic port allocation of
instruction forms is implemented and must be added in the data file by hand.

7



CHAPTER 1. INTRODUCTION

Listing 1.2: OSACA output for analysis of scalar multiplication kernel.

1 Throughput Analysis Report
--------------------------
X - No information for this instruction in data file
" - Instruction micro-ops not bound to a port

5

Port Binding in Cycles Per Iteration:
-------------------------------------------------
| Port | 0 | 1 | 2 | 3 | 4 | 5 |

10 -------------------------------------------------
| Cycles | 2.33 | 1.33 | 6.0 | 6.0 | 3.0 | 1.33 |
-------------------------------------------------

15 Ports Pressure in cycles
| 0 | 1 | 2 | 3 | 4 | 5 |
-------------------------------------------
| | | 0.50 | 0.50 | 1.00 | | movl $0x0,-0x24(%rbp)
| | | | | | | jmp 10b <scale+0x10b>

20 | | | 0.50 | 0.50 | | | mov -0x48(%rbp),%rax
| | | 0.50 | 0.50 | | | mov -0x24(%rbp),%edx
| 0.33 | 0.33 | | | | 0.33 | movslq %edx,%rdx
| | | 0.50 | 0.50 | | | vmovsd (%rax,%rdx,8),%xmm0
| 1.00 | | 0.50 | 0.50 | | | vmulsd -0x50(%rbp),%xmm0,%xmm0

25 | | | 0.50 | 0.50 | | | mov -0x38(%rbp),%rax
| | | 0.50 | 0.50 | | | mov -0x24(%rbp),%edx
| 0.33 | 0.33 | | | | 0.33 | movslq %edx,%rdx
| | | 0.50 | 0.50 | 1.00 | | vmovsd %xmm0,(%rax,%rdx,8)
| 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 0.33 | addl $0x1,-0x24(%rbp)

30 | | | 0.50 | 0.50 | | | mov -0x24(%rbp),%eax
| 0.33 | 0.33 | 0.50 | 0.50 | | 0.33 | cmp -0x54(%rbp),%eax
| | | | | | | jl e4 <scale+0xe4>
Total number of estimated throughput: 6.0

1.5 Outline

This thesis is organized as follows: In Chapter 2 a simplified core architecture, which forms the basis of
OSACA, is described. Chapter 3 explains the general design and algorithmic details of the throughput
analysis tool. Chapter 4 compares the results of OSACA to IACA and goes into detail about the differences
between the two tools. In the final Chapter 5 further challenges and future work are discussed.

8



2
BACKGROUND

In this Chapter we give an short overview of modern microarchitectures and the simplified core architecture
used in OSACA.

2.1 Modern Microarchitectures

Modern computer architectures are still exclusively based on the von Neumann architecture [12]. Many
additions have been made, but the main components that we need to consider are: the Arithmetic Logic
Unit (ALU) responsible for calculations, the Control Unit (CU) taking care of control flow of the program
and the memory supplying the CU and ALU with input data and storing output data [10]. In the following
section some of the most important functionalities in modern core architectures will be described.

Branch Prediction

Nowadays processors execute instructions in pipelined steps. Due to the distribution of execution, the over-
all throughput of instructions can be increased. This means also the right branch prediction of conditional
program sequences gets more into focus, because the scheduling of not executed code leads to stalls in the
pipeline and bad performance. Efficient code tries to avoid conditional branches and jumps, but at least in
loops, which are ubiquitous in code, an end-of-loop conditional branch is indispensable. Here the predic-
tion that a branch is going to be always taken can produce quite good results, because typically loops are
iterated a large number of times until the program leaves the loop. Therefore, for performance analysis, the
end-of-loop condition can be ignored.

Out-of-order Execution

Out-of-order execution denominates the ability of a microprocessor to execute instructions in a different
order than their appearance in the machine code.

9



2.2. SIMPLIFIED CORE ARCHITECTURE
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Figure 2.1: Execution pipeline and ports of a single Intel Sandy Bridge microarchitecture (based on [10] and [14]).

In case of otherwise forced stalls of the pipeline, e.g. if instruction operands can not made available in
register within a needed time slot because of the memory hierarchy is too slow to keep up with processor
speed, out-of-order execution can avoid these idle times. Thus, not only throughput can be improved but
also it is easier for compilers to arrange machine code for optimal performance [13]. For instance, the
Intel SNB architecture has six ports: Port 0, 1 and 5 are responsible for arithmetic operations, 2 and 3 for
loading data and address generation and port 4 handles store operations. An overview of this architecture is
shown in Figure 2.1. The reorder, rename and schedule units allow an out-of-order execution by identifying
the independence between operations and parallel queuing and assignment to the execution ports.

Macro-Op Fusion

In specific cases modern processors are able to merge two adjacent instructions to execute them within one
instead of two cycles. This feature is called macro-op fusion or macrofusion and happens before decoding.
Fused instructions can represent more work within less time, free up execution units, save pipeline band-
width and consequently save power. A macrofusion can only happen once each cycle and is limited to a few
defined combinations, thus: The first part of the macrofusion always has to be done on a flag-modifying
instruction (e.g., cmp or inc) and second part has to be a conditional jump instruction. An overview of all
macro-fusible instructions for Intel SNB is shown in Table 2.1.

2.2 Simplified Core Architecture

For throughput analysis, OSACA assumes a simplified core architecture: The underlying CPU is based on
the port model as, e.g., in Figure 2.1. All instructions of the kernel to analyze fit in the instruction cache
and all data used in the loop body come from the L1 cache. All predictions rely on a steady-state-execution,

10



CHAPTER 2. BACKGROUND

Instructions TEST AND CMP ADD SUB INC DEC
JO/JNO 3 3 7 7 7 7 7
JC/JB/JAE/JNB 3 3 3 3 3 7 7
JE/JZ/JNE/JNZ 3 3 3 3 3 3 3
JNA/JBE/JA/JNBE 3 3 3 3 3 7 7
JS/JNS/JP/JPE/JNP/JPO 3 3 7 7 7 7 7
JL/JNGE/JGE/JNL/JLE/JNG/JG/JNLE 3 3 3 3 3 3 3

Table 2.1: Macro-Fusible Instructions in Intel Microarchitecture Code Name Sandy Bridge [15].

thus, there is no warm-up effect. It is also assumed that the loop has enough iterations so that startup and
wind-down effects can be neglected. Since OSACA only analyzes the loop body, we can assume every end-
of-loop branch is taken, hence, there is a perfect branch prediction and the reciprocal throughput and latency
value of every jump operation is assigned with 0 cy. As a consequence, OSACA does not consider explicit
macrofusion. Finally the CPU can handle out-of-order execution, also across multiple loop iterations.
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3
IMPLEMENTATION

This chapter details the implementation of the Open Source Architecture Code Analyzer (OSACA) tool.
The source code and example inputs can be found on GitHub1 and are licensed under the GNU Affero
General Public License version 3 (AGPLv3) [16]. The command osaca allows access to the throughput
analysis and all other functionalities. For any throughput analysis a file with the marked kernel and a data
file structured as CSV containing the port occupation and the measured throughput and latency values of
the instruction forms for a specific microarchitecture, as well as a constant defining the microarchitecture
for the current run (e.g. “SKL”) need to be provided. The usage and all command line arguments are
explained in Section 3.5

3.1 Structure

Internally OSACA consists of the following components: The command line interface (CLI), the identi-
fication and instruction fetching of the marked kernel, the generation and integration of ibench input and
output files for measuring throughput and latency of instruction forms and the computation of the port pres-
sure for the given kernel. The CLI is provided by the osaca.py program, the main entry point for users.
The identification of the marked kernel and the fetching and generalization of each single instruction form
for further analysis is also done by osaca.py, as well as the integration of measured execution times of
instruction forms provided by ibench into the data file. The generation of benchmark loop files as input for
ibench takes place in testcase.py. Finally, eu_sched.py provides the scheduling of the instruction
forms to calculate the port pressure and the command line output.

Additionally OSACA accesses to the iaca.py module from Kerncraft to provide the functionality to
heuristically detect the innermost loop and insert IACA markers. For identifying the correct architecture-
dependent register ressources and the generalization of instruction operands, param.py provides the
needed structure. It consists of the superclass Parameter and its subclasses Register and MemAddr.

1https://github.com/RRZE-HPC/OSACA
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3.2. THROUGHPUT ANALYSIS
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Figure 3.1: Internal structure of the packages of OSACA. Gray arrows represent dependencies from outside the
OSACA package.

A general overview of the internal structure and dependencies of OSACA can be found in Figure 3.1. The
file create_testcase.py is not callable by the main program and represents a template for manually
creating benchmark assembly files by the user if needed.

3.2 Throughput Analysis

For the throughput analysis OSACA needs either an assembly file or an Executable and Linking Format
(ELF) file [17], which includes executables or (shared) objects. In the latter case, for identifying the OSACA
marker, the source must be compiled with the compiler flag -g for additional debugging information. If
the kernel is marked with the IACA byte markers, nothing else here is required. Furthermore, for printing
the throughput analysis, the program needs an architecture-specific CSV file including for each instruction
form a throughput and latency value and the average port pressure.

For extracting the OSACA-marked kernel, osaca.py goes through the interleaved assembly and original
source code, generated by objdump, and searches for the start marker. An extract of the interleaved code
for the scalar multiplication kernel from Section 1.4 can be seen in Listing 3.1. The interleaved high level
code is colored in blue, while editorial comments are in red.

Because of the same indentation of high level code in the original file and objdump output, it is important
that all code of the loop body is more indented than the outer code and that the OSACA marker has the same
indentation as the loop head. It cannot be assumed that objdump prints the whole loop block as consecutive
text, thus, a complete iteration through the file is necessary.

If IACA byte markers are used, the search for the start and end marker is done using regular expressions.
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CHAPTER 3. IMPLEMENTATION

Listing 3.1: Extract of the “objdump -S” output of the scalar multiplication kernel in Section 1.4. For brevity, the
loop body is shown as compact code in this Listing.

d7: 48 89 45 b8 mov %rax,-0x48(%rbp)
double s;

//STARTLOOP
for(int i=0; i<N; ++i){

db: c7 45 dc 00 00 00 00 movl $0x0,-0x24(%rbp)
e2: eb 27 jmp 10b <scale+0x10b>

a[i] = s * b[i];
e4: 48 8b 45 b8 mov -0x48(%rbp),%rax

### loop body
102: c5 fb 11 04 d0 vmovsd %xmm0,(%rax,%rdx,8)

for(int i=0; i<N; ++i){
107: 83 45 dc 01 addl $0x1,-0x24(%rbp)
10b: 8b 45 dc mov -0x24(%rbp),%eax
10e: 3b 45 ac cmp -0x54(%rbp),%eax
111: 7c d1 jl e4 <scale+0xe4>
113: 48 89 cc mov %rcx,%rsp

}
}
116: 90 nop

Every line of assembly is inspected and the operands of the instructions are generalized for comparing the
instruction form with the entries in the data file. For creating the throughput analysis, the instruction forms
are given to eu_sched.py, which looks up the values for the given instruction form in the data file. If no
port binding is found, even when there is a throughput value stored in the data file, the line with the related
instruction form is left blank. In this case the user can get an additional output of the throughput values of
all instruction forms occurring in the kernel to manually inspect the values and predict manually the port
pressure of the instruction forms that miss information. After the insertion of port binding information,
another OSACA analysis will provide the throughput information of the instruction form with the recently
added port binding in the output.

3.3 Generating and Including Measurements

To ensure a convenient throughput analysis, OSACA provides a set of instruction forms in the architecture-
dependent data files, which will be extended over time. For setting up an initial set of instruction forms,
a program for automatically compiling and instruction form fetching from common benchmarks was cre-
ated. Since we want to focus on applications from scientific computing, two application benchmarks were
selected to start with: HPCG [18], which is a preconditioned CG solver and now recognized as comple-
menting the LINPACK benchmark, and STREAM [19] for memory bandwidth. A profiling run of HPCG
with gprof2 showed that 95 % of the total runtime is executed in the methods ComputeSYMGS (66 %)
and ComputeSPMV (29 %), which are responsible for the symmetric Gauss-Seidel method and the sparse
matrix vector multiplication3. Therefore only these two methods were evaluated. The whole STREAM
benchmark consists only of one file, so in that case the complete benchmark was considered for evaluation.
To get a high variety in instruction forms both benchmarks were compiled with different compilers and
different compiler flags. A summary of all options can be found in Table 3.1. The flag -g was always used
throughout compiling to include debugging information in the generated binary.

If an instruction form is not found in the data file while fetching the instruction forms out of the marked
kernel and if no benchmark file already exists, OSACA creates a test case which functions as ibench input.
As a result, the instruction form is marked with an “X” in the output.

2More information in [20]
3 Profiling was done for a 60 seconds HPCG run on a single Intel Xeon E5-2660 v2 @ 2.2 GHz (IVB) node with a problem size of
NX=NY=NZ=104.
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3.3. GENERATING AND INCLUDING MEASUREMENTS

Benchmark Compiler Version Compiler Flags

HPCG
STREAM

gcc {4.9.3 | 5.4.0 | 6.1.0}
-fargument-noalias
-fopenmp {-O0|-O1|-O2|-O3}

-march={sandybridge|
ivybridge|haswell|
broadwell|skylake}

icc
{2013SP1.3 | 2016.3 |
2017.1}

-fno-alias -fopenmp
{-O0|-O1|-O2|-O3}

{-xAVX|-xCORE-AVX-I|
-xCORE-AVX2|-xCORE-AVX512}

clang {3.6 | 3.8} -fno-assume-sane-operator-new -fopenmp {-O0|-O1|-O2|-O3}

Table 3.1: The different compilers and compiler flags used for building the HPCG and STREAM benchmarks. The
operator “|” in this context is used as exlusive or.

The full generation of the benchmark file is done by testcase.py. It inspects the given instruction
form and provides both a throughput and a latency benchmark file for measurements. Depending on the
operands of the instruction, it allocates memory and prepares general purpose or SIMD registers for use. To
avoid invalid results for instructions with a short execution time, for which the execution of the loop control
sequences may falsify the measurements, the number of instructions per iteration must be configurable. By
default OSACA creates benchmark files with 32 instructions in the loop body.

For instance, in Listing 3.2, which shows the scalar multiplication example already seen in Section 1.4, in
the fifth to last line containing addl $0x1, -0x24(%rbp) one can see an “X” in front of the instruction
form and no port occupation. This means either there are no measured values for this instruction form or
no port binding is provided in the data file. OSACA then automatically creates two benchmark assembly
files (add-mem_imd.S for latency and add-mem_imd-TP.S for throughput) in the benchmark folder,
if they not already exist there.

With the given file one can now run ibench to get the throughput value for addl with a memory address
and an immediate as operands. Mind that the assembly file, which is used for ibench, is written in Intel
syntax. So for a valid run instruction “addl” must be changed to “add” manually, because “addl” is only
a correct mnemonic for AT&T syntax. Executing ibench on a IVB core may give an output like this:

Using frequency 2.20GHz.
add-mem_imd-TP: 1.023 (clock cycles) [DEBUG - result: 1.000000]
add-mem_imd: 6.050 (clock cycles) [DEBUG - result: 1.000000]

The debug output as resulting value of register xmm0 is an additional validation information depending
on the executed instruction form meant for the user and is not considered by OSACA. The ibench output
information can be included by OSACA running the program with the flag --include-ibench or
just -i and the specific microarchitecture defined by --arch. For now, no automatic port allocation of
instruction forms is implemented, so for consideration in the ports pressure table, one must add the port
occupation by hand. After doing this, knowing that the inserted instruction form must be assigned always
to Port 2, 3 and 4 and additionally to either 0, 1 or 54 [11], another OSACA run returns an output shown
in Listing 3.3.

If one wants to measure the throughput and latency of an specific instruction form without marking a
kernel, the template create_testcase.py is provided in the git repository. In this a user can type
in the instruction of interest, its operands and the number of instructions per loop to manually create a
benchmark file for throughput and latency measurements via ibench.

4 A valid port assignment in the CSV data file would look like: addl-mem_imd,1.0,6.0,"(0.33,0.33,1.00,1.00,1.00,0.33)"
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CHAPTER 3. IMPLEMENTATION

Listing 3.2: OSACA output for analysis of scalar mul-
tiplication with missing instruction form.
Some lines are shortened for formatting rea-
sons.

Throughput Analysis Report
--------------------------
X - No information for this instruction in data file

Port Binding in Cycles Per Iteration:
----------------------------------------------
| Port | 0 | 1 | 2 | 3 | 4 | 5 |
----------------------------------------------
| Cycles | 2.0 | 1.0 | 5.0 | 5.0 | 2.0 | 1.0 |
----------------------------------------------

Ports Pressure in cycles
| 0 | 1 | 2 | 3 | 4 | 5 |
-------------------------------------------
| | | 0.50 | 0.50 | 1.00 | | movl $0x0,-0x24(%rbp)
| | | | | | | jmp 10b <scale+0x10b>
| | | 0.50 | 0.50 | | | mov -0x48(%rbp),%rax
| | | 0.50 | 0.50 | | | mov -0x24(%rbp),%edx
| 0.33 | 0.33 | | | | 0.33 | movslq %edx,%rdx
| | | 0.50 | 0.50 | | | vmovsd (%rax,%rdx,8),...
| 1.00 | | 0.50 | 0.50 | | | vmulsd -0x50(%rbp),...
| | | 0.50 | 0.50 | | | mov -0x38(%rbp),%rax
| | | 0.50 | 0.50 | | | mov -0x24(%rbp),%edx
| 0.33 | 0.33 | | | | 0.33 | movslq %edx,%rdx
| | | 0.50 | 0.50 | 1.00 | | vmovsd %xmm0,...
| | | | | | | X addl $0x1,-0x24(%rbp)
| | | 0.50 | 0.50 | | | mov -0x24(%rbp),%eax
| 0.33 | 0.33 | 0.50 | 0.50 | | 0.33 | cmp -0x54(%rbp),%eax
| | | | | | | jl e4 <scale+0xe4>
Total number of estimated throughput: 5.0

Listing 3.3: OSACA output for analysis of scalar multi-
plication with all instruction forms. Some
lines are shortened for formatting reasons.

Throughput Analysis Report
--------------------------
X - No information for this instruction in data file

Port Binding in Cycles Per Iteration:
-------------------------------------------------
| Port | 0 | 1 | 2 | 3 | 4 | 5 |
-------------------------------------------------
| Cycles | 2.33 | 1.33 | 6.0 | 6.0 | 3.0 | 1.33 |
-------------------------------------------------

Ports Pressure in cycles
| 0 | 1 | 2 | 3 | 4 | 5 |
-------------------------------------------
| | | 0.50 | 0.50 | 1.00 | | movl $0x0,-0x24(%rbp)
| | | | | | | jmp 10b <scale+0x10b>
| | | 0.50 | 0.50 | | | mov -0x48(%rbp),%rax
| | | 0.50 | 0.50 | | | mov -0x24(%rbp),%edx
| 0.33 | 0.33 | | | | 0.33 | movslq %edx,%rdx
| | | 0.50 | 0.50 | | | vmovsd (%rax,%rdx,8),...
| 1.00 | | 0.50 | 0.50 | | | vmulsd -0x50(%rbp),...
| | | 0.50 | 0.50 | | | mov -0x38(%rbp),%rax
| | | 0.50 | 0.50 | | | mov -0x24(%rbp),%edx
| 0.33 | 0.33 | | | | 0.33 | movslq %edx,%rdx
| | | 0.50 | 0.50 | 1.00 | | vmovsd %xmm0,...
| 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 0.33 | addl $0x1,-0x24(%rbp)
| | | 0.50 | 0.50 | | | mov -0x24(%rbp),%eax
| 0.33 | 0.33 | 0.50 | 0.50 | | 0.33 | cmp -0x54(%rbp),%eax
| | | | | | | jl e4 <scale+0xe4>
Total number of estimated throughput: 6.0

Mind that the python file is not part of the OSACA package, but is dependent on params.py and
testcase.py, therefore in these the import of modules within the OSACA package has to be changed
from

from osaca.[pyfile] import [class(es)]
to:

from [pyfile] import [class(es)]

After measuring the throughput and latency values of an instruction form via ibench, which will be dis-
cussed in Section 3.5 in detail, OSACA can incorporate the results into its data file. This is done by
osaca.py.

For every measured value in the output file (latency and throughput) OSACA checks the data file cor-
responding to the defined microarchitecture for the instruction form. If there is already an entry for the
instruction form and the value to check was defined earlier, it prints out both values for the user to com-
pare, but does not change the entry. If there is no value for the given measurement, OSACA first checks
it for sanity. Since every instruction must execute in an integral number of latency cycles, this is done by
checking every latency value in clock cycles against integers. For the validation of throughput values it
is furthermore necessary to check them against a reasonable number of reciprocals, in case the instruction
may be dispatched to multiple execution ports in parallel.

Because OSACA cannot yet detect the port binding of an instruction form, yet, initially a new instruction is
“bound” to port -1 until the user manually inserts a valid port binding.

3.4 Inserting IACA Markers

For heuristically detecting the innermost loop body OSACA calls the appropriate Kerncraft function, for
which the pypi package must be installed. OSACA runs the IACA instrumentation, which tries to idg see
Appendix C in [10] or the github repository5.

5https://github.com/RRZE-HPC/Kerncraft
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3.5 Usage

Besides the create_testcase template OSACA consists only of the osaca command. To use osaca
for throughput analyses or updating of the data file, the user must provide either a kernel code file or an
ibench output file, somehow or other an architecture data file is necessary. The required structure of the
kernel code file is described in Section 3.2 and an example usage of both the IACA byte marker and the
OSACA marker can be found in the Listings in section 1.2. By default, architecture data files for common
Intel architectures (SNB, IVB, Haswell (HSW), BDW, Skylake (SKL)) are provided by OSACA and have
to be in CSV format with four entify blocks by searching for a high number of packed (or vectorized) in-
structions in between labels and conditional jump instructions. OSACA uses the manual mode of this tool
to give the user the possibility to interactively select the correct block. For more information about Kern-
craft’s assembly block markincolumns including the unique instruction form name (instr), a throughput
(TP) and a latency (LT) value and the port binding (ports). E.g., a correct entry in the data file for Intel
IVB for the instruction

vmulsd xmm0, xmm0, qword ptr [rbp-0x50]

— which can be assigned either to port 0 and 2 or port 0 and 3 — would look like this:

vmulsd-xmm_xmm_mem,1.0,5.0,"(1.0,0.0,0.5,0.5,0.0,0.0)"

In order to get correct benchmark results, it is highly recommended to run ibench on an otherwise idle
node. For the correct function of ibench the benchmark files from OSACA must be placed in a subdirectory
of src in the root of the ibench repository, so it can create a folder with the subdirectory’s name and the
shared objects. For running the tests, the frequencies of all cores must set to a constant value6 and this has
to be supplied as an argument together with the directory of the shared objects to ibench, e.g.: “./ibench
./AVX 2.2” for running ibench in the directory AVX with a core frequency of 2.2 GHz.

In the following we will have a look at osaca’s command line interface and how to use it. The CLI accepts
the following format:

osaca [-h] [-V] [--arch ARCH] [--tp-list] [-i | --iaca | -m] FILEPATH

• -h or --help prints out the help message.

• -V or --version shows the program’s version number.

• ARCH needs to be replaced with the wished architecture abbreviation. This flag is necessary for the
throughput analysis (default function) and the inclusion of an ibench output (-i). Possible options
are SNB, IVB, HSW, BDW or SKL for the latest Intel processor generations.

• While in the throughput analysis mode, one can add --tp-list for printing the additional through-
put list of the kernel or --iaca for letting OSACA to know it has to search for IACA binary markers.

• -i or --include-ibench starts the integration of ibench output into the CSV data file determined
by ARCH.

• With the flag -m or --insert-marker OSACA calls the Kerncraft module for the interactively
insertion of IACA marker in suggested assembly blocks.

• FILEPATH is the path to the file to work with and is always necessary

Example runs can be seen in Section 1.4 and Chapter 4.

6 The likwid-setFrequencies tool from the LIKWID tool suite [21] is a convenient way to set the clock frequency.
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4
EVALUATION

For evaluating the functionalities of the developed tool, in the following chapter a sample kernel will be
analyzed with the OSACA throughput analysis and compared to the performance analysis gained with
IACA.

4.1 Throughput Analysis with OSACA and IACA

As source code we use a basic stencil code. Stencils are widely used in scientific computing for numerical
solvers and apply an update function to all elements of an n-dimensional array by referencing neighboring
elements, with potential for spatial and temporal locality. Below we present a basic 2D-5pt stencil code
with OSACA marker included:

for(j=1; j<M-1; ++j){
#pragma vector aligned
//STARTLOOP
for(int i=1; i<N-1; ++i){

b[j][i] = ( a[j][i-1] + a[j][i+1] + a[j-1][i] + a[j+1][i]) * s;
}

}

The code is compiled twice by the Intel Compiler (ICC) version 17.0.5.239 with the flags

-fno-alias -O3 -fopenmp -xCORE-AVX-I -g

and additionally -c and -S, respectively, to create an object file and an assembly output for the Intel IVB
architecture. The directive #pragma vector aligned is added to ensure the compiler uses aligned
data movement instructions for all array references when vectorizing.

A naive run with OSACA searching for the high level code marker (osaca --arch IVB) returns the
output shown in Listing 4.1. Clearly these 72 instructions picture not a single loop body for the stencil, but
a lot more.
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4.1. THROUGHPUT ANALYSIS WITH OSACA AND IACA

Listing 4.1: Output of the 2D-5pt stencil OSACA throughput analysis with OSACA marker.

1 Throughput Analysis Report
--------------------------
X - No information for this instruction in data file

* - Instruction micro-ops not bound to a port
5

Port Binding in Cycles Per Iteration:
-----------------------------------------------------
| Port | 0 | 1 | 2 | 3 | 4 | 5 |

10 -----------------------------------------------------
| Cycles | 16.67 | 19.17 | 8.5 | 7.0 | 8.0 | 11.67 |
-----------------------------------------------------

15 Ports Pressure in cycles
| 0 | 1 | 2 | 3 | 4 | 5 |
-------------------------------------------
| 0.50 | 0.50 | | | | | lea (%r15,%rcx,8),%r11
| 0.50 | 0.50 | | | | | lea (%r14,%rcx,8),%rdx

20 | 0.33 | 0.33 | | | | 0.33 | add $0xfffffffe,%edi
| 0.33 | 0.33 | | | | 0.33 | mov %rcx,%r9
| 0.33 | 0.33 | | | | 0.33 | mov %edi,%eax
| 0.33 | 0.33 | | | | 0.33 | and $0xfffffff0,%eax
| | 0.50 | | | | 0.50 | shl $0x4,%r9

25 | 0.33 | 0.33 | | | | 0.33 | movslq %eax,%rax
| 0.33 | 0.33 | | | | 0.33 | add %r14,%r9
| 0.33 | 0.33 | | | | 0.33 | movslq %edi,%rdi
| | | 0.50 | 0.50 | 1.00 | | mov %rax,-0x50(%rbp)
| | | 0.50 | 0.50 | 1.00 | | mov %rdi,-0x58(%rbp)

30 | 0.33 | 0.33 | | | | 0.33 | cmp $0x2,%rcx
| | | | | | | jle 196 <jacobi2D5pt+0x196>
| 0.33 | 0.33 | | | | 0.33 | cmp $0x10,%edi
| | | | | | | jl 20b <jacobi2D5pt+0x20b>
| | | 0.50 | 0.50 | | | mov -0x48(%rbp),%r14d

35 | 0.33 | 0.33 | | | | 0.33 | xor %edx,%edx
| | | 0.50 | 0.50 | | | mov -0x50(%rbp),%r12
| 0.50 | 0.50 | | | | | lea (%r11,%r8,1),%rax
| | | 0.50 | 0.50 | 1.00 | | vmovupd %ymm0,0x8(%rax,%rdx,8)
| | | 0.50 | 0.50 | 1.00 | | vmovupd %ymm0,0x28(%rax,%rdx,8)

40 | | | 0.50 | 0.50 | 1.00 | | vmovupd %ymm0,0x48(%rax,%rdx,8)
| | | 0.50 | 0.50 | 1.00 | | vmovupd %ymm0,0x68(%rax,%rdx,8)
| 0.33 | 0.33 | | | | 0.33 | add $0x10,%rdx
| 0.33 | 0.33 | | | | 0.33 | cmp %r12,%rdx
| | | | | | | jb d9 <jacobi2D5pt+0xd9>

45 | 0.50 | 0.50 | | | | | lea 0x1(%r14),%eax
| 0.33 | 0.33 | | | | 0.33 | cmp %edi,%eax
| | | | | | | ja 196 <jacobi2D5pt+0x196>
| 0.33 | 0.33 | | | | 0.33 | movslq %r14d,%r14
| | | 0.50 | 0.50 | | | mov -0x58(%rbp),%r13

50 | 0.33 | 0.33 | | | | 0.33 | sub %r14,%r13
| 0.33 | 0.33 | | | | 0.33 | cmp $0x4,%r13
| | | | | | | jl 203 <jacobi2D5pt+0x203>
| 0.33 | 0.33 | | | | 0.33 | mov %r13d,%r15d
| 0.50 | 0.50 | | | | | lea (%r11,%r8,1),%rax

55 | 0.33 | 0.33 | | | | 0.33 | and $0xfffffffc,%r15d
| 0.33 | 0.33 | | | | 0.33 | xor %edx,%edx
| 0.33 | 0.33 | | | | 0.33 | movslq %r15d,%r15
| 0.50 | 0.50 | | | | | lea (%rax,%r14,8),%rax
| | | 0.50 | 0.50 | 1.00 | | vmovupd %ymm0,0x8(%rax,%rdx,8)

60 | 0.33 | 0.33 | | | | 0.33 | add $0x4,%rdx
| 0.33 | 0.33 | | | | 0.33 | cmp %r15,%rdx
| | | | | | | jb 12e <jacobi2D5pt+0x12e>
| 0.33 | 0.33 | | | | 0.33 | cmp %r13,%r15
| | | | | | | jae 196 <jacobi2D5pt+0x196>

65 | | | 0.50 | 0.50 | | | mov -0x38(%rbp),%rax
| 0.50 | 0.50 | | | | | lea (%r11,%r8,1),%r12
| | | 0.50 | 0.50 | | | mov -0x40(%rbp),%rsi
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| 0.50 | 0.50 | | | | | lea (%r9,%r8,1),%rdx
| 0.50 | 0.50 | | | | | lea (%r12,%r14,8),%r12

70 | 0.33 | 0.33 | | | | 0.33 | add %r8,%rax
| 0.33 | 0.33 | | | | 0.33 | add %r8,%rsi
| 0.50 | 0.50 | | | | | lea (%rdx,%r14,8),%rdx
| 0.50 | 0.50 | | | | | lea (%rax,%r14,8),%rax
| 0.50 | 0.50 | | | | | lea (%rsi,%r14,8),%r14

75 | | | 0.50 | 0.50 | | | vmovsd (%r14,%r15,8),%xmm2
| | 1.00 | 0.50 | | | 0.50 | vaddsd 0x10(%r14,%r15,8),%xmm2,%xmm3
| | 1.00 | 0.50 | | | 0.50 | vaddsd 0x8(%rax,%r15,8),%xmm3,%xmm4
| | 1.00 | 0.50 | | | 0.50 | vaddsd 0x8(%rdx,%r15,8),%xmm4,%xmm5
| 1.00 | | | | | | vmulsd %xmm5,%xmm1,%xmm6

80 | | | 0.50 | 0.50 | 1.00 | | vmovsd %xmm6,0x8(%r12,%r15,8)
| 0.33 | 0.33 | | | | 0.33 | inc %r15
| 0.33 | 0.33 | | | | 0.33 | cmp %r13,%r15
| | | | | | | jb 168 <jacobi2D5pt+0x168>
| 0.33 | 0.33 | | | | 0.33 | xor %r15d,%r15d

85 | | | | | | | jmpq 13d <jacobi2D5pt+0x13d>
| 0.33 | 0.33 | | | | 0.33 | xor %r14d,%r14d
| | | | | | | jmpq fa <jacobi2D5pt+0xfa>
| | | | | | | * nopl (%rax)
| | | | | | | * nopw %cs:0x0(%rax,%rax,1)

90 Total number of estimated throughput: 19.17

However, no loop unrolling happened, because we still only have one iteration with its expected three
additions and one multiplication in lines 76–79. This is because objdump does not always list the source
code at the correct place(s) in the disassembled object code. It assigns the OSACA start marker to too many
code sequences, so the kernel enlarges erroneously. The same behavior can be observed using the GNU
Debugger (gdb) for code interleaving.

Therefore OSACA provides a built-in function to call the automatic Kerncraft IACA marker. As seen in
the interactive Kerncraft output below, the manual insertion of OSACA calls with osaca -m suggests to
choose block 2 as loop body, due to the highest number of used AVX registers:

Blocks found in assembly file:
block | OPs | pck. | AVX || Registers | YMM | XMM | GP ||ptr.inc|

-----------+-----+------+-----++-----------+----------+----------+---------++-------|
0 ..B1.8 | 8 | 0 | 0 || 15 ( 4) | 4 ( 1) | 0 ( 0) | 11 ( 3) || 128 |
1 ..B1.13 | 5 | 0 | 0 || 6 ( 4) | 1 ( 1) | 0 ( 0) | 5 ( 3) || 32 |
2 ..B1.17 | 12 | 0 | 0 || 28 ( 13) | 1 ( 1) | 11 ( 6) | 16 ( 6) || None |
Choose block to be marked [2]:

This corresponds lines 75–83 in Listing 4.1.

Kerncraft then automatically inserts the IACA byte markers. To run OSACA again, it is not necessary to
recompile the assembly code, because OSACA can work with IACA marked assembly code as well. The
command for starting the throughput analysis is osaca --arch IVB --iaca for Intel IVB with IACA
markers. The throughput analysis now prints out the expected kernel, as shown in Listing 4.2.

To explain the work between OSACA and ibench on an example, we assume vmulsd in the marked kernel
is not in the data file yet, so first it would look like:

Ports Pressure in cycles
| 0 | 1 | 2 | 3 | 4 | 5 |
-------------------------------------------
...
| | | | | | | X vmulsd %xmm5, %xmm1, %xmm6
...

If OSACA does not have any information about the instruction form at all or about the port binding of it,
it prints out a blank line, marked with an “X”. In beforehand, while fetching the instruction forms, OSACA
creates two assembly files for benchmarking both the latency and the throughput of the instruction form. To
get valid measurements, one has to copy the files from the benchmark folder to the src folder of ibench,
compile them via the Makefile to create shared object files and run ibench on a exclusively allocated core
with a fixed in-core frequency.
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Listing 4.2: Output of the 2D-5pt stencil OSACA throughput analysis with IACA markers.

Throughput Analysis Report
--------------------------
X - No information for this instruction in data file
" - Instruction micro-ops not bound to a port

Port Binding in Cycles Per Iteration:
-------------------------------------------------
| Port | 0 | 1 | 2 | 3 | 4 | 5 |
-------------------------------------------------
| Cycles | 1.67 | 3.67 | 2.5 | 2.5 | 1.0 | 0.67 |
-------------------------------------------------

Ports Pressure in cycles
| 0 | 1 | 2 | 3 | 4 | 5 |
-------------------------------------------
| | | 0.50 | 0.50 | | | vmovsd (%r14,%r15,8), %xmm2
| | 1.00 | 0.50 | 0.50 | | | vaddsd 16(%r14,%r15,8), %xmm2, %xmm3
| | 1.00 | 0.50 | 0.50 | | | vaddsd 8(%rax,%r15,8), %xmm3, %xmm4
| | 1.00 | 0.50 | 0.50 | | | vaddsd 8(%rdx,%r15,8), %xmm4, %xmm5
| 1.00 | | | | | | vmulsd %xmm5, %xmm1, %xmm6
| | | 0.50 | 0.50 | 1.00 | | vmovsd %xmm6, 8(%r12,%r15,8)
| 0.33 | 0.33 | | | | 0.33 | incq %r15
| 0.33 | 0.33 | | | | 0.33 | cmpq %r13, %r15
| | | | | | | jb ..B1.17
Total number of estimated throughput: 4.67

Listing 4.3: Output of the 2D-5pt stencil IACA throughput analysis. Some lines are shortened for formatting reasons.

Throughput Analysis Report
--------------------------
Block Throughput: 3.00 Cycles Throughput Bottleneck: FrontEnd

Port Binding In Cycles Per Iteration:
-------------------------------------------------------------------------
| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 |
-------------------------------------------------------------------------
| Cycles | 1.0 0.0 | 3.0 | 2.5 2.0 | 2.5 2.0 | 1.0 | 2.0 |
-------------------------------------------------------------------------

N - port number or number of cycles resource conflict caused delay, DV - Divider pipe
D - Data fetch pipe (on ports 2 and 3), CP - on a critical path
F - Macro Fusion with the previous instruction occurred

* - instruction micro-ops not bound to a port
^ - Micro Fusion happened
# - ESP Tracking sync uop was issued
@ - SSE instruction followed an AVX256/AVX512 instruction, dozens of cycles

penalty is expected
X - instruction not supported, was not accounted in Analysis

| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
---------------------------------------------------------------------
| 1 | | | 1.0 1.0 | | | | | vmovsd xmm2, ...
| 2 | | 1.0 | | 1.0 1.0 | | | CP | vaddsd xmm3, ...
| 2 | | 1.0 | 1.0 1.0 | | | | CP | vaddsd xmm4, ...
| 2 | | 1.0 | | 1.0 1.0 | | | CP | vaddsd xmm5, ...
| 1 | 1.0 | | | | | | | vmulsd xmm6, ...
| 2 | | | 0.5 | 0.5 | 1.0 | | | vmovsd qword ...
| 1 | | | | | | 1.0 | | inc r15
| 1 | | | | | | 1.0 | | cmp r15, r13
| 0F | | | | | | | | jb 0xffffffff...
Total Num Of Uops: 12
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A successful run will output two values similar to the Listing below, where we ran ibench on an Intel IVB
with 2.2 GHz core frequency:

Using frequency 2.20GHz.
vmulsd-xmm_xmm_xmm: 1.004 (clock cycles) [DEBUG - result: 1.000000]
vmulsd-xmm_xmm_xmm-TP: 5.015 (clock cycles) [DEBUG - result: 1.000000]

In order to add these values to the data file, one has to call osaca with the -i flag and a specific microarchi-
tecture defined by --arch, e.g. IVB. After manually adding the port binding for vmulsd-xmm_xmm_xmm
in the CSV file1, the throughput analysis of the instruction form looks as in Listing 4.2.

The total reciprocal throughput is predicted as 3.67cy. Since the vectorized add of scalar double-precision
floating point values (VADDSD) always needs port 1 for execution and therefore never can be scheduled to
another functional unit for all three additions, it is sure to say the bottleneck for this stencil on a single core
and all data in the L1 cache is port 1.

For comparison we analyze the exact same IACA-marked kernel with Intel’s IACA. For this, another compi-
lation of the assembly source is necessary for creating an object file including the IACA markers (icc -c).
The command iaca.sh -arch IVB analyzes the given file. IACA’s output is shown in Listing 4.3.

IACA prints out some more information, like the total number of micro operations for each instruction form,
the divider pipe on port 0 to illustrate the availability of the port for floating-point division or the data fetch
pipes for ports 2 and 3, which allow the Address Generation Units (AGUs) to get freed after 1 cycle for
256-bit load operations keeping the port busy for 2 cycles. Furthermore, e.g., IACA marks macro fusions
with an “F” after the second fused instruction or “@”, if an SSE instruction follows an AVX instruction, for
which the upper 128 bits of the YMM register have to be stored which results in a massive delay. Finally,
IACA gives a small clue about the critical path for the kernel, which is marked with a “CP” and returns a
prediction about the assumed bottleneck, such as front-end, port number, divider unit or long dependency
chains.

One of the most remarkable differences is the diverse representation of port bindings: IACA schedules
an instruction form, that can be executed on different ports equally, sometimes fully, sometimes equally
distributed and even imbalanced between ports, e.g.:

| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
---------------------------------------------------------------------
| 1 | 0.9 | | | | | 0.1 | | inc rax

Here IACA predicts that only every tenth inc instruction gets scheduled to port 5, while the rest is executed
on port 0. Port 1, which is able to handle inc as well, is left out completely. We speculate that IACA has
some additional internal information about the instruction scheduling, therefore it can not be reproduced
without further investigation or publicly unavailable architecture information. .

OSACA, in contrast, always schedules an instruction form equally on all available ports for execution.
This can lead to a different maximum throughput estimation, as in Listings 4.2 and 4.3. While IACA only
predicts pressure of 3cy on port 1 and assumes that inc r15 and cmp r15,r13 are executed always on
port 5, OSACA considers that every third operation of both will be executed on port 1, due to the possibility
of executing these instructions either on port 0, 1 or 5 [11]. Therefore, the total inverse block throughput
is estimated as 3.67cy instead of IACA’s 3.0cy.

Another difference between OSACA and IACA can be seen when using the OSACA marker for a kernel.
When running objdump for interleaving the assembly and high level source code, it includes the loop
initialization into the marked kernel. For instance, this can be observed in Listing 3.3. The jmp instruction
in the next to last line points to the mov -0x48(%rbp),%rax in the third line of the kernel. Therefore,
in a strict sense, the innermost loop only contains the instructions form the third to the second to last line.
Especially for large kernels this small number of instructions can be neglected for throughput analysis, but
the user should be aware that IACA markers are a more precise way of indicating the loop code.

1 vmulsd with xmm registers as operands only runs on port 0, therefore a correct port binding in the data file would be:
vmulsd-xmm_xmm_xmm,1.0,5.0,"(1.0,0,0,0,0,0)".
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Furthermore IACA provides in its version 2.3 the function to create a graphical trace including in-depth
information about different operation stages inside the processor (Allocate - Source ready - Dispatched -
Execute - Writeback - Retire - Idle) to identify bottlenecks and pressure points.

If an instruction form is not supported by any of the two tools, an immediate analysis is not possible for any
of them, naturally. OSACA automatically creates an assembly benchmark file for measuring throughput
and latency of the missing instruction form via ibench. After integration of the given output of ibench, it is
able to show a throughput analysis of the instruction in the context of the kernel, which is not possible with
IACA. An example instruction which is not included in IACA is xgetbv2. OSACA’s data file therefore
is able to grow dynamically and can even be extended on other chip architectures. Also the benchmark
files produced during instruction fetching are not bound to the current microarchitecture and are usable for
various microarchitectures with Intel assembly syntax.

4.2 IACA versus OSACA

At the moment OSACA is not able to reproduce all the functionalities of the IACA tool. Nevertheless
OSACA provides a throughput analysis of a marked kernel, both for IACA byte markers and OSACA high
level code marker. If one is not able at all to identify the inner-most loop for setting IACA byte markers, it is
a good approach to use the OSACA high level code marker for finding the kernel or at least the surrounding
area of it.

Currently OSACA only supports Intel processors with Sandy Bridge or later microarchitecture, due to their
good documentation and the ability to compare results to IACA. Furthermore, ibench only supports Intel
syntax for now.

OSACA can create benchmark files for unsupported instructions on-the-fly and therefore allows to add
new measured values semi-automatically. Thus, it can dynamically update and enlarge the data files for
supported microarchitectures.

In contrast to IACA’s not always comprehensible scheduling of single instructions to the ports, OSACA’s
port binding is designed to always distribute the instructions equally to all available ports, which allows the
user to get an more detailed view of possible bindings.

2Further information to this instruction can be found on http://www.felixcloutier.com/x86/XGETBV.html.

24



5
CONCLUSION AND FUTURE WORK

We have shown that an automatic throughput analysis of loop kernels based on semi-automatic benchmark
measurements is possible and allows a detailed view on in-core loop performance on a given hardware
architecture. The OSACA tool can extract loop kernels and their instruction forms out of a given, labeled
assembly code or object file and automatically creates benchmark files for instructions forms that are not
in the data files yet. After measuring instruction throughput and latency via the benchmark tool ibench,
OSACA automatically integrates the results and checks for validity. In the current version the user must
still provide information about the port(s) that each instruction can be assigned to. With full knowledge
about the instructions involved, OSACA can then produce a prediction of best-case (full throughput) in-
core execution time for each loop kernel. Hence, it may function as a replacement for the closed-source
IACA (Intel Architecture Code Analyzer) tool provided by Intel.

In the nearest future it is planned to make OSACA available as a listed python package on the Python
Package Index (pypi) [22]. In order to automate the prediction process further, an automatic determination
of the port binding for each newly added instruction form will be implemented. One possible way to
achieve this is to add likwid [21] instrumentation to ibench to count the micro-operations executed on the
units behind every port. This will only be possible on architectures with a port model, such as all current
Intel multicore CPUs.

Another future challenge is the support of other x86 and non-x86 microarchitectures. While other x86
microarchitectures, e.g., by AMD, will be less problematic, due to the similar or identical assembly syntax,
it is an open question how challenging a support of all functionality on non-x86 microarchitectures will be.

In order to overcome irregular behavior with objdump while extracting kernels with high level OSACA
marker, we will keep searching for either already freely available modules to interleave assembly and high
level code with debugging information or implement this functionality by ourselves.

As we observed different behavior depending not only on the type, but also on the value of operands in an
instruction form, it is planned to provide a set of “special” operands for instruction forms in the benchmark
files. This can be predefined values as NaN, 0, INTEGER.MAX or INTEGER.MIN, as well as user-defined
operands if needed. Additionally, not only special immediate, but also special register operands are planned
to be supported, to cover unusual behavior, e.g. for the higher 128 bit of a register in comparison to the
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lower 128. Furthermore, a more efficient way to identify suitable register ranges must be found so that any
instruction in the data file can be combined with any (allowed) register. In the current version of OSACA,
the range of usable registers is hard-coded.

For supporting predictions about the worst-case execution path of a loop kernel, a different future chal-
lenge is to enable OSACA to identify dependency chains and therefore the critical path. This feature was
dropped for Intel’s IACA since version 2.2. This kind of analysis will enable “worst-case/best-case” type
of modeling, where the actual execution time is expected to lie between the two extremal predictions.

Finally, it is intended to replace IACA in the Kerncraft performance analysis tool as soon as OSACA
supports all needed functionality, in order to overcome the dependency to Intel architectures and proprietary
software components.
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